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Spin-polarized magneto-electronic 
properties in buckled monolayer 
GaAs
Hsien-Ching Chung   1, Chih-Wei Chiu1 & Ming-Fa Lin2

We develop the generalized tight-binding model to fully explore the magneto-electronic properties of 
monolayer GaAs, where the buckled structure, multi-orbital chemical bondings, spin-orbit coupling, 
electric field, and magnetic field are considered simultaneously. The diverse magnetic quantization 
covers three groups of spin-polarized Landau levels (LLs) near the Fermi level, with the unique initial 
energies, LL degeneracy, energy spacings, magnetic-field-dependence, and spin splitting. Furthermore, 
the Landau state probabilities exhibit specific oscillation patterns, being composed of the localization 
centers, node regularities, and energy-dependent variations of the dominating orbitals. The density 
of states directly reflects the main features of the LL energy spectra in the form, height, number, 
and frequency of the spin-split delta-function-like prominent peaks. The electric field leads to the 
monotonous/nonmonotonous LL energy dispersions, LL crossing behavior, gap modulation, phase 
transition and enhancement of spin splitting. The complex gap modulations and even semiconductor-
semimetal transitions are attributed to the strong competition among the intrinsic interactions, 
magnetic field, and electric field. Such predicted magneto-electronic properties could be verified 
by scanning tunneling spectroscopy and are helpful in designing the top-gated and phase-change 
electronic devices.

Over the past decade, graphene1 has successfully brought scientists into the world of two-dimensional (2D) mate-
rials based on its incredible intrinsic properties, such as high carrier mobility at room temperature (>200000 cm2/
Vs)2, superior thermoconductivity (3000–5000 W/mK)2,3, high transparency for incident light over a wide range 
of wavelength (97.7%)4, extremely large Young’s modulus (~1 TPa) and tensile strength (~100 GPa)5. Few-layer 
graphene are observed to have diverse magnetic quantizations, e.g., the Landau levels (LLs) with the Bz
-dependent energy spectrum in monolayer graphene featuring massless Dirac fermions6,7, those with the linear 
Bz-dependence in AB-stacked bilayer graphene featuring massive Dirac fermions8,9, as well as the coexistence of 
square-root and linear Bz-dependent LLs in trilayer ABA stacking10, where Bz is the strength of magnetic field. 
Although interest in graphene materials is still high, it is also conspicuous that such systems have their limitation. 
For instance, in contrast to conventional semiconductors, the lack of the significant band gaps limits their poten-
tial applications for electronic devices, in which the high transistor on/off ratios are vital11. This obstacle urges 
researches to study emergent 2D materials12, covering group-IV13, group-V14, group III–V compounds15, and 
transition-metal dichalcogenides (TMDs)16. Such 2D layered materials are expected to possess various electronic 
properties, being sensitive to the lattice symmetry, stacking configuration, layer number, orbital hybridization, 
spin-orbit coupling (SOC), as well as external electric and magnetic fields.

Group-IV monoelemental 2D honeycomb materials beyond graphene, such as silicene, germanene, and 
stanene, have been predicted to exhibit band gaps, depending on the strength of SOC17. Recently, few-layer sili-
cene, germanene, and stanene have been synthesized on distinct substrates: silicene on Ag(111)18,19, Ir(111)20, 
and ZrB2(0001)21; germanene on Pt(111)22, Al(111)23, and Au(111)24; stanene on Bi2Te3(111)25. Silicene, ger-
manene, and stanene possess the buckled structures with the significant SOC’s, which grows as the atomic num-
ber increases. They are thoroughly different from the planar hexagonal graphene without SOC. Their low-lying 
electronic structures are dominated by the SOC’s and the multi-orbital hybridizations. In general, the group-IV 
materials with heavy atomic masses have the large buckling angles and rather strong SOC’s, leading to the energy 
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gaps higher than the thermal energy at room temperature (25 meV)17,26. Moreover, the greatly diversified quan-
tizations are identified from the various magnetic- and electric-field-created LLs with the non-crossing, crossing 
and anti-crossing behaviors27–29. However, the strong interactions between group-IV 2D materials and sub-
strate might deform the buckled structure and hybridize the electronic states near the Fermi level, creating the 
non-negligible modifications of low-energy electronic properties. Recent experiments on tunneling spectra of 
silicene have evidenced the disappearance of LL sequences based on the instability from the dangling bonds of 
the sp3-hybridized atoms30.

Apart from 2D materials of group-IV elements, the binary compounds of group III-V elements have also been 
proposed as the honeycomb lattices with large energy gaps15,31. Although the group III-V elemental 2D materi-
als of the buckled structure with the mixed sp3–sp2 bonding are more stable compared to those of planar ones 
with sp2 bonding31, the dangling-bond-induced instability remains. A promising route is to saturate the dangling 
bonds by halogen atoms, as successfully revealed in graphene32. Bulk GaAs is one of the famous group III-V 
elemental binary compounds, being widely used in the manufacture of electronic and optical devices due to its 
direct band gap (an indirect gap for silicon) and high mobility (than silicon)33,34. According to the first-principles 
calculations35, monolayer GaAs possesses the buckled hexagonal structure, multi-orbital chemical bonding, and 
significant SOC, being expected to induce the rich electronic properties and diverse magnetic quantization in the 
presence/absence of electric fields.

The tight-binding model proposed in ref.35 is extended to study the electronic properties under external elec-
tric and magnetic fields. The quantized energy spectra and wave functions are computed under the exact diago-
nalization method. Similar generalized tight-binding model has been widely adopted to make systematic studies 
on multi-dimensional carbon-based materials and hybrid systems, ranging from three-dimensional (3D) graph-
ites36,37, 2D graphenes36,38–41, 1D graphene nanoribbons (GNRs)42–46, carbon nanotubes (CNTs)47,48, graphene 
nanoflake49 and graphene-related hybrids50. It is also suitable for studying the mainstream layered materials, such 
as group-IV51, group-V52,53, and TMD54,55 2D materials.

In this work, the buckled monolayer GaAs with each atom being passivated by one F adatom is chosen as 
a model study [Fig. 1(a)], in which the saturated dangling bonds greatly weaken the substrate instability. The 
generalized tight-binding model, simultaneously considering geometric structure, mutli-orbital hybrid-
izations, SOC, and external fields, is employed to explore the essential properties. The low-energy electronic 
properties are thoroughly investigated under the strong effects of external magnetic and electric fields. A 
“semimetal-semiconductor” phase diagram is obtained for the band gap as a function of both magnetic and elec-
tric fields. The current study sheds light on the diversified magnetic quantizations of the electronic energy spectra 
in GaAs and other group III-V 2D materials. The predicted magneto-electronic properties of the monolayer GaAs 
could be identified by scanning tunneling spectroscopy (STS) measurements.

Results and Discussions
SOC-induced spin-polarized band structure and state probabilities.  Monolayer GaAs has fea-
ture-rich energy bands, mainly owing to the significant buckled structure, sp3 bonding, and SOC’s. As clearly 
shown in Fig. 1(c), there exist three low-lying energy subbands possessing the strong wavevector dependences in 
the monotonous form. The unoccupied conduction subband (n1) and two occupied valence subbands (n2 and n3), 
with the distinct curvatures, are initiated from the Γ point. That is to say, the low-lying electronic states could 
form the Γ valley being responsible for the rich magnetic quantization. Without the SOC’s, each subband is two-
fold degenerate for the spin degree of freedom except that the four-fold degeneracy at the intersection of n2 and 
n3 subbands [dashed curves in Fig. 1(c)]. The conduction and valence subbands near the Γ point are respectively, 
dominated by the 4s and (4px, 4py) orbitals35. More importantly, a direct band gap of Eg = 0.742 eV is determined 
by the band-edge states of n1 and n2/n3 in the absence of SOC’s. The significant SOC further induces the variation 
of band gap and spin splitting [solid curves in Fig. 1(c)]. The band gap shrinks to = .E 0 623g

SO  eV, while the n2 and 
n3 valence subbands are separated by ΔSO = 0.237 eV, lifting the state degeneracy at the Γ point from four- to two-
fold. The spin degeneracy is removed except for the zone from the Γ to M points. As a result, the spin-degenerate 
subbands become the spin-polarized ones. As for energy subbands of the same group, the splitting energies grad-
ually grow when the electronic states deviate from the Γ point and their splittings reach the maximum values at 
the K (K’) points, such as 0.196 eV between ↑n1  and ↓n1  subbands, and 0.133 eV between ↑n2 and ↓n2 ones). Such spin 
splittings also appear in GaAs quantum wells verified by photocurrent measurements56, where SOC leads to inter-
action terms linear in wavevector k in the effective Hamiltonian57.

The electronic state probabilities (|Ψc,v|2) correspond to the spatial distributions of different orbitals related to 
energy subbands and figures out the variations of major/minor orbitals along the high-symmetric points. A whole 
range of the orbital variations on different sublattices for the ↑↓n1 , ↑↓n2 , and ↑↓n3  subbands is shown in Fig. 1(d–o). It 
is sufficient to discuss one of the polarized states (e.g., spin-up states), since the state configurations of spin up 
(white zones) and spin down (gray zones) states are quite similar. The state probabilities for different orbitals are 
very sensitive to the sublattices and wavevectors. In the conduction ↑↓n1 , valence ↑↓n2 , valence ↑↓n3  subbands, the 
s-orbitals (red curves), py-orbitals (blue curves), and px-orbitals (green curves), respectively, make the most 
important contributions for a wide range of wavevectors. Remarkably, the px- and py-orbitals are of identical 
intensity at the high-symmetric Γ and K points. The state probabilities near the Γ point, which are much different 
from those far away it, obviously reveal the dramatic orbital variation for the low-lying states. The conduction 
subbands are dominated by the s-orbitals, whose state probabilities on the Ga sublattice is larger than those on the 
As sublattice [Fig. 1(d–g)]. The increase of px- and py-orbital strength and the decrease of s-orbital strength come 
to exist as k deviates from the Γ point. The valence n2 (n3) subbands are dominated by py-orbitals (px-orbitals) 
[Fig. 1(h–o)]. Instead of the Ga sublattices, the dominating orbitals on the As sublattices possess the larger 
strength. It should be noted that the relative strength of the orbital probabilities for the low-lying states will reflect 
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on the quantized magneto-electronic states. In other words, the low-energy Landau states features those accumu-
lated zero-field states near the Γ valley (discussed later).

Spin-polarized LL spectra and state probabilities.  Magnetic fields constrain carrier motions in the real 
space and lead to the quantization of the cyclotron orbitals. They create the highly-degenerate dispersionless 
states, being called the Landau levels (LLs). The LL initial energies might be related to the zero-field electronic 
structures. The energy spacing between Landau states depends on the external fields, massless/massive character-
istic of the Dirac fermions, and SOC’s. Near the Fermi energy, there are three groups of spin-polarized dispersion-
less LLs, i.e., one group of unoccupied conduction LLs [ ↑n1  and ↓n1  in Fig. 2(b)] and two groups of occupied valence 
LLs [ ↑n2, ↓n2, ↑n3, and ↓n3 in Fig. 2(e,f)]. The distinct spin polarization in each group of LLs results from the SOC’s 
between the 4px and 4py orbitals. Such groups are, respectively, initiated near 0.62 eV, 0 eV, and −0.24 eV, which 
reflect the electronic state energies at the Γ point in the absence of magnetic fields. For each (kx, ky), all LLs are 
two-fold degenerate. For each (kx, ky), all LLs are two-fold degenerate, being attributed to the one Γ-valley degree 
of freedom and two Bz-field-direction degree of freedom. As the state energy grows, the energy spacing between 
LLs of the same spin-up/spin-down subgroup gradually shrinks.

Figure 1.  Geometric structure, low-lying subbands, and state probabilities of monolayer GaAs. (a) Schematic 
representation of the monolayer GaAs decorated by F adatoms. The unit cell is indicated by the transparent 
yellow rhombus, where a1 and a2 are translation vectors. The Ga, As, and F atoms are indicated by the blue, red, 
and cyan balls, respectively. (b) Side view of the low-buckled monolayer GaAs. θ and lz are the buckling angle 
and the distance between the Ga-plane and As-plane, respectively. (c) Spin-degenerate energy subbands without 
SOC (n1, n2, and n3) and SOC-induced spin-polarized subbands ( ↑n1 , ↓n1 , ↑n2, ↓n2, ↑n3, and ↓n3) along the high 
symmetry points. The dotted line indicates the Fermi level, EF = 0. (d–o) State probabilities of various orbitals 
located at two sublattices Ga and As with spin-up (white zones) and spin-down (gray zones) arrangements. s, px, 
and py orbitals are represented by red, green, and blue curves, respectively.
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Figure 2.  Spin-polarized LLs and state probabilities. (a) Geometric structure of the low-buckled monolayer 
GaAs in a uniform perpendicular magnetic field of ˆB zz . The enlarged unit cell, with 2RB Ga and 2RB As atoms, 
satisfies the periodicity of Peierls phase, where RB is the ratio of flux quantum to magnetic flux through a 
hexagon. The F adatoms are omitted for a clear presentation. (b,e,f) Three groups of spin-polarized 
dispersionless LLs are shown under Bz = 60 T. One group of unoccupied conduction LLs ( ↑n1  and ↓n1 ) and two 
groups of occupied valence LLs ( ↑n2, ↓n2, ↑n3, and ↓n3). (c,d,g–j) The corresponding probabilities of the subenvelope 
functions near the localization center. s, px, and py orbitals are indicated by red, green, and blue curves, 
respectively. The major properties, such as the dominating orbitals, node regularities and localization centers, 
are the same for various strengths of magnetic field, indicating that the main features of state probabilities can 
be discussed only for a specific Bz.
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Wave functions, presenting the spatial information of electronic states, are very important in realizing fun-
damental physical properties, such as charge densities58–61, state mixing62,63, and optical selection rules45,46,64,65. 
Under the influence of magnetic fields, wave functions in monolayer GaAs exhibit the peculiar spatial distribu-
tions, where the localization center, the dominating orbital, the oscillational form, the number of zero points are 
very sensitive to the wavevector, state energy, and spin configurations. Each spin-polarized LL wave function can 
be decomposed into subenvelope functions with the (s, px, py) orbitals on the Ga and As sublattices at the odd and 
even sites. For the sake of simplicity, only the distribution probabilities of subenvelope functions at the odd sites 
(Gao and Aso) will be considered because the even-site probabilities have the same behavior as the odd-site ones. 
The localization centers of the LL wave functions are strongly dependent on the wavevectors. At (kx, ky) = (0, 0), 
the doubly degenerate spin-polarized LL states are localized at the 1/2 and 0 positions of the enlarged unit cell 
(m/2RB = 1/2 and 0). The former is chosen for a model study, since both of them have the state probabilities.

The probabilities of subenvelope functions are well-behaved in their spatial distributions. Their oscillation 
patterns around the localization center are similar to those of harmonic oscillators, clearly revealing regular node 
(zero-point) numbers. For any particular LL, the node number of the s-/px-/py-decomposed orbital subenvelope 
function is identical for the Ga and As sublattices. The subenvelope function of the dominating orbital is signifi-
cant for characterizing the Landau state, and its node number, which gradually grows as the state energy increases, 
could serve as the quantum number of the LL. In the n-th conduction LLs ( =↑n n1  and =↓n n1 ), the state proba-
bilities of dominating s-orbital subenvelope functions, with n zero points, are much stronger than those of px and 
py-decomposed ones, with n + 1 nodes [Fig. 2(c,d)]. In the =↑n n2  ( =↓n n2 ) valence LLs, there are n, n, and n + 1 
(n − 1) nodes in the major py-orbitals and minor px- and s-orbitals, respectively [Fig. 2(g,h)]. In the =↑n n3  
( =↓n n3 ) valence LLs, n, n, and n − 1 (n + 1) nodes, respectively, correspond to the dominant px-orbitals and 
minor py- and s-orbitals [Fig. 2(i,j)].

It is noteworthy that the Landau state reflects the average of the accumulated neighboring zero-field electronic 
states with very close energies. In other words, the relative strength among LL subenvelope function probabilities 
of distinct orbitals and sublattices directly arise from that of the zero-field wave functions. In each LL group, the 
energy-dependent relative orbital strength is closely related to the k-dependent one at Bz = 0, mainly owing to the 
monotonous band structure near the Γ point. The dominant s-orbitals on the Ga sublattice have strength stronger 
than those on the As sublattice in the conduction LLs. Furthermore, the enhancement of px- and py-orbital 
strengths, accompanied with the decline of s-orbital strength, take place as ↑n1  and ↓n1  grow [comparison between 
Figs 2(c,d) and 1(d–g)]. Instead of the Ga sublattice, the dominating orbitals on the As sublattice in the valence 
LLs exhibit the higher strengths. The px- and py-orbitals on a specific sublattice are of the same strength in the 

=↓n 02  and =↑n 03  valence LLs [Fig. 2(g–j)], reflecting the fact that the zero-field px- and py-orbitals possess the 
equivalent strength at the Γ point [Fig. 1(h–o)]. As the subband index increases, the ↑↓n2  ( ↑↓n3 ) valence LLs become 
py-orbital- (px-orbital-) dominated, which resembles the k-dependance of dominated orbitals near the Γ point. 
The aforementioned LL node regularities and energy-dependent orbital variation provide the fundamental infor-
mation for further researches in optical and transport properties, such as magneto-optical absorption selection 
rules including major/minor optical transitions and the available/forbidden transport channels.

Magnetic field dependence of LL spectra and DOS.  The low-lying LL energies exhibit a monotonic 
variation with the strength of magnetic field, directly reflecting the feature of the monotonic band structure near 
the Γ point at zero field [Fig. 3(a)]. A simple relation between the LL energies and Bz is absent; that is, there are no 
linear or square-root Bz-dependences, as revealed in graphene systems. Between the n-th spin-up and spin-down 
LLs of the same group ( = =↑ ↓n n ni i ; ∈i {1, 2, 3}), their energy spacing grows in the increment of Bz, arising 
from the enhanced SOC by the more localized LL wave functions. For instance, the energy spacing is 24 meV 
between =↑n 01  and =↓n 01  LLs at Bz = 100 T (comparable to the thermal energy at room temperature). Under a 
very small magnetic field (Bz → 0), the energy spacing between the lowest conduction LL and the highest valence 
LL approaches (or converges) to the zero-field energy gap. For an increasing magnetic field, these two LLs deviate 
from the Fermi level, thus leading to the increase of energy gap. Most importantly, the non-crossing and crossing 
behaviors appear in the Bz-dependent energy spectra. The first spin-up and spin-down groups always have the 
lower and higher energies, respectively, so that these two subgroups do not cross each other during the variation 
of Bz. However, the distinct spin LLs might exhibit the crossing phenomena, especially for the second and third 
groups. The significant features of LL energy spectra further illustrate the strong competitions/cooperations 
among the lattice symmetry, multi-orbital chemical bondings, SOC’s, and magnetic field.

The DOS, defined as45,46,66 δ ω∑ ∑ −∈
↑↓

↑↓ E nk[ ( , )]k n i
c v

i; {1,2,3}
,

i
, directly reflects the main features of the LL 

energy spectra as depicted in Fig.  3(b). The dispersionless and highly-degenerate LLs can create the 
delta-function-like prominent peaks as the van Hove singularities in DOS. Three groups of delta-function-like 
symmetric peaks, respectively, appear from ~0.62 eV, 0 eV, and −0.24 eV. Their peak heights are the same, indicat-
ing the identical degeneracy of LLs. In each spin-polarized LL subgroup, the peak spacing is shrunk for a larger 
subband index. The above-mentioned characteristics of LL peaks, including peak structure, height, and spacing, 
could be verified through the experimental measurements using STS6,7. Moreover, it is expected that the optical 
absorption peaks are contributed by the specific inter-LL transitions with the regularly spatial probability 
distributions.

Electric field dependence of LL spectra.  The magneto-electronic properties of monolayer GaAs with 
buckled structure, being thoroughly different from those of monolayer graphene with planer structure, can be 
diversified by a perpendicular electric field, Ez. The Coulomb potential difference Vz = Ezlz between the planes of 
Ga and As sublattices clearly lead to the monotonous/nonmonotonous dispersion relations, crossing LL spectra, 
enhancement of spin splitting, and modulation of energy gap. For a moderate magnetic field [Fig. 4(a)], the ↑↓n1  
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and ↑↓n2 / ↑↓n3  LL energy spectra, respectively, exhibit monotonous decrease and increase as the electric field grows. 
An intergroup LL crossing takes place between =↑n 01  and =↓n 02  LLs at the critical electric fields ( = .E 3 6z

cr1  V/Å 
and = .E 7 3z

cr2  V/Å), where the variation of energy gap is indicated by the gray zone. The former and the latter, 
respectively, become the occupied and unoccupied states after Ez

cr1, and return to their original states after Ez
cr2, so 

that monolayer GaAs exhibits the gapless behavior at the specific critical fields of Ez
cr1 and Ez

cr2. Meanwhile, the 
spin splitting is enhanced; furthermore, the energy spacing between the =↑n 01  and =↓n 01  LLs is about 100 meV 
(much higher than the room-temperature thermal energy). For a large magnetic field [Fig. 4(b)], the ↑↓n1  LLs 
present a monotonous decline, while the ↑↓n2 / ↑↓n3  LLs vary nonmonotonously with the turning points at Ez ~ 4 V/Å. 
The energy gap gradually shrinks and then reaches a minimum finite value (Eg = 26 meV) without the intergroup 
crossing between ↑↓n1  and ↑↓n2  LLs. There is no semiconductor-metal transition during the variation of Ez under a 
very high Bz. Moreover, the Bz-dependent LL energy spectrum clearly shows the similar intergroup crossing at the 
critical magnetic field under a sufficiently high electric field, e.g., B E( , ) (18 T, 3V/\AA)z z

cr1 =  in Fig. 4(c). In 
short, the electric and magnetic fields induce complex variations of the energy gap; therefore, their strong compe-
titions create the semiconductor-semimetal transitions only under the critical fields.

The gap modulation owing to the competition between magnetic and electric fields is presented in detail by 
the color map as shown in Fig. 4(d). For a magnetic field lower than the critical one ( < ∼B B 64z z

cr  T), the gap 
gradually shrinks to zero, becomes finite, reduces to zero again, and then grows as Ez increases. In this variation, 
the intergroup LL crossings between =↑n 01  and =↓n 02  LLs take place at Ez

cr1 and Ez
cr2, which stands for the 

occurrence of the semiconductor-semimetal transitions at these critical electric fields. For >B Bz z
cr, the gap grad-

ually reduces to a finite size and than increases as Ez grows. In addition, ∼ .E 2 59cr
0

1  V/Å and ∼ .E 8 75cr
0

2  V/Å at 
Bz → 0 can be straightforwardly figured out by the energy spectrum at Bz = 0, owing to the direct correspondence 
between the LL initial energies at small Bz and the energies of electronic states at the Γ point at Bz = 0 [Fig. 4(e,f)]. 
The aforementioned external-field-controlled gap modulation and phase transitions are helpful in developing the 
top-gated electronic/optical devices and enable potential applications in phase-change electronic devices67.

The experimental verifications of the theoretical predictions.  The main characteristics and the 
external field-induced modulations of the prominent symmetric Landau peaks in the DOS could be verified by 
the experimental measurements of STS. This experiment is an extension of scanning tunneling microscopy 

Figure 3.  Magnetic-field-dependent LLs and DOS. (a) The LL energies have no simple dependence on the 
strength of magnetic field. With the increment of Bz, the spin splitting between the =↑n ni  and =↓n ni  LLs is 
enhanced, and the gap between the lowest conduction =↑n 01  LL and the highest valence =↓n 02  LL grows. Part 
of the spin-up (red lines) and spin-down (blue lines) LLs are indicated for guidance. The Fermi level is marked 
by the dash line. (b) Spin-polarized DOS at Bz = 100 T. The delta-function-like peaks correspond to the 
dispersionless and highly-degenerate features. Those due to the spin-up and spin-down states are depicted in 
red and blue, respectively.
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(STM)68 and provides the detailed informations about the DOS’s on a sample surface, such as silicon69 and 
CNTs70. The tunneling differential conductance (dI/dV), being roughly proportional to the DOS71, directly reveals 
the van Hove singularities of the electronic energy spectra, such as, the form, number, position and intensities of 
the special structures. Part of theoretical predictions on the LL energy spectra of few-layered graphene have been 
identified from the STS measurements, e.g., the Bz-dependent LL energies in monolayer graphene6,7, the linear 
Bz-dependent LL spectra in AB-stacked bilayer graphene8,9, and the concurrence of square-root and linear 
Bz-dependences in trilayer ABA stacking10. The predicted magneto-electronic properties of the monolayer GaAs, 
including three groups of LLs without a simple Bz-dependence, the external-field-controlled gap modulation and 
the SOC-induced spin splitting, could be directly examined from the STS experiments. Such verifications are very 
useful in fully understanding the very strong competitions/cooperations among the critical factors.

The aforementioned main features of wave functions could be confirmed by the spectroscopic-imaging STM72, 
which is available in resolving the spatial charge distributions from the local DOS. This appropriate experimental 
technique is very suitable for identifying standing waves and Landau wave functions on the surfaces of vari-
ous condensed-matter systems. Standing waves have been directly observed at the surface steps of Au(111) and 
Cu(111)73, as well as finite-length metallic CNT74. Also, the spatial mapping of the electronic states in the troughs 
between self-organized Pt nanowires on Ge(001) is presented75. Recently, the Landau orbits without nodes have 
been observed76, and subsequently, observations of the concentric-ring-like nodal structures are also obtained77. 
In monolayer GaAs, the predicted orbital domination for various groups of LLs and the relative strength of var-
ious orbitals (or different sublattices) for a specific LL could be examined through spectroscopic-imaging STM 
measurements on nodal structures.

Figure 4.  External-fields-dependent LLs, gap modulation and phase transition. (a,b) Electric-field-dependent 
LL energy spectra at Bz = 40 and 80 T. The monotonous/nonmonotonous dispersion relations, intergroup LL 
crossing, enhancement of spin splitting, and gap modulation are obviously shown. (c) Magnetic-field-
dependent LL energies at Ez = 3 V/Å. (d) The Ez-Bz color contour diagram clearly illustrates the complex gap 
modulation and phase transition. The red and black curves, respectively, indicate Ez

cr1 and Ez
cr2 at a specific 

magnetic field Bz. (e,f) In the absence of magnetic field, the zero gap takes place at Ez = 2.59 V/Å and 
Ez = 8.75 V/Å (arrows), indicating the strength of the critical electric fields E cr

0
1 and E cr

0
2 at Bz → 0. The ↑↓n1 , ↑↓n2 , 

and ↑↓n3  subbands are colored in red, green, and blue, respectively.
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Comparisons among the buckled GaAs, planar graphene, and other buckled group-V honey-
comb lattices.  Monolayer graphene and GaAs possess very different electronic properties and responses to 
external fields. For instance, the low-energy electronic structure of the former exhibits a pair of 
single-orbital-dominated (pz) conduction and valence bands, in which they linearly intersect at the K/K’ points 
and are doubly degenerate in the spin degree of freedom. This zero-gap system sharply contrasts the middle-gap 
monolayer GaAs. The latter exhibit a direct gap of 0.623 eV at the Γ point, being related to the 
multi-orbital-induced parabolic bands (s, px, py orbitals). Moreover, the significant SOC’s and sp3 bondings create 
the k-dependent spin-polarized energy subbands. The distinct electronic properties are also revealed in rich 
magnetic quantizations, such as the magnetic field dependence of LL energies, spin splitting/non-splitting, local-
ization centers of Landau wave functions, non-crossing and crossing behaviors, and quantum mode regularities 
(i.e., number and ordering of node in the LL wave functions), and the electric-field effects. The LLs directly reflect 
the main features of zero-field energy dispersions, revealing Bz -dependent spin-degenerate LLs and the 
nonspecific-Bz-dependent spin-split LLs in monolayer graphene and GaAs, respectively. The localization centers 
of the spin-degenerate states (spin-polarized states) are situated at 1/6, 2/6, 4/6, and 5/6 (0 and 1/2) positions of 
the enlarged unit cell. Only the valence LLs of GaAs display the crossing phenomena during the variation of Bz. 
For a specific LL of graphene (GaAs), the major node numbers of subenvelope functions in different sublattices 
differ by one (are identical). Electric fields further induce an on-site energy difference between two buckled sub-
lattices of GaAs, leading to the gap modulation, phase transition, and enhancement of spin splitting.

According to the theoretical predictions, monolayer group-V systems, such as bismuthene78 and phos-
phorene53, exhibit the rich and unique magneto-electronic properties. The former is similar to monolayer GaAs 
in the presence of SOC’s. However, the strength of SOC in Bi system (~1.5 eV) is much higher than that (~0.1 eV) 
of GaAs. The spin-up- and spin-down-dominated LL energy spectra are predicted to be split very obviously. Its 
low-lying electronic structures covers one conduction band and two valence bands, arising from the (px, py, pz) 
orbitals. Specifically, the pz orbital, but not the s one, also plays an important role in the essential electronic prop-
erties. The first valence band nearest to EF belongs to the oscillatory dispersion, and the other two have the para-
bolic dispersions. There exists an indirect energy gap of ~0.293 eV78. The multi-constant-energy loops could lead 
to the abnormal Bz-dependent energy spectrum with the frequently anti-crossing and crossing phenomena, and 
the non-well-behaved LL wave functions with the major and minor modes (the perturbed LLs). An electric field 
in the heavily buckled bismuthene is expected to induce more perturbed LLs and thus the frequent anti-crossing 
behaviors for any spin-split subgroups.

Concluding Remarks
We develop the generalized tight-binding model from ref.35 to explore the magneto-electronic properties of mon-
olayer GaAs. This theoretical framework could be further utilized to investigate the diverse magnetic quantiza-
tions of the emergent 2D layered materials. Plenty of critical factors, including the buckled structure, multi-orbital 
hybridizations, SOC’s, electric field, and magnetic field, are considered in the calculations simultaneously. Three 
groups of SOC-induced spin-polarized subbands ( ↑↓n1 , ↑↓n2 , ↑↓n3 ) initiated from the Γ point exhibit monotonous 
energy dispersions and strong k-dependent spin splitting. There are a direct band gap ( = .E 0 623g

SO  eV) between 
↑↓n1  and ↑↓n2  subbands as well as a SOC-induced energy splitting (ΔSO = 0.237 eV) between ↑↓n2  and ↑↓n3  subbands 

at the Γ point. The electronic state probabilities demonstrates that the conduction ↑↓n1 , valence ↑↓n2 , valence ↑↓n3  
energy subbands are s-, py-, px-orbital-dominated, respectively. The calculate results clearly show that monolayer 
GaAs is in great contrast with group-IV and group-V layered systems in the essential magneto-electronic proper-
ties, covering the localization centers, state degeneracy, orbital-dependent subenvelope functions, spin splittings, 
Bz- and Ez-dependences, and non-crossing/crossing/anti-crossing phenomena. These important differences are 
attributed to the distinct multi-orbital hybridizations and SOC’s.

Magnetic quantization induces three groups of spin-polarized LLs with initial energies respectively near 
0.62 eV, 0 eV, and 0.24 eV, reflecting the zero-field electronic state energies at the initial Γ point. Each LL is dou-
bly degenerate based on one Γ-valley and two z-axis degree of freedom. The magnetic state probabilities are 
well-behaved in their spatial distributions, possessing oscillation patterns with regular nodes at the k-dependent 
localization centers (e.g., the 0 and 1/2 positions of the enlarged unit cell for (kx, ky) = (0, 0)), as revealed by a har-
monic oscillator. In each LL, the node numbers of various orbital subenvelope functions on the Ga and As sub-
lattices are identical, and the s- and (px, py)-orbital node numbers differ from each other by one. Such predicted 
characteristics of magnetic wave functions could be examined through spectroscopic-imaging STM measure-
ments on nodal structures. Moreover, the non-specific Bz-dependence of the LL energy spectrum obviously illus-
trates the significant multi-orbital bondings and SOC’s. Both energy gap and energy spacing of spin splitting are 
gradually enhanced in the increase of magnetic field. The conduction LLs only exhibit the non-crossing behav-
ior during the variation of Bz. However, the inter-subgroup LL crossings happen in the first/the second valence 
group, and they frequently occur between these two valence groups. There are six subgroups of spin-polarized 
LL DOS peaks featuring the rich van Hove singularities. The delta-function-like symmetric structure, the initial 
frequencies for each subgroup, the degeneracy-induced peak height, and the reduced energy spacing of the higher 
quantum numbers, could be examined from the STS measurements.

The electric field causes the drastic changes in energy dispersions, LL crossings, enhancement of spin splitting, 
gap modulation, and phase transition. For a magnetic field lower than the critical one, <B Bz z

cr, the intergroup 
LL crossings occur between the conduction and valence LLs at the critical electric fields, inducing 
semiconductor-semimetal transitions. On the other hand, energy remains finite in the absence of the intergroup 
LL crossing near the Fermi level. It should be noted that the spin splitting is enhanced with an energy spacing 
larger than the room-temperature thermal energy. The complex gap modulations and phase transitions based on 
the rather strong competitions/cooperations between magnetic and electric fields are investigated in detail. The 
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Ez-Bz phase diagram clearly illustrate the critical electric fields under a specific magnetic field. Specifically, the 
Ez-induced LL anti-crossings are absent, being thoroughly different those in few-layer group-IV and group-V 
systems.

Method
Geometric structure.  Monolayer GaAs has a buckled honeycomb lattice with each atom being passivated by 
an F adatom, as clearly shown in Fig. 1(a). There exists the sp3 chemical bonding among (Ga, As, F) atoms (three 
for As or Ga; one for F), in which the Ga-As bond length is about 2.521 Å. A unit cell containing two different 
Ga and As sublattices is indicated by the rhombus with the primitive unit vectors, a1 and a2 of a lattice constant 
a = 4.226 Å. The altitude of the buckled structure measured from the distance between the Ga- and As-plane is 
lz = 0.633 Å [Fig. 1(b)]. The buckling angle θ between the Ga-As bond and the z-axis is about 104.54°. This config-
uration is free from dangling bonds and thus chemically stable. F atoms are right above/below the Ga/As atoms 
with the Ga-F and As-F distances of 1.776 Å and 1.781 Å, respectively35.

Generalized tight-binding model.  The generalized tight-binding model, being very suitable for explor-
ing the essential properties of monolayer GaAs, is developed, where many critical factors, the buckled structure, 
multi-orbital hybridizations, SOC, electric field, and magnetic field, are included in the calculation simultane-
ously. The current model provides a theoretical framework for investigating the strong competitions/cooperations 
among various critical factors and affords systematic studies from multi-dimensional materials to hybrid systems. 
The theoretical models, with both single-particle and many-body schemes, can also be combined to comprehend 
the essential physical properties, e.g., frequency-dependent and static Kubo formulas for exploring the optical 
absorption spectra40,45,46,64 and quantum Hall effect, respectively.

To illustrate the electronic properties explicitly, the Hamiltonian built from the tight-binding functions of 4 s, 
4px, and 4py orbitals is expressed as

∑ ∑ε γ= + + . .
α

α α α

α β

αβ α β

〈 〉

† †c c c c h c( ),
(1)m

m m m
m n

mn m m
, , , ,



where ε α
m , α†cm , and αcm respectively represent the on-site energy, creation, and annihilation operators of an electron 

at the α-orbital of the m-th atom. γ αβ
mn  is the nearest-neighbor hopping integral between an α-orbital of the m-th 

atom and a β-orbital of the n-th atom. The multi-orbital hopping integrals are γ = σVmn
ss

ss , γ θ= σV cosmn
sp

sp xx , 
γ θ= σV cosmn

sp
sp y

y ,  γ θ θ= + −σ πV Vcos (1 cos )mn
p p

pp x pp x
2 2x x ,  γ θ θ= + −σ πV Vcos (1 cos )mn

p p
pp y pp y

2 2y y ,  a n d 
γ θ θ= −σ πV V( )cos cosmn

p p
pp pp x y

x y , where θx and θy are respectively the angles of the vector initiated from the m-th 
atom to the n-th atom with respect to the x- and y-axis79, and the Slater-Koster hopping parameters in the sp3 
bonding optimized at the equilibrium state are Vssσ = −1.707 eV, Vspσ = 2.056 eV, Vppσ = 2.650 eV, and 
Vppπ = −0.827 eV35. The on-site energies of s- and p-orbitals are set to the values (−12.00 eV, −5.67 eV) for Ga and 
(−17.68 eV, −8.30 eV) for As, being taken from those of bulk GaAs80. It should be noted that the 4pz orbitals are 
ignored in the Hamiltonian in Eq. 1. A strong fluorination could fully suppress the dangling bands of monolayer 
GaAs; that is, there exist very pronounced between 2pz and 4pz orbitals due to the top-site adsorptions. The rather 
stable 2pz − 4pz chemical bonds create the deeper valence bands far away from the Fermi level81,82. This is respon-
sible for the absence of 2pz and 4pz orbitals in the current model. The σ orbitals (px, py) with the stronger SOC 
dominate low-lying electronic states, instead of π orbitals (pz) with weaker SOC. The similar phenomena are also 
revealed in the fluorinated graphene theoretically83–85 and experimentally32, in which the (2px, 2py) orbitals of 
carbon atoms make important contributions to the low-lying band structures, but not 2pz orbitals. As a result, the 
π bonding-related linear Dirac-cone structures are suppressed thoroughly.

Spin-orbit coupling.  When an electron of momentum p moves close to the atomic nuclei in a crystal with 
an electric potential V, it experiences an effective magnetic field ∼ ∇ ×B V m cp/eff 0

2 in its rest-frame, where m0 
is the mass of a free electron and c is the speed of light. Such field induces a momentum-dependent Zeeman 
energy called the SO coupling, being expressed

 σ= ∇ × ⋅H
m c

V p
4

( ) ,
(2)

SO

0
2 2

where  is the reduced Planck constant and σ is the vector of Pauli matrices. In the central field approximation, 
the crystal potential V(r) is considered as the spherical atomic potential. The SOC term on the same atom is taken 
into account and it can be obtained by calculating the mean value:

λ σ= 〈 ⋅ 〉αβ αβH L , (3)i
SO

i,

where λi is the SOC strength of the i-th atom and L is the orbital angular momentum operator. The matrix ele-
ment σ〈 ⋅ 〉αβL  is given in the basis of atomic orbitals (α, β), and the dimensionless SOC operator L ⋅ σ for the 
relevant orbitals (4s, 4px, and 4py) in the 2D system is given by

σ⋅ =





−






is

is
L

0 0 0
0 0
0 0

,
(4)

z

z
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where =
−( )s 1 0

0 1z . The SOC strengths of Ga and As atoms are chosen to be 0.058 eV and 0.140 eV, 
respectively86.

Peierls substitution and a composite electric and magnetic fields.  When a uniform perpendicular 
magnetic field, = ˆB zB z , is applied to monolayer GaAs, the effective Hamiltonian could be regarded as the Peierls 
substitution Hamiltonian87. Each Hamiltonian matrix element turns into the product of the zero-field element 
and the extra Peierls phase, exp(i2πθmn), where ∫θ φ= ⋅ dA l(1/ )mn m

n
0  is a line integral of the vector potential A 

from the m-th to n-th site, A is chosen as (0, Bzx, 0) in the Landau gauge, and φ0 = h/e (4.1357 × 10−15 T · m2) is the 
magnetic flux quantum. The unit cell becomes an enlarged rectangle with 2RB Ga and 2RB As atoms to satisfy the 
periodicity of Peierls phase, where φ φ φ= = ∼R B a T B/ /( 3 /2 ) 26739 /B z z0 0

2  is the ratio of flux quantum to 
magnetic flux through a hexagon φ [Fig. 2(a)]. The reduced Brillouin zone has an area of π a R4 / 3 B

2 2 . The mag-
netic Hamiltonian is built in the space spanned by the 24RB tight-binding functions | 〉 | 〉Ga As{ ,m

orb
m
orb ; 

= …m R1, 2, 3, , 2 B; = ⊗ ↑ ↓orb s p p4 , 4 , 4 } { , }x y
. An electric field = ˆE zE z  along the z-axis introduces a 

Coulomb potential energy −eEzlz/2 (eEzlz/2) to the site energy of the Ga (As) sublattice. The exact diagonalization 
method of the giant Hamiltonian matrix  yields the energy spectrum Ec,v and wave functions |Ψc,v〉, where the 
superscripts c and v denote the conduction and valence subbands, respectively.
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