
Review

Neuroimmune Mechanisms in
Krabbe’s Disease

Gregory B. Potter1 and Magdalena A. Petryniak2*
1Denali Therapeutics, South San Francisco, California
2Department of Pediatrics, Oregon Health and Science University, Portland, Oregon

Neuroinflammation, activation of innate immune compo-
nents of the nervous system followed by an adaptive
immune response, is observed in most leukodystrophies
and coincides with white matter pathology, disease pro-
gression, and morbidity. Despite this, there is a major gap
in our knowledge of the contribution of the immune sys-
tem to disease phenotype. Inflammation in Krabbe’s dis-
ease has been considered a secondary effect, resulting
from cell-autonomous oligodendroglial cell death or mye-
lin loss resulting from psychosine accumulation. However,
recent studies have shown immune activation preceding
clinical symptoms and white matter pathology. Moreover,
the therapeutic effect underlying hematopoietic stem cell
transplantation, the only treatment for Krabbe’s disease,
has been demonstrated to occur via immunomodulation.
This Review highlights recent advances in elaboration of
the immune cascade involved in Krabbe’s disease. Mech-
anistic insight into the inflammatory pathways participat-
ing in myelin and axon loss or preservation may lead to
novel therapeutic approaches for this disorder. VC 2016
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Leukodystrophies are the most common cause of
pediatric neurodegeneration, associated with profound
childhood morbidity and mortality and resulting in signif-
icant emotional and financial burden on families and soci-
ety (Kohlschutter and Eichler, 2011). Although white
matter degeneration is a common feature of these disor-
ders, the activation of the CNS’s innate immune response
is also observed in most leukodystrophies and coincides
with white matter pathology, disease progression, and
morbidity (Vitner et al., 2010). Despite this, there is a
major gap in our knowledge of the contribution of the
immune system to disease phenotype. Krabbe’s disease
(KD), a leukodystrophy caused by an enzymatic defect in
lysosomal galactocerebrosidase (GALC), presents in the

most severe infantile form by 6 months of age, followed
by death at 2 years of age (Wenger, 1997). This Review
refers to neuroinflammation as inflammation characterized
by reactivation of resident CNS innate immune cells
(microglia) and astrogliosis, which has been previously
used to describe aspects of KD pathophysiology (Snook
et al., 2014; Hawkins-Salsbury et al., 2015; Lin et al.,
2015). It is important to note that there is no clear con-
sensus on the definition or application of the term neuroin-
flammation with regard to neurodegenerative or lysosomal
storage disorders. Some researchers draw a distinction
between immune-driven pathology in the brain (i.e., as
seen in multiple sclerosis) and innate immune cell activa-
tion in the brain (Graeber, 2014), whereas others suggest
dividing neuroinflammation between innate immune-
driven and adaptive immune-driven neuroinflammation
(Heppner et al., 2015). Nevertheless, it is clear that
inflammation within the nervous system is a defining
characteristic of KD. One of the earliest clinical
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manifestations (Heppner et al., 2015) of the KD pheno-
type is fever of unknown origin, which is indicative of
the release of pyrogenic cytokines as part of an innate
immune response. A pathologic hallmark of KD, first
described by Danish neurologist Knud Krabbe, is the
presence of phagocytic multinucleated (globoid) cells in
the brain (Krabbe, 1916). The CNS of patients as well as
that of all animal models exhibits robust astrogliosis,
microglial activation, and macrophage recruitment
(Wenger, 2000). Although it has been proposed that
death of oligodendrocytes and the resulting demyelination
trigger the neuroimmune response, recent studies that
examined early pathology clearly demonstrated neuroin-
flammation preceding changes in or loss of myelin (San-
tambrogio et al., 2012; Potter et al., 2013), with reactive
microglia detected in advance of reactive astrocytes
(Snook et al., 2014). The trigger of inflammation is still
not known; however, myelinating cells are particularly
rich in GALC substrates and are thus predicted to be the
primary cells responsible for initiating pathological
changes in KD. This Review seeks to introduce impor-
tant neuroimmune mechanisms that occur within KD.
We summarize the current understanding of neuroinflam-
mation in KD animal models and potential mechanisms
that initiate inflammation and highlight interventions that
modulate neuroinflammation and disease progression. By
emphasizing the central role of neuroinflammation in
KD, we hope to generate interest in exploring new thera-
pies that target inflammation for the treatment of this pro-
gressive and devastating disease.

NEUROINFLAMMATION IN ANIMAL
MODELS OF KD

Disease-causing mutations in GALC have been described
for several species, including cat (Johnson, 1970; Sigurd-
son et al., 2002), dog (Wenger et al., 1999), monkey
(Baskin et al., 1998; Wenger, 2000), sheep (Pritchard
et al., 1980), and mouse (Duchen et al., 1980; Kobayashi
et al., 1980; Luzi et al., 2001; Potter et al., 2013; Matthes
et al., 2015). With the exception of the murine models,
analysis and description of histology are performed at the
end stages of the disease (Wenger, 2000). As such, critical
examination of disease progression is lacking. Neverthe-
less, common end-stage findings among all animal models
are inflammatory markers that identify reactive microglia,
astrogliosis, and accumulation of distinctive periodic acid-
Schiff (PAS)-positive globoid cells. Globoid cells are large
multinucleated cells that are often round or oval. The ori-
gin of globoid cells and their formation are under investi-
gation. Because macrophages turn PAS positive when
they phagocytose galactosylceramide, it had initially been
proposed that globoid cells are infiltrating monocyte-
derived macrophages (Austin and Lehfeldt, 1965). On the
other hand, microglia exposed to psychosine transform
into globoid cells in vitro, whereas macrophages do not
(Ijichi et al., 2013; Claycomb et al., 2014a,b). Curiously,
application of psychosine can cause multinucleation of
U937 monocytes and HeLa, HL-60, and HepG2 cells

(Kanazawa et al., 2000), so whether endogenous accumu-
lation of psychosine within GALC-deficient microglia
transforms only microglia into globoid cells in vivo
remains to be determined. Globoid cells and mononuclear
macrophage and microglia are most often found in weakly
stained Luxol fast blue white matter tracts, indicating
innate immune activation within poorly myelinated axon
tracts. In addition to the white matter, PAS-positive mul-
tinucleated globoid cells and smaller mononucleated
PAS-positive macrophages are often concentrated around
blood vessels.

KD MOUSE MODELS UNCOVER EARLY
IMMUNE CELL ACTIVATION

The striking correlation between immune cell activation
and accumulation in areas of demyelination observed at
terminal stages of KD animal models suggests that neuro-
inflammation is a consequence of myelin loss or myelin
debris. However, recent studies have challenged this con-
jecture through careful examination of murine models of
KD for neuroimmune activation several weeks before
overt signs of myelin loss.

Several mouse strains contain disease-causing GALC
mutations, including twitcher (W332X), twi-5J (E130K),
and twitrs (H168C; Sakai et al., 1996; Luzi et al., 2001;
Potter et al., 2013). As expected, all exhibit marked neu-
roinflammation at terminal stages, including microglia and
astrocyte activation and macrophage infiltration. The
models differ in the extent of demyelination, with the
twi-5J model showing limited CNS demyelination even
at terminal stages compared with twitcher and twitrs. It
was, in part, the finding that neuroinflammation can be
robust in the absence of demyelination that led us to
examine earlier aspects of immune activation in the CNS
and PNS of twi-5J mice. Indeed, we observed the pres-
ence of reactive microglia and astrocytes within the fore-
brain of twi-5J mice as early as 2 weeks postnatally. Early
immune activation is not restricted to twi-5J. Remark-
ably, examination of twitcher hindbrain by immunohisto-
chemistry identified ionized calcium-binding adaptor
molecule-11 reactive microglia by 2 weeks of age (Snook
et al., 2014). Microglia activation was widespread by 3
weeks of age, with a significant increase in overall GFAP
immunoreactivity representing astrocyte reactivation.
Starting about 2 weeks of age and increasing by 3 weeks,
microglia formed discrete nodules that were surrounded
by hypertrophied astrocytes. By 5 weeks of age, nearly all
microglia appeared amoeboid in shape, and reactive astro-
cytes were no longer centered around microglial nodules.
These data indicate that microglia are activated first
within twitcher brain, followed by astrocytes, and that
eventually astrocyte reactivation is propagated beyond
microglial nodules (Snook et al., 2014; Fig. 1).

Innate immune signaling might occur before histo-
logic signs of microglia activation. Comparison of cyto-
kine or chemokine transcript expression from total
twitcher brain by qRT-PCR revealed significant increases
in Ccl2, Il1b, and Tnf at postnatal day (PND) 2 compared
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with controls (Santambrogio et al., 2012). TLR1 and
TLR2 expression is increased by 2 weeks and 3 weeks in
the hindbrain and forebrain, respectively (Snook et al.,
2014). By PND 20, immune-related genes Ccl3, Ccl5,
and Cxcl10 are elevated in the brain. Cytokine protein
assays have demonstrated that CXCL10 and CXCL1
expression are increased compared with controls by 3
weeks postnatally, and interleukin (IL)-6 and tumor
necrosis factor (TNF)-a are increased by 4 weeks in the
hindbrain (Snook et al., 2014). Thus, cytokine and che-
mokine expression is elevated in presymptomatic twitcher
mice and increases with disease progression.

MECHANISMS OF NEUROINFLAMMATION

Magnetic resonance imaging studies have indicated white
matter tract involvement at the time of diagnosis for
infantile KD (Loes et al., 1999). Histological sections
examined from a KD patient at autopsy contained active
inflammation at sites of demyelination, and, because of
this correlation, it was posited that oligodendrocyte death
causes demyelination, which initiates inflammation by
activating microglia and astrocytes, which in turn leads to
further demyelination and inflammation in a feed-forward
loop. In further support of this idea, activation of immune
cells followed a similar caudal-to-rostral gradient of
demyelination, with caudal CNS tissue, such as spinal
cord, exhibiting greater demyelination and inflammation
compared with forebrain (LeVine et al., 1994). However,
one must practice caution when predicting disease patho-
genesis from examination of end-stage diseased tissue
because it is difficult to discern cause and effect from a
terminal time point. Limited pathological examination of
KD fetuses revealed globoid cells in both developing axo-
nal tracts and myelinating tracts, which suggests inflam-
mation could be occurring before any signs of
demyelination or oligodendrocyte death (Martin et al.,
1981). Indeed, data from studies of twitcher and twi-5J
mice have clearly shown that gliosis occurs weeks before
any overt signs of oligodendrocyte dysfunction and that

twi-5J mice exhibit massive neuroinflammation without
oligodendrocyte death in the forebrain. Thus, it is likely
that neuroinflammation leads to oligodendrocyte dysfunc-
tion and death, which further excites innate immune
pathways, leading to runaway neuroinflammation. How-
ever, what triggers neuroinflammation?

TRIGGERS OF NEUROINFLAMMATION

GALC is ubiquitously expressed in most tissues, but most
of the disease processes occur within the nervous system.
Among the known GALC substrates expressed in the
nervous system (GalCer, LacCer, and psychosine), the
galactosphingolipid psychosine has been consistently
shown to accumulate in human patients and in animal
models of KD (Svennerholm et al., 1980; Whitfield et al.,
2001; Esch et al., 2003; Tominaga et al., 2004). Increase
in brain psychosine correlates with the appearance of cel-
lular markers of inflammation and amplified cytokine
expression (Santambrogio et al., 2012). Although high
levels of psychosine can be cytotoxic to myelinating cells,
its role in immune activation has not been established. It
is challenging to determine the cellular concentration of
psychosine in vivo because most measurements are per-
formed on homogenized tissue. Measured concentrations
vary widely from 10 to 1,000 pmol/mg of tissue, depend-
ing on the CNS or PNS tissue examined, with highest
concentrations typically found in the sciatic nerve (White
et al., 2009). The concentration of psychosine within a
cell is not known. Many studies that have examined the
effects of psychosine have relied on administration of
exogenous psychosine to cultured cells. Typically, no
effect is seen when less than 10 mM of psychosine is
added, but many affects have been noted at higher
concentrations, including apoptosis; disruption of
sphingosine-1-phosphate signaling; peroxisomal and
mitochondrial perturbations (Strasberg, 1986); and
changes in protein kinase C (PKC), TNF, interleukin-6,
inducible nitric oxide synthase, phosphoinositide 3-
kinase, prostaglandin D2 (PGD2), and 50-AMP-activated

Fig. 1. Model of innate immune response in KD. Loss of GALC enzymatic activity causes oligoden-
drocyte dysfunction (see also Fig. 2), which is sensed by microglia through an unknown mechanism
to trigger their reactivation. Reactive microglia release cytokines and other immune signaling mole-
cules that activate astrocytes and recruit peripheral leukocytes. Depending on the stage of the dis-
ease, reactive glia could provide either pro- or anti-inflammatory effects, and the actions of innate
immune signals influence disease progression.
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kinase expression or function (Strasberg, 1986; Ida et al.,
1990; Tanaka and Webster, 1993; Giri et al., 2002, 2006,
2008; Mohri et al., 2006; White et al., 2009). In addition,
exogenous psychosine can affect the function of mito-
chondria, reportedly by disruption of the electron trans-
port chain and mitochondrial membrane potential
(Strasberg, 1986; Haq et al., 2003) and peroxisomes
(Strasberg, 1986; Haq et al., 2006). However, psychosine
causes death of many cell types in culture with a
threshold-like dose–response curve, consistent with non-
specific detergent-like effects (Suzuki, 1998). Thus, over-
interpreting data generated from exogenous application of
psychosine can be misleading because the cellular
responses to administered psychosine likely differ from
the responses to endogenous (i.e., intracellular) psycho-
sine. Psychosine may act as a detergent within the cell,
but intracellular accumulation of psychosine, such as
through siRNA-mediated knockdown of GALC within
oligodendrocytes (Won et al., 2013), is a more physiolog-
ical demonstration of psychosine action than exogenous
administration. Although GALC is expressed by all CNS
cell types, whether microglia and astrocytes accumulate
psychosine at pathophysiological levels has not yet been
reported. Within myelinating cells such as oligodendro-
cytes and Schwann cells, psychosine accumulates in lyso-
somes and within membrane microdomains such as lipid
rafts (White et al., 2011). Thus, it is likely that lysosomal–
endosomal pathways, endocytosis, and membrane
receptor-mediated signaling could be progressively dis-
rupted as psychosine levels increase. Intracellular effects of
endogenous psychosine are poorly defined. From experi-
ments in which the effects of endogenous psychosine
accumulation were observed, it has been suggested that
psychosine can activate phospholipase A2, which, through
generation of the bioactive lipids lysophosphatidylcholine
and arachidonic acid, might activate cell death signaling
cascades or the generation of reactive oxygen species (Giri
et al., 2006; Won et al., 2013). In addition, changes in
sphingolipid metabolism caused by lysosomal dysfunction
can change the levels of sphingolipid metabolites, such as
ceramide, ceramide-1-phosphate, and sphingosine-1-
phosphate, which are important signaling molecules in
inflammation (Maceyka and Spiegel, 2014). Additional
research into cellular pathways modulated by endogenous
psychosine is required to address its mechanism of action.

Data from recent research indicate that microglia are
reactive very early in the progression of mouse models of
KD (Snook et al., 2014). Microglia are the innate
immune cells within the CNS and are constantly sensing
their environment for signs of dysfunction. They can
have both proinflammatory and anti-inflammatory
actions, and the activation state of microglia is influenced
by unknown mechanisms during disease progression
(Saijo and Glass, 2011). A characteristic of KD is demye-
lination, but demyelination is a very late process in oligo-
dendrocyte dysfunction. Earlier processes of dysfunction
within GALC-deficient oligodendrocytes could lead
to activation of microglia through contact-dependent or
-independent mechanisms (Fig. 2).

The presence of psychosine or perturbations in lipid
composition within myelin membranes because of GALC
dysfunction could influence the normal expression of cell
surface receptors or membrane-associated signaling mole-
cules (White et al., 2009, 2011). In particular, levels of
membrane-associated PKC are reduced in twitcher cells
(White et al., 2009, 2011). PKC is involved in many dif-
ferent signaling cascades and regulates myelin gene
expression and process formation within oligodendrocytes
(Asotra and Macklin, 1993; Oh et al., 1997). Cell mem-
brane perturbations could also be directly sensed by
microglia, leading to their reactivation. For example,
CD200 is a surface molecule expressed by oligodendro-
cytes that maintains microglia in a resting, inactive state
(Barclay et al., 2002; Peferoen et al., 2014). Changes in
CD200 localization or expression could lead to microglial
reactivation. CD47, expressed within oligodendrocyte
myelin, regulates the immune response by microglia.
Binding of CD47 to its receptor, signal regulatory
protein-a, relays the “don’t eat me” signal and prevents
cells from being phagocytized by microglia (Jaiswal et al.,
2009; Han et al., 2012). Although it is currently specula-
tive, the role of surface molecules such as CD200 and
CD47 and oligodendrocyte cell membrane perturbations
in KD will be an informative avenue for future research.

Intracellular responses, likely influenced by GALC
mutations such as endoplasmic reticulum stress, oxidative
stress, metabolic disturbances, or production of misfolded
proteins, can lead to oligodendrocyte stress (Peferoen
et al., 2014), which could trigger an inflammatory
response. For instance, age- and region-dependent pat-
terns of metabolic disturbances within oligodendrocytes
correlate with microglia activation and neurodegeneration
(Meisingset et al., 2013). When stressed, oligodendrocytes
can release cytokines, such as CCL2, IL-6, IL-8, and

Fig. 2. Schematic of contact-dependent (2, 3) or secretory mechanisms
(1, 4) by which oligodendrocytes could activate microglia. Secretion
or exocytosis of accumulating metabolites, such as psychosine (1).
Changes in membrane microdomains or membrane-associated proteins
recognized by microglia (2). Intracellular changes caused by GALC
deficiency that affect membrane components, which activate microglia
(3). Secretion of immune-related molecules such as cytokines or
DAMPs (4). Microglial self-activation (5). DAMPs, danger associated
molecular patterns; psy, psychosine.
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IL-1b, which can recruit or reactivate microglia. After
reactivation, microglia becomes a major source of cyto-
kine and chemokine expression within KD brains. Nota-
bly, all these cytokines are elevated in KD or twitcher
tissue (Formichi et al., 2007; Luzi et al., 2009; Santambro-
gio et al., 2012). Danger-associated molecular patterns
such as ATP or TLR2 could be released by oligodendro-
cytes and act on microglia P2X7 or TLR receptors,
respectively. In support of this idea, TLR2 is upregulated
at 2 weeks of age in twitcher hindbrain, coincident with
morphological evidence of microglial activation (Snook
et al., 2014). Finally, it is also possible that GALC-
deficient microglia or astrocytes self-activate, but this
remains to be tested experimentally.

MODULATION OF NEUROINFLAMMATION
CHANGES KD PATHOLOGY

Hematopoietic Stem Cell/Bone Marrow
Transplantation

The only treatment currently available for KD is
hematopoietic stem cell transplantation (HSCT) with
bone marrow or umbilical cord blood before the onset of
symptoms (Escolar et al., 2005). HSCT can prolong sur-
vival in KD, leading to improvement in nerve conduction
studies in addition to transient arrest in CNS symptoms
(Escolar et al., 2005; McGraw et al., 2005). Survival is
prolonged for several years, but progressive neurological
degeneration continues. The mechanisms by which
HSCT prolongs survival are not known, but HSCT
experiments in twitcher mice resulted in decreased
expression of immune-related molecules such as Cxcl10,
Ccl2, Ccl3, Ccl4, and Ccl5 and delayed demyelination,
which was not explained by correction of GALC defi-
ciency (Wu et al., 2001; Siddiqi et al., 2006; Luzi et al.,
2009; Santambrogio et al., 2012). Thus, HSCT likely acts
to dampen neuroinflammation and thereby delay disease
progression.

Anti-Inflammatories

Daily treatment of twitcher mice (starting from
PND 10) with minocycline (a semisynthetic tetracycline
that inhibits microglia activation) or indomethacin (a
nonsteroidal anti-inflammatory) resulted in downregula-
tion of expression of Ccl3, Ccl5, Il1a, Cxcl10, and Tnf and
in partial reduction of macrophages and globoid cells in
brain tissues of treated twitcher mice. These changes in
inflammation strongly correlated with a delayed onset of
symptoms and significant, albeit modest, prolongation of
life span (Luzi et al., 2009). PGD2 signaling can influence
inflammation. Blockade of hematopoietic PGD synthase
(HPGDS), which is responsible for the production of
PGD2, in twitcher mice with an HPGDS inhibitor
resulted in significant suppression of astrogliosis and
demyelination and reduction in twitching and spasticity
(Mohri et al., 2006). Oligodendroglial apoptosis was also
reduced in twitcher mice treated with an HPGDS inhibi-
tor. Thus, PGD2 is a neuroinflammatory molecule that

amplifies the pathological response to demyelination in
twitcher.

Transgenic Mice

Twitcher/IL-6-deficient mice have a more severe
disease than regular twitcher mice. In particular, they
have an earlier onset of twitching, a greater number of
PAS-positive cells, an increased gliotic response around
vessels, an elevated level of TNF-a, and a compromised
blood–brain barrier (BBB). Thus, IL-6 deficiency causes
enhanced pathology in twitcher, suggesting that IL-6
plays a protective role in mouse models of KD (Ped-
chenko and LeVine, 1999).

The critical role of microglia and macrophages in
ameliorating twitcher disease pathology was demonstrated
by cross-breeding twitcher mice with osteopetrotic (Csf1op,
op) mice, which lack macrophages and have reduced
microglia activation (Kondo et al., 2011). Twitcher1op
mice have few microglia and macrophages in the white
matter and exhibit a more severe clinical phenotype com-
pared with twitcher mice. Twitcher1op double mutants
die significantly sooner than twitcher mice, with more
exacerbated neurological symptoms. The number of non-
myelinated axons in the spinal cord is significantly higher
in twitcher1op mice than in twitcher mice at 45 days of
age. The difference appears to be due to impaired remye-
lination in twitcher1op mice rather than accelerated
demyelination. The levels of psychosine do not correlate
with the severity of disease because psychosine levels in
twitcher1op mice were lower than those in twitcher.
Overall, these results indicate the beneficial actions of
microglia and macrophage to counteract demyelination
during twitcher disease progression.

TNF is an inflammatory cytokine that is robustly
elevated in twitcher CNS and PNS. Data from mouse
models of experimental encephalitis suggest that TNF
exerts its actions through the TNF-receptor 1 (TNF-R1)
in the brain. To evaluate the function of TNF signaling
in the brain, twitcher/TNF-R1-deficient mice were gen-
erated (Pedchenko et al., 2000). Contrary to expectations,
TNF-R1 deficiency failed to alter the clinical and patho-
logical course in twitcher, with no statistical evidence for
any differences between twitcher and twitcher/TNF-R1-
null mice for life span, weight loss, onset day of twitching,
demyelination, astrocyte gliosis, and macrophage infiltra-
tion. However, when challenged with lipopolysaccharide,
TNF-R1-deficient twitcher mice showed an exacerbated
response and increased breakdown of the BBB. Recent
clinical studies in patients treated with TNF antagonists
have indicated that TNF has more complex immune reg-
ulatory properties than previously considered (Van Hau-
wermeiren et al., 2011). Animal studies have shown that
TNF can exert immune-suppressive functions and that
interaction of TNF with TNF-R2 seems to play an
important role, in particular for the function of regulatory
T cells and myeloid-derived suppressor cells (Cope et al.,
1997; Chen et al., 2007, 2013; Sade-Feldman et al.,
2013). Thus, it is possible that TNF signaling via non-
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TNF-R1-mediated pathways might influence peripheral
immune signaling in twitcher disease pathology, which
could be tested via knockout of TNF or TNF-R2 in
twitcher mice or by the application of TNF antagonists to
twitcher mice.

Gene Therapy

Replenishment of GALC activity via viral-mediated
gene therapy is an attractive potential therapy for KD.
Indeed, different forms of gene therapy in twitcher have
yielded moderate, if temporary, success. Twitcher mice
provided with CNS-targeted adeno-associated virus 2/5
(AAV2/5):GALC gene transfer showed alleviation of
morphological and functional deterioration in the brain
but not in the spinal cord, with reduced axonopathy and
gliosis and significantly prolonged life span (Lin et al.,
2011). Similarly, cerebellum-targeted gene therapy with
AAV2/5:GALC corrected enzymatic deficiency by direct
transduction to Purkinje cells and cross-correction in
other cell types in the cerebellum, leading to the amelio-
ration of both neuroinflammation and demyelination (Lin
et al., 2015). Likewise, CNS-targeted lentiviral-mediated
transfer of GALC in neonatal twitcher mice resulted in
transitory reduction of psychosine levels and inflammation
and delay in pathology (Lattanzi et al., 2010). Administra-
tion of AAVrh10:GALC viral particles via intracerebro-
ventricular, intracerebellar, and intravenous injection in
neonatal twitcher mice resulted in GALC activity in
CNS, PNS, and some peripheral organs (Rafi et al.,
2012). In correlation with a significantly improved life
span and preserved myelination, reactive astrocytes and
microglia were dramatically reduced in treated twitcher
mice. Altogether, these experiments have demonstrated
that prolonged life span and reduced pathology mediated
by gene therapy are invariably correlated with reduced
inflammation. Notably, combination of bone marrow
transplantation with gene therapy prolongs life span even
better than each treatment alone, indicating that replace-
ment of GALC enzymatic activity is most effective when
accompanied by modulation of immunity (Rafi et al.,
2015).

FUTURE PROSPECTS

Similarly to most leukodystrophies, neuroinflammation in
KD was considered a late effect, resulting from oligoden-
drocyte death or myelin loss. However, recent research
with two different mouse models of KD have demon-
strated significant astrocyte and microglia reactivation and
cytokine elevations in advance of demyelination or oligoden-
drocyte loss (Santambrogio et al., 2012; Potter et al., 2013).
It is increasingly clear that neuroinflammation, triggered
by GALC dysfunction, is an early event in animal models
of KD pathogenesis. Understanding the cellular mecha-
nisms that trigger inflammation the primary cells that ini-
tiate and respond to the inflammatory stimuli and
identifying key immune signaling pathways involved in
disease progression are critical areas for future research.
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