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A B S T R A C T

There are many models to predict natural phenomena around the world, but it is still difficult to accurately
forecast the events. Many scientists, modeling professions, students, and researchers working on the tropical
cyclones prediction, but they are encountered to many errors during compiling and configuring the models.
Despite the increasing accuracy of weather forecasts, there is an element of uncertainty in all predictions. This
paper reviews two methods used in my previous papers for predicting typhoon wind speed in the South China
Sea, a dynamical model, Weather Research and Forecasting (WRF), and an Adaptive Neuro-Fuzzy Inference
System (ANFIS) model. The performances of the models are calculated using statistical parameters of the root
mean square error (RMSE) and Correlation Coefficient (CC), and the advantages and disadvantages of both
models are represented. Regarding the statistical parameters values, the ANFIS model in comparison with the
WRF model showed higher accuracy for typhoon intensity prediction because of higher CC and lower RMSE. The
development of methods has represented several advanced techniques that their strengths and weaknesses
have not been well-documented. In fact, a qualitative assessment and points to several ways in which the
methods may be able to complement each other. The paper suggests that the scientists should improve the
concepts of the models.

� Investigating two different methods and their performance in predicting typhoon intensity.

� Representing the strengths and weaknesses of both models.

� Suggesting some solutions for future researches.

© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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Specifications Table
Subject Area: Earth and Planetary Sciences
More specific subject area: Air-Sea interaction
Method name: Analyzing two different methods for predicting typhoon intensity to represent some

outcomes that should be considered in future studies
Name and reference of
original method

Method 1:
Haghroosta, T., Ismail, W.R., Ghafarian, P. & Barekati, S.M. (2014), The efficiency of the
Weather Research and Forecasting (WRF) model for simulating typhoons. Natural Hazards
and Earth System Sciences, 14(8), 2179–2187
Method 2:
Haghroosta, T., & Ismail, W. R. (2015), Comparing typhoon intensity prediction with two
different artificial intelligence models. Evolving Systems, 6(3), 177–185

Resource availability: No special resource, just original methods mentioned above can be used

ethod details

The South China Sea is a typhoon-prone area and the number of typhoons varies in different years.
ang [1] represented that the nature and behavior of typhoons in the South China Sea are different

rom those in the western North Pacific Ocean. To establish useful warning systems, typhoon intensity
hould be precisely predicted. Despite of improvement in typhoon intensity prediction over the last
ecade, the factors that control the intensity of typhoons is still poorly understood, what is still
issing is a harmonization of approaches. Methodological differences among studies are recognized
s significant sources of variation in quantification of typhoon characteristics’ prediction.
Complicated hydrodynamical models, mathematical models, statistical models, and intelligent

odels predict different tropical cyclones all over the world. Different models like SCHISM, MIKE,
WAN, MMM, WRF-ARW, WRF-Chem, ROMs, COAWST, WWM-II, WWMIII, WW3 spectra, and etc were
stablished and developed to predict different natural events or disasters. Too many studies have
uggested different methods to predict typhoon wind speed, but the question is why the typhoon
eneration and its intensity are still not accurately predictable? Too many communities and forums
re formed to discuss about compiling and configuring the models, but users have lots of problems to
un the models, even with less errors (http://gradsusr.org/mailman/listinfo/gradsusr, https://
ourceforge.net/projects/swanmodel/lists/swanmodel-users, and https://www.myroms.org/forum/
iewtopic.php?f=1&t=4600). Although the forums and meetings are suitable for scientists’
ommunications and knowledge improvement, they must be helpful to solve the public problem
s soon as possible. Unfortunately, in such meetings there are many loops and repetitions.
Choi et al. [2] identified two major challenges in their model. The model was based on statistical

egression and unlike dynamical models it could not predict individual tropical cyclones. There are
ome relationships between cyclone’s generation and environmental conditions, but such physical
onsistency is not always related directly to cyclone formation. Tropical cyclones with irregular tracks
howing a significant amount of uncertainty cannot be simply allocated to one defined track patterns,
hich may cause larger forecasting error. Their study suggested future research to resolve the

imitations in the models.
An individual WRF model could simulate Phailin’s track in an almost identical way to the WRF in a

oupled configuration. However, the intensity (surface wind speed) in the WRF model was higher
ompared to the coupled model. The comparison of individual and coupled WRF model-simulated
ean sea level pressure (MSLP), wind speed, and wind direction at a buoy location. The individual
RF simulated a larger pressure drop and higher wind speed compared to buoy measurements. The

emidiurnal variations in MSLP, mostly caused by the radiational forcing [3], were not obtained by the
odel over the cyclonic region [4].
Two algorithms based on machine learning neural networks were proposed the shallow learning

S-L) and deep learning (D-L) algorithms that were used in atmospheric typhoon prediction models to
rovide sea surface temperature cooling (SSTC) to improve typhoon forecasts. The significance of
xisting SSTC in forecast models is how to accurately predict SSTC made by a typhoon that requires
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information from past data and also from the future typhoon itself. The S-L algorithm combined a
single layer of neurons with diverse atmospheric and oceanic factors. Such a structure could not to
represent appropriately the typhoon-ocean physical interaction. In fact, any disturbances may cause
unsteady changes in both pattern and strength of SSTC. In the D-L algorithm, the atmospheric and
oceanic factors are assigned to a 4 � 5 neuron matrix in a neural network with different separated
layers of neurons. Thus, it created a steady SSTC distribution, concluded largely by large-scale
atmospheric factors such as winds, and small scale oceanic factors like eddy. Sensitivity experiments
showed that the D-L algorithm was able to improve maximum wind intensity prediction errors by 60–
70%, in comparison with its atmosphere-only model run [5].

Some parameters of typhoon such as maximum intensity and its size are still caused significant
improbability. The limits in these parameters can affect on typhoon size and its intensity and are
related to different parameters, such as distance to the land, SST variations and variations of large-
scale circulation patterns [6]. Rappaport et al. [7], in an analysis of all tropical cyclones making landfall
on the US Gulf coast, stated that during the 12 h ahead of landfall, hurricanes showed different regular
patterns of development depending on their initial power 12 h before landfall. Resio et al. [8] and
Levinson et al. [9] recognized similar trends in their study of pre-landfall weakening in tropical
cyclones. These activities potentially represented the problems within the Gulf of Mexico that were
dominated by weaker tropical cyclones. It would be expected that the weaker hurricanes indicate no
enhancement in central pressure before landfall when it approaches to the coast; however, such
behaviors should be warned.

Forecasting tropical cyclone intensity is improving slowly. Estimating fundamental predictability
limits as well as sources of intensity error is useful. Emanuel and Zhang [10] estimated the error of
growth rates in a perfect model in which is used to explore the sensitivities of tropical cyclone
intensity to perturbations in the initial storm intensity and large-scale environment. These were
compared to estimate made in previous studies and to intensity error growth in real-time forecasts
made using the same model, in which model error also plays an important role. The authors found that
error growth over approximately the first few days in the perfect model framework was dominated by
errors in initial intensity, after which errors in forecasting the track and large-scale kinematic
environment became more pronounced. Errors owing solely to misgauging initial intensity were
particularly large for storms about to undergo rapid intensification and were systematically larger
when initial intensity was underestimated compared to overestimating initial intensity by the same
amount. There remains an appreciable gap between actual and realistically achievable forecast skill,
which this study suggests can best be closed by improved models, better observations, and superior
data assimilation techniques.

Methods and materials

The main commonly statistical indicators in the literature managing environmental evaluation
models are; root mean square error (RMSE), and Coefficient of Correlation (CC) that are calculated as
follows:

Root mean square error (RMSE)

The RMSE (Eq. (1)) represents some information about the short-term performance of a model by
comparing equivalent values to show the real difference between the estimated value and the control
data. The smaller RMSE value indicates better performance for the model.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

xcð Þi � xsð Þi
� �2

n

s
ð1Þ

which xs and xc are the simulated data and the control data of typhoon intensity at time step i,
correspondingly, and n is for the number of data pairs. The RMSE indicates the comparison of the
control data and the simulated data. The smaller RMSE values show that the simulated data are closer
to the control data.
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orrelation Coefficient (CC)

The CC (Eq. (2)) prepares valuable information on typhoon intensity and compares the control data
nd the simulated data.

cc ¼
Xn

i¼1
xcð Þi � xcð Þi

� � xsð Þi � xsð Þi
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xcð Þi � xcð Þi

� �2 Pn
i¼1 xsð Þi � xsð Þi

� �2q ð2Þ

hich, xs and xc are the mean values of the simulated data and the control data of typhoon intensity at
ime step i. The CC can also measure the strength of the correlation between the simulated and control
alues. Higher CC value indicates better model performance.

tudy area

The South China Sea is the biggest marginal sea and typhoon-prone area in the western North
acific Ocean, expands from the equator to 23 �N latitude and from 99 to 125 �E longitude. South China
ea is bordered by countries, include of China, Vietnam, Cambodia, Thailand, Malaysia, Indonesia,
hilippines, and Taiwan and these countries are most encountered with the typhoons (Fig. 1).
Two previous papers that have represented two different methods for predicting typhoon intensity

re summarized herein for the aim of this research.

ummary of comparing typhoon intensity prediction with two different artificial intelligence models” by
aghroosta and Ismail [12]

The paper applied two neural network methods to predict tropical cyclone intensity in the South
hina Sea. The data in the study were achieved from two major sources. The first dataset is the six-
ourly NCEP reanalysis of the 16 selected tropical cyclones from 1985 to 2011 in the South China Sea, in
he climate prediction center (CDC). The data used in this research are latent heat flux, sensible heat
ux and sea surface temperature have the grid resolution of 2.5� � 2.5� in longitude and latitude [13].
he second dataset is the typhoon characteristics from the National Oceanic and Atmospheric
dministration (NOAA), the International Best Track Archive for Climate Stewardship (IBTrACS). The
ata includes 6-hourly tropical cyclone longitude and latitude at 00:00, 06:00, 12:00, and 18:00 UTC,
uring the selected cyclones [14]. The wind speed data from IBTrACS were considered as control data
n the study. More details about the models’ configurations are available in the study by Haghroosta
nd Ismail [12].
Six factors, including latitude and longitude as spatial parameters, minimum central pressure, SST,

HF, and SHF, were inserted into the ANFIS and ANN models. The models were run for 16 typhoons

Fig. 1. Study area [11].
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originated in or passed though the South China Sea named Irving (1985), Forrest (1992), Manny (1993),
Gil (1998), TD 1121 (2001), Vamei (2001), Muifa (2004), Durian (2006), Peipah (2007), Noul (2008), TD
01W (2008), Kujira (2009), Chan-Hom (2009), Nangka (2009), Songda (2011), and Washi (2011), with
two different lags.

The results confirmed the power of the Adaptive Neuro-Fuzzy Inference System based on genetic
algorithm (ANFIS-GA) method with regard to an Artificial Neural Network (ANN) method. Both
methods indicated a significant CC, but the root mean square error (RMSE) as a determining
parameter, was 3.78 for the ANFIS-GA model, considerably lower than the value of 6.11 for the ANN
model in the best experiments (Table 1). For both models, 20% of the data were used as the validation
data and 80% of the data were used for training. Two different lags were also tested in both models; lag
4 in AAN-1 and ANFIS-1 and lag 8 in ANN-2 and ANFIS-2. Table 1 indicates that the variation of lags
could change the solution. This finding was also stated by Sudheer et al. [15]. The study showed that
the lower lag made better performance. The study also stated that the ANFIS model could make more
proper predictions for typhoon intensity than the ANN model.

Summary of “The efficiency of the Weather Research and Forecasting (WRF) model for simulating typhoons”
by Haghroosta et al. [16]

The study employed a hydrodynamical model to find out the best combination of physics
parameterization schemes for simulating the wind speed as an important parameter of tropical
cyclone intensity. Final analysis 6-hourly data sets (FNL) with a resolution of 1�, obtained from the
National Centers for Environmental Prediction (NCEP), were inserted to the WRF model as initial and
boundary conditions. The wind speed at the 10 m level above the earth’s surface is referred to as “wind
speed” all through the paper. The data used for validation of the simulated parameters were derived
from the Climate Forecast System Reanalysis (CFSR) dataset that are available on the related website
[17]. In fact, the outputs of the model were analyzed in comparison with the CFSR data that is referred
to as control data. Many studies such as Wang et al. [18] and Saha et al. [17] show the reliability of CFSR
dataset. The quality of the dataset is available in http://rda.ucar.edu/#!pub/cfsr.html.The CFSR data set
with the nearest resolution (0.5� in longitude and latitude) to the WRF resolution were selected in the
research. The model simulation was periodically conducted for every 4 days.

The model domain included of one nested domain and one coarse domain. The model resolution
for the coarse domain was 30 km, and for the nested domain was 10 km. The data used all over the
paper are from the reanalysis data set of the NCEP and the best track database of the National Oceanic
and Atmospheric Administration (NOAA).

In the conducted experiments, some physics parameterization selections within the WRF model
were comprehensively tested for eight different typhoons over the South China Sea; Peipah (2007),
Noul (2008), TD 01W (2008), Kujira (2009), Chan-Hom (2009), Nangka (2009), Songda (2011), and
Washi (2011) that passed or originated in the South China Sea. The selected typhoons happened during
1985–2011. The study outcomes were evaluated in comparison with the CFSR data set. Standard
statistical measurements were applied to compare predicted and control data. In the study, they
suggested different schemes and grouping physical parameters of the WRF model for predicting
typhoon wind speed. Finally, the model with a combination of the Stony Brook University
(microphysics), New Goddard (longwave and shortwave radiation), Eta (surface layer), 5-layer thermal
diffusion (land surface), MYJ (PBL), and Tiedtke (cumulus parameterization) indicated the best

Table 1
Comparison of RMSE and CC values for ANN and ANFIS models with two different lags [12].

ANN-1 ANN-2 ANFIS-1 ANFIS-2

Lag 4 8 4 8
RMSE 6.11 7.28 3.78 4.09
CC 0.95 0.94 0.98 0.98

The best experiments of statistical parameters are written in bold.
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rediction of wind speed with lower amount of RMSE (7.78) with regard to the other combinations
hich are explained with more details in their study.
Now, in this comparative paper, the outcomes of two our earlier papers that predicted the wind

peed during typhoons in the South China Sea are represented to achieve considerable and thinkable
esults. The potential for the WRF and ANFIS models to complement each other, in particular, may be
ery rewarding and should be studied further, and the methods’ advantages and disadvantages are
nvestigated in the following sections.

esults and discussion

omparing the ANFIS and WRF models’ performance

The outcomes showed that the ANFIS model based on the GA algorithm had a reasonable capability
o predict typhoon intensity in the study area, but it needs too much historical data to achieve better
nswers. By contrast, WRF model is a complex model in terms of installation and configuration. It also
equires special infrastructure to install and run. Additionally, WRF model needs high capacity
omputer to save the model outputs. The WRF model obtains its initial and boundary conditions from

 global dataset. In addition, too many complicated calculations and interpolations occur during the
re-process, running, and post process of WRF model that can create more inaccuracies in the
utcomes. The model is run based on diverse theoretical boundary conditions, which makes
pproximate predictions. The outputs of WRF model are also dependent on different features, such as
he purpose of the model, real time versus research, type of domain and its resolution, the types of
ariables associated to the study objectives, how to run the model, and model run-time.
Although the ANFIS model represented higher accuracy (CC = 0.98) in typhoon intensity prediction

oncerning WRF model with Correlation Coefficient of 0.75 (Table 2), accessing to the former recorded
ata was difficult and time consuming. Even though the WRF complexity is much complimentary for
redicting objective, if more stored data are not available.
Neural network model is used to execute nonlinear statistical modeling. Furthermore, the neural

etwork model is able to prepare a pattern between inputs and outputs, statistically by learning and
esting methods, and more interpolation is not necessary. The model presents several advantages,
ncluding less formal statistical training and capability of identifying complex nonlinear correlations
etween dependent and independent variables by various learning algorithms. The most notable
isadvantage of utilizing neural network model is its “black box” nature that cannot interpret the
elationship between inputs and outputs. The configuration mostly depends on the trial-and-error
ethods that are caused random results.
Dynamical models reflect on the physical characteristic of the atmosphere and can be developed by

esearchers, so they can execute well. Statistical models are also appropriate for prediction plans. In
act, choosing dynamical models at the expense of statistical models is not reasonable. This result was
lso found by Huth et al. [19] when they studied minimum and maximum temperature by two
ifferent climate models and five statistical models. Moreover, combining a neural network model
ith a numerical model can develop its performance; this consequence was also stated by De Giorgi
t al. [20] who evaluated the errors in wind power prediction with an ANN model and a numerical
eather prediction model. Additionally, Hsieh [21] represented that the neural networks model is a
ind of adjoin data assimilation that lets it to be connected to dynamical models and is caused a new
lass of hybrid neural-dynamical models. Evaluations of the two models indicated that there are some

Table 2
Comparing the statistical parameters in the models.

ANFIS WRF

RMSE 3.78 7.78
CC 0.98 0.75
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advantages and disadvantages for both models. Therefore, selecting the models is related to the
problem that must be solved.

Conclusion

Tropical cyclone prediction is really vital to protect human beings and nature. Even fewer faults can
cause irreparable damages. While diverse complicated models in the world have been set up and run,
and they cannot exactly predict and the typhoon reliable forecasting is still a difficulty. In spite of high
accuracy in weather predictions, there is an ambiguity in all forecasts. Too many conferences and
meetings are held to exchange the knowledge. Moreover, too many communities and forums are
formed to discuss about compiling and configuring the models, but users have lots of problems to run
the models, even with less errors (http://gradsusr.org/mailman/listinfo/gradsusr and https://
sourceforge.net/projects/swanmodel/lists/swanmodel-users). What should the scientists and mod-
elers do to have successful run with least errors? The scientists and modelers should possibly
disregard some models and the models should be localized based on the theoretical concepts and
different real boundary conditions not hypothetical conditions for the study area. This paper suggests
working on neural networks models seriously, because of repetitive characteristics of natural events
like typhoons. The nature learns the intelligent models and finds better prediction than a complicated
hydro-dynamical model and the hydro-dynamical model should be powered with intelligence neural
networks.
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