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Abstract

Background

Sustained elevated concentration of GHGs is predicted to increase global mortality. With

the Australian health sector responsible for 7% of the nation’s GHG emissions, the benefits

and costs of various decarbonisation trajectories are currently being investigated. To assist

with this effort, we model the impact earlier decarbonisation has on temperature-related

mortality.

Design

We used DICE-EMR, an Integrated Assessment Model with an endogenous mortality

response, to simulate Australian GHG trajectories and estimate the temperature-related

mortality impact of early decarbonisation. We modelled a linear decline of the Australian

health sector’s and economy’s GHG annual emissions to net-zero targets of 2040 and

2050.

Main outcome measure

Deaths averted and monetary-equivalent welfare gain.

Results

Decarbonisation of the Australian health sector by 2050 and 2040 is projected to avert an

estimated 69,000 and 77,000 global temperature-related deaths respectively in a Baseline

global emissions scenario. Australian economy decarbonisation by 2050 and 2040 is pro-

jected to avert an estimated 988,000 and 1,101,000 global deaths respectively. Assuming a

low discount rate and high global emissions trajectory, we estimate a monetary equivalent

welfare gain of $151 billion if the Australian health sector decarbonises by 2040, only

accounting for the benefits in reducing temperature-related mortality.
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Conclusions

Earlier decarbonisation has a significant impact on temperature-related mortality. Many

uncertainties exist and health impacts other than temperature-related mortality are not cap-

tured by this analysis. Nevertheless, such models can help communicate the health risk of

climate change and improve climate policy decision making.

Introduction

Climate change is projected to have a significant effect on health. A rise in average surface tem-

perature in response to a sustained elevated concentration of greenhouse gases (GHGs) is pre-

dicted to increase global mortality related to diarrhoeal disease, malnutrition, coastal flooding,

heat illness and cardiovascular disease [1–3]. The risk to health, alongside the risk to the econ-

omy and the environment, provides society a strong impetus to achieve CO2 and GHG emis-

sion neutrality (i.e. net zero emissions). All sectors of the economy must change their practices

to achieve this common goal, including the health sector.

Lenzen and colleagues estimated the global health sector is responsible for 4.4% of global

GHG emissions [4]. The health sector in Australia comprises a higher proportion of emissions

than average, estimated to contribute 7% of national GHG emissions [5]. In recognition of the

health and wellbeing risk posed by climate change, multiple Australian states and territories

have committed to decarbonising by 2050 [6]. Western Australia, for example, led the first

statutory enquiry into the relationship between health and climate, and committed to develop-

ing a Sustainable Health Unit to assist in their bid to achieve carbon neutrality by 2050 [7].

Yet, some experts claim this is not enough. England’s National Health Service (NHS) is

aiming to achieve “net zero” emissions by 2040 for the care it provides [8]. Leaders of the Aus-

tralian medical community have urged policymakers to follow the NHS’ lead and target decar-

bonisation by 2040 [9]. A 2040 target increases the likelihood Australia meets their economy

wide national targets and fulfils its responsibilities under the Paris Agreement. What is not

clear, however, is how much the health sector should be willing to spend to reach the 2040 tar-

get, particularly when there is no price on carbon in Australia. Over the next two decades

affordable technologies may emerge enabling a transition that does not demand significant

investment—but this is not guaranteed.

Recently, in a study entitled The Mortality Cost of Carbon published in Nature Communica-
tions, Bressler created a coupled climate-economy-demographics Integrated Assessment

Model (IAM) that includes a climate-mortality damage function [10]. This model extends the

Dynamic Integrated Climate-Economy Model 2016 (DICE-2016), an IAM created by Nobel

Prize-winning economist William Nordhaus [11]. IAMs integrate a model of the economy

with a model of the climate. They include a damage function that projects how damaging dif-

ferent warming scenarios are on society. They are used widely to estimate the social cost of car-

bon (the economic cost of an additional ton of CO2-equivalent emission) and identify

mitigation trajectories that maximise social welfare [11].

Bressler found climate-mortality damages were largely left out of DICE-2016 [10]. He

therefore extended the model to include a temperature-related mortality damage function in

addition to the original DICE-2016 damage function (Dynamic Integrated Climate-Economy

Model with an Endogenous Mortality Response [DICE-EMR]). The mortality damage func-

tion represents the percentage increase in the global mortality rate as a function of the increase

in global average temperatures, and was estimated by fitting a curve through projections made
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by scientific studies that were chosen from a systematic research synthesis. DICE-EMR can be

used to determine the effect of GHG emissions decisions on future temperature-related excess

deaths. We use DICE-EMR to assess how many additional deaths will result from GHG emis-

sions if the Australian health sector and the whole economy follow [1] ‘Business as usual

(BAU),’ or decarbonise by [2] 2050 and [3] 2040.

Methods

Overview

Our analysis uses DICE-EMR to simulate the following steps:

1. The projected cumulative global CO2 emissions emitted over the century, assuming the cur-

rent emissions trend continues.

2. The effect CO2 emission concentration has on average surface temperature.

3. The effect a rise in average surface temperature has on the mortality rate and excess deaths.

4. The isolated effect the Australian healthcare system’s and the whole Australian economy’s

CO2 -equivalent emissions have on the global mortality rate and excess deaths.

Projected GHG emissions and climate sensitivity

The projected CO2 emissions and the climate model are taken directly from DICE-2016 [11].

Further details can be found in S1 Appendix. In brief, the projections estimate cumulative

emissions based on GDP projections, the projected carbon intensity of economic output, the

CO2 emissions of land, and the amount of CO2 abatement. In DICE-2016, GDP per capita is

projected to increase at 2.1% per year from 2015 to 2050, and 1.9% from 2050 to 2100. The

DICE Baseline emissions scenario assumes the carbon intensity of economic output decreases

by 1.5% per year. The effect CO2 has on surface temperature is captured by a three-reservoir

climate model and aligns closely with the IPCC estimates.

Temperature effect on mortality

The following equation from DICE-EMR represents the effect of the global mean surface tem-

perature on mortality:

ED GC ¼
Xt¼2100

t¼2020
L tð Þd tð ÞdT tð Þ � L tð Þd tð Þ

Where ED GC is the number of cumulative global excess deaths between 2020 and 2100.

The number of excess deaths in each time period is derived by calculating the effect a rise in

average surface temperature has on the mortality rate. L(t) is the population in period t, d(t) is

the mortality rate and δT(t) is the mortality damage function, which represents the % increase

in mortality as a function of the rise in global mean surface temperature. Future population

growth, which is a function of projected fertility and mortality rates, is extracted from the 2019

United Nations World Population Prospects [12].

Bressler conducted a systematic review of 100 studies in the climate-mortality literature to

find studies that were of sufficient quality and relevance to be used to estimate the mortality

damages to increases in global average temperatures [10]. Ultimately, three studies were used

[1–3]. Two of the three studies [1, 2] used to estimate the mortality damage function made

their projections net of the projected effect of defensive adaptation, since individuals and soci-

eties are expected to make choices to reduce their vulnerability to the mortality effects of future
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climate change, such as by purchasing air conditioning. Although the third study [3] did not

incorporate the effect of adaptation, its mortality projections were lower in large part because

it did not include data from regions most vulnerable to heat related mortality in South Asia,

the Middle East and Africa.

Bressler then conducted a curve-fitting exercise to estimate the mortality damage function

from the projections made in these studies [10]. The mortality damage function was robust

across a wide variety of functional forms, and a quadratic functional form was used in the

main specification:

dT tð Þ ¼ b1T tð Þ þ b2T t2ð Þ

where T(t) is the increase in global average atmospheric temperatures above pre industrial lev-

els and βi{β1, β2} are the estimated coefficients. For our mortality damage function, we use

Bressler’s central estimate [10]. Further details of his systematic research synthesis of the cli-

mate mortality literature and curve-fitting exercise can be found in S1 Appendix.

Contribution of the Australian health system and economy to temperature

induced mortality

To estimate the contribution of the Australian health system to temperature induced mortality

under different decarbonising trajectories (BAU, 2050 and 2040), the annual health system’s

CO2 equivalent emissions (EAHS (t)) are taken as a proportion of global annual CO2 emissions

(EG (t)) in Baseline DICE-EMR:

EDAHS ¼
Xt¼2100

t¼2020
ED G tð Þ �

EAHS tð Þ
EG tð Þ

The Australian health system emissions for 2020 were assumed to contribute 7% of Austra-

lia’s total CO2 -equivalent emissions as estimated by Malik et al. [5], and decline linearly to its

final target (for BAU, it was assumed to maintain a constant 7% contribution of Australia’s

total CO2 -equivalent emissions, see Fig 1). The same equation was used to estimate the num-

ber of excess deaths averted if the economy decarbonised by 2050 and 2040. Estimates for Aus-

tralia’s national emissions were taken from the National Greenhouse Gas Inventory for 2018

[13].

We also simulate the expected harm under a global low-emissions scenario, in which coun-

tries take significant action to reduce their carbon intensity, more so than suggested by recent

trends. To model this we use the DICE-EMR Optimal trajectory, [10] reflecting full global dec-

arbonisation by 2050.

Monetising deaths averted and discounting

Finally, we monetise the present value of averted future deaths:

NPVED ¼
Xt¼2100

t¼2020
ED tð Þ�VSL US 2020 �

� Global GNI pc tð Þ
US GNI pc 2020

ÞIncome elasticity
� 1

1þ r
Þt� 2020

The number of excess deaths in each time period (ED(t))is multiplied by a global average

value of statistical life (VSL). We derive a global VSL by using a benefits transfer methodology

as discussed in Robinson, Hammitt & O’Keeffe [14]–it is a product of the US VSL (11.5 million

USD) and the ratio of the median global GNI per capita and the US GNI per capita in 2020 in

each time period. To convert into net present value (NPVED), we discount [ð 1

1þrÞ
t� 2020 where r

is the discount rate and t is the year excess deaths take place] by 3.5% and 5%, as recommended

PLOS ONE The global mortality impact of earlier decarbonization for the Australian health sector and economy

PLOS ONE | https://doi.org/10.1371/journal.pone.0271550 August 3, 2022 4 / 10

https://doi.org/10.1371/journal.pone.0271550


by the Australian Pharmaceutical Benefit Advisory Committee [15], and also provide a dis-

count of 2% (see S1 Data for analysis).

Results

We estimate the Australian health system will emit 4.0 Gt CO2-equivalent emissions less over

the century compared to its BAU scenario if it achieves net zero by 2050. This translates to

69,000 fewer temperature-related global deaths from the present through to 2100 (Table 1).

Most deaths are averted in the latter part of the century (as seen in Fig 2), with 74% of deaths

averted between 2080 and 2100. Decarbonising by 2040 averts a total of 77,000 deaths, with

72% of deaths averted from 2080 to 2100. If the Australian economy decarbonises alongside

the health sector, we project in total 988,000 fewer temperature-related global deaths with a

2050 target and 1.1 million fewer temperature-related global deaths with a 2040 target. If the

global economy decarbonises by 2050, then the harm the Australian health sector causes is sig-

nificantly reduced, and 8,000 deaths are averted with decarbonisation by 2040.

We then estimate the monetary equivalent welfare gain under different assumptions for the

discount rate and the global emissions trajectory. Assuming a low discount rate (2%) and the

DICE Baseline global emissions scenario, the health sector averts 77, 000 deaths with a net-

zero target of 2040, which represents a monetary-equivalent welfare gain of $151 billion

(Table 1). At the other extreme, assuming a high discount rate (5%) and the DICE-EMR opti-

mal emissions trajectory, the health sector averts 8,000 deaths with a net-zero target of 2040,

which represents a monetary-equivalent welfare gain of $1.36 billion. If the full Australian

Fig 1. Australian health sector annual greenhouse gas emissions for hypothetical trajectories used in the model DICE-EMR to estimate the number of global deaths

averted.

https://doi.org/10.1371/journal.pone.0271550.g001
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economy decarbonises alongside the health sector, the monetary-equivalent welfare gain from

the reduced mortality is $2.1 trillion with a low discount rate and the DICE Baseline global

emissions trajectory.

Table 1. A. The number of temperature-related deaths averted if Australia’s health system and the whole economy decarbonises by 2040 and 2050. B. The monetary

equivalent welfare gain under a range of discount rates and emission trajectories.

Australian health sector Australian economy

A. Cumulative deaths averted

Decarbonize by 2050

DICE Baseline Global Emissions Scenario

69,000 988,000

Decarbonize by 2040

DICE Baseline Global Emissions Scenario

77,000 1,101,000

Decarbonize by 2040

DICE EMRO Global Emissions Scenario

8,000 108,000

B. Monetary-equivalent welfare gain (billion $)

Discount rate 2% 3.5% 5% 2% 3.5% 5%

Decarbonize by 2050

DICE Baseline Global Emissions Scenario

137 42.6 13.5 1955 608 192

Decarbonize by 2040

DICE Baseline Global Emissions Scenario

151 47.1 14.9 2161 672 214

Decarbonize by 2040

DICE EMRO Global Emissions Scenario

13.8 4.30 1.36 269 83.9 26.5

aDICE EMRO- DICE-Endogenous Mortality Response Optimal emissions trajectory.

https://doi.org/10.1371/journal.pone.0271550.t001

Fig 2. Cumulative temperature-related deaths averted from earlier decarbonisation of the health sector. The majority of lives are saved in the later part of the

century.

https://doi.org/10.1371/journal.pone.0271550.g002
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Discussion

We demonstrated how a decision maker may quantify the temperature-related mortality

impact of embarking on various trajectories for decarbonising the health sector. A target of

2040 averts an additional 8,000 deaths compared to a target of 2050, which in turn averts an

additional 69,000 deaths compared to BAU. If the Australian economy follows the health sec-

tor’s lead and decarbonises by 2040, combined they avert 1.1 million deaths compared to

BAU. We converted the mortality impact into a monetary value using the VSL. If the health

sector decarbonises by 2040, we estimate a gain of $151billion assuming a low discount rate

and high emissions scenario. This can provide a guide for how much the health sector may be

willing to spend over the next 20 years to decarbonise earlier. There is however significant

uncertainty and ambiguity surrounding the actual impact GHGs will have on future health,

the collective action the global economy will take to reduce their carbon intensity and debate

about how we should value future health.

We can examine the annual harm to contextualise and compare GHG emissions to other

pressing health priorities. Over the next decade, the annual harm attributable to the Australian

health sector’s GHG emissions is near negligible, particularly when compared to the harm

caused by other well established risk factors such as tobacco or high fasting plasma glucose

[16]. When we look ahead however, closer to 2100, we find the harm is at par with deaths

attributed to these risk factors in 2020. It is also comparable to the estimated harm that arises

from medical errors [16, 17]. There are three important differences between the nature of con-

temporary local mortality risks and climate related mortality risks. First, the deaths predicted

to occur from GHGs would primarily affect individuals in other countries, particularly Low

and Lower-Middle Income countries [1]. Some have argued global harms should not be con-

sidered in climate policy analysis, such as the recent Trump Administration [18]. We disagree,

recognising that climate change is a global collective action problem that requires countries to

consider the full cost of their emissions, including harms on other countries when determining

their own climate policy [1, 10, 11, 19]. Second, the expected harms of GHGs would primarily

occur much further in the future than tobacco or sugar-sweetened beverages. Most philoso-

phers agree that there should be no difference in the value of a life lived today and a life lived

in a century, although discounting the monetized costs of premature death may be appropriate

to account for individuals’ estimated rate of time preference and projected income growth [19,

20]. However some also acknowledge that discounting is permissible for uncertainty, and the

‘instrumental benefits of earlier health,’ i.e. earlier health investments can increase productiv-

ity, yielding additional value in subsequent years [21]. Economists for similar reasons look to

financial markets for an estimate of a discount rate [22]. Third, the effects of climate change

are much more uncertain when compared to other health risk factors [23]. We are much less

confident about the impact GHGs have on mortality when compared to smoking and obesity,

and also unsure about how to model and value this uncertainty, particularly tail risks [24].

Our analysis has several limitations that likely underestimate the health gains of earlier dec-

arbonisation. DICE-EMR does not capture other mechanisms in which climate change could

cause premature death outside of temperature-related mortality. For example, it does not proj-

ect the mortality impact from the increased likelihood of emerging infectious diseases, flood-

ing and civil and interstate war [10]. It also does not provide estimates for the morbidity

impact of earlier decarbonisation. Reporting in Disability Adjusted Life Years (DALYs) is

arguably a more useful tool for health priority setting over mortality, as it communicates a

more precise and comprehensive estimate of health loss by combining years of life lost and

years of life lived with the disability [21]. However, DICE-EMR is constructed based on esti-

mating temperature-related mortality damages from the existing literature, and studies are not
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yet available making projections in DALYs. Additional epidemiolocal studies and projections

are required to make more complete and confident mortality and morbidity estimates [25].

Others have estimated the health gains that could be realised from reduced exposure to par-

ticulate matter and other health ‘co-benefits’ of earlier decarbonisation. For example, the

United Kingdom’s National Health Service (NHS) estimated decarbonisation by 2040 saves 5,

770 lives per year in reductions in air pollution and saves 38, 400 lives per year in increased lev-

els of physical activity [26]. A more recent study derived similar estimates for the mortality co-

benefits resulting from national decarbonisation by 2040 across multiple countries [27]. Health

co-benefits have been incorporated in IAMs as well. For example, Scovronick et al., recently

demonstrated the implications of including the health co-benefits of reduced air pollution

[19]. Building on the RICE IAM, the researchers showed how mitigation nets immediate bene-

fits globally when air pollution co-benefits are incorporated, and may make a 2 degree target

consistent with what is economically optimal.

The cost of decarbonisation is also important to consider when developing policy. The

health sector’s primary contributors to GHG emissions include medicines, anaesthetic gases,

patient and staff transport, heating and cooling of facilities, electricity use, waste management,

food and catering [28]. Hence there are multiple opportunities to reduce the health sector’s

GHG production. Some opportunities are relatively simple to implement and incur no addi-

tional financial or welfare cost; for example promoting the use of low carbon inhalers or anaes-

thetic gases [29]. Others require significant upfront investment and planning but are

forecasted to be cost saving over the long-run. For example, the NHS estimates upgrading

lighting across hospitals in the UK would incur an upfront cost of £500 million but could yield

a cost-saving of £3 billion over the next three decades in energy consumption [26]. Similarly, a

wide range of heating, cooling and ventilation initiatives are estimated to save £250 million a

year after implementation in 2034 across the secondary care estate of the NHS [26] Other costs

are uncertain, such as the electrification of transport and the decarbonisation of health care

product supply chains. Careful consideration of the costs and benefits of decarbonisation can

help countries develop climate policy to achieve net zero emissions in the coming decades.

Conclusion

In this paper we set out to explore the temperature-related mortality impacts of decarbonisa-

tion of the Australian healthcare system by 2040 and 2050 as compared to business as usual

healthcare sector emissions. We project conservatively that the 2040 target averts an additional

8,000 deaths compared to a target of 2050, which in turn is projected to avert an additional

69,000 deaths compared to BAU. Assuming a low discount rate and high emissions scenario,

decarbonisation of the healthcare sector by 2040 could provide a monetary-equivalent welfare

gain of $151 billion just through the reduction in temperature-related premature mortality.

Indeed, many uncertainties exist, particularly surrounding the choice of discount rate. Further,

our analysis does not capture mortality gains outside of temperature-related death, morbidity

gains and the co-benefits of earlier decarbonisation such as reduced particulate matter expo-

sure and increased physical activities. Further work incorporating these impacts is likely to

demonstrate greater health gains from earlier decarbonisation beyond what we have presented

here.
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