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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is the most common 

primary liver cancer. According to estimates from 

GLOBOCAN, HCC is the fourth leading cause of 

cancer death (8.2%) and ranks as the sixth most 

commonly diagnosed cancer (4.7%) worldwide in 2018 

[1]. Currently, the optimal treatment for HCC patients is 

radical resection surgery at the early stage, but many 

cases are diagnosed at the advanced stage, leading to 

poor prognosis [2, 3]. With the development of high-

throughput analyses of many HCC samples, researchers 

are starting to gain a deeper understanding of the 

molecular changes in cancer cells [4]. HCC cancer cells 

accumulate somatic DNA alterations, including  

mutations and chromosomal aberrations [5]. HCC 

patients at the same clinical stage tend to have different 

molecular subtypes, and evidence indicates that gene 

signatures have significant potential in predicting HCC 

patients’ prognoses [6]. Therefore, identification of 

novel biomarkers is necessary for early screening, 

diagnosis and molecular targets of HCC patients in 

order to improve survival rates. 

 

RNA-binding proteins (RBPs) comprise a large family of 

proteins that binds RNA through RNA-binding domains 

(RBDs) and interact with the bound RNAs [7, 8]. RBPs 

bind to a variety of RNAs, including rRNAs, mRNAs, 

tRNAs, ncRNAs, snRNAs, and snoRNAs [9]. They play a 

vital role in post-transcriptional gene regulation (PTGR) 
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ABSTRACT 
 

RNA binding proteins (RBPs) are aberrantly expressed in a tissue-specific manner across many tumors. These 
proteins, which play a vital role in post-transcriptional gene regulation, are involved in RNA splicing, maturation, 
transport, stability, degradation, and translation. We set out to establish an accurate risk score model based on 
RBPs to estimate prognosis in hepatocellular carcinoma (HCC). RNA-sequencing data, proteomic data and 
corresponding clinical information were acquired from the Cancer Genome Atlas database and the Clinical 
Proteomic Tumor Analysis Consortium database respectively. We identified 406 differentially expressed RBPs 
between HCC tumor and normal tissues at the transcriptional and protein level. Overall, 11 RBPs (BRIX1, DYNC1H1, 
GTPBP4, PRKDC, RAN, RBM19, SF3B4, SMG5, SPATS2, TAF9, and THOC5) were selected to establish a risk score 
model. We divided HCC patients into low-risk and high-risk groups based on the median of risk score values. The 
survival analysis indicated that patients in the high-risk group had poorer overall survival compared to patients in 
the low-risk group. Our study demonstrated that 11 RBPs were associated with the overall survival of HCC patients. 
These RBPs may represent potential drug targets and can help optimize future clinical treatment. 
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and are involved in RNA splicing, maturation, transport, 

stability, degradation, and translation [9]. Mechanistically, 

the protein components of the ribonucleoprotein 

complexes (RNPs) with RBPs at their core participate in 

pre-mRNA processing and determine mRNA export, 

localization, translation and stability [10]. Additionally, 

RBPs and their interacting partners disrupt the core 

components of miRNA biogenesis and change the 

secondary structure of miRNA target sites, leading to 

dysregulation of miRNAs in specific tumor types [11]. A 

recent study has shown that the majority of RBPs are 

expressed at higher levels than the average cellular 

protein, and several RBPs are abnormally expressed 

during the development and progression of cancer [12]. 

Altered RNA metabolism due to malfunction of RBPs can 

cause intricate changes in the cellular transcriptome and 

proteome, leading to changes in cell proliferation, 

apoptosis, invasion and migration [13]. A growing 

number of studies have discovered that differentially 

expressed RBPs are associated with poorer prognoses in 

breast cancer and lung adenocarcinoma, suggesting that 

certain RBPs can act as promising targets for cancer 

therapy [12, 14–16]. Meanwhile, a new set of regulatory 

RBPs have been considered to play an important role in 

intestinal homeostasis, adaptation to injury, and 

participation in malignant transformation. The aberrant 

expression and function of these RBPs in colorectal 

cancer can help provide the impetus for developing 

inhibitors of these RBPs [17]. 

 

Although RBPs are known to be closely associated with 

the initiation and progression of various cancers, the 

comprehensive roles of RBPs in HCC remains unclear. 

The application of next-generation sequencing 

technology and modern protein mass spectrometry helps 

facilitate identification of changes in RBPs expression 

across HCC samples. In this study, we downloaded 

RNA-sequencing data from the Cancer Genome Atlas 

(TCGA) database and mass-spectrometry-based data 

from the Clinical Proteomic Tumor Analysis 

Consortium (CPTAC) database. After distinguishing 

consistently transcriptomic and proteomic alterations of 

RBPs between HCC tumor and normal tissues, we 

established a risk score model based on 11 prognostic 

RBPs. Ultimately, we identified a number of RBPs 

associated with the pathogenesis of HCC, which can be 

used as potentially prognostic biomarkers and drug 

targets of HCC patients in the future. 

 

RESULTS 
 

Identification of differently expressed RBPs between 

HCC tumor and normal tissues 

 

The detailed study design is illustrated in a flow chart 

(Figure 1A). Initially, we acquired transcriptomic files 

from the TCGA-LIHC dataset, the analysis of which 

contained 374 HCC tumor and 50 normal samples. We 

extracted expression values of 1542 RBPs identified in 

previous study. Then, we calculated the aberrantly 

expressed RBPs (|log2 FC|≥1, FDR < 0.05). Overall, we 

identified 557 up-regulated and 5 down-regulated RBPs 

(Figure 1B). The distribution of the expression levels of 

these differently expressed RBPs is shown in Figure 1C. 

Additionally, we downloaded proteomic files, including 

159 paired cases, from the CPTAC-LIHC dataset. Thus, 

we obtained differentially expressed proteins between 

tumor and normal tissues (|log2 FC|≥0, FDR < 0.05). 

We explored aberrantly expressed RBPs both at the 

mRNA and protein levels by taking the intersection 

between transcriptomic and proteomic data. Total 406 

RBPs, including 403 up-regulated genes and 3 down-

regulated genes, were identified. 

 

GO and KEGG pathway analyses of differently 

expressed RBPs 

 

In order to determine the function and mechanisms of 

these 406 RBPs, we conducted GO enrichment and 

KEGG pathway analysis. GO enrichment analysis 

classified RBPs into three functional groups including 

biological process (BP), cellular component (CC), and 

molecular function (MF). The top 10 significantly 

enriched BPs, CCs and MFs are shown in Figure 2A. 

We found that the 406 differently expressed RBPs were 

mainly associated with RNA splicing, ribosome 

biogenesis and RNA binding. Additionally, KEGG 

pathway analysis indicated that the top 8 significantly 

enriched pathways included “Spliceosome”, “RNA 

transport”, “mRNA surveillance pathway”, “Ribosome 

biogenesis in eukaryotes”, “RNA degradation”, 

“Aminoacyl−tRNA biosynthesis” and “RNA poly-

merase” (Figure 2B). These pathways are closely 

correlated to RNAs maturation, transport, stability and 

translation. In conclusion, function and pathway 

enrichment analyses of differently expressed RBPs 

reflect changes that occur in post-transcriptional gene 

regulation (PTGR) between tumor and normal tissues. 

 

Protein-protein interaction (PPI) network 

construction and key modules analysis 

 

To further explore the functional protein association 

networks of differently expressed RBPs in HCC, we 

submitted the 406 RBPs to the STRING database. We 

obtained 312 nodes, 4457 edges, and a p-value of PPI 

concentration <1.0e–16 after setting filter conditions. 

The top three significant clusters within the PPI network 

were selected using the Cytoscape software with 
MCODE plug-in (Figure 3). We also analyzed the 

function of each module. Pathway enrichment analyses 

indicated that Module 1 was mainly associated with 
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spliceosome, mRNA surveillance pathway and RNA 

polymerase (Supplementary Table 1). Module 2 was 

mainly involved in Ribosome, RNA transport and 

ribosome biogenesis in eukaryotes, while Module 3 was 

only related to ribosome pathway (Supplementary 

Tables 2, 3). The PPI network revealed that RBPs 

played a vital role in human RNA metabolism, which 

caused HCC progression. 

 

Identification of prognosis-related RBPs and 

construction of risk score model in HCC 

 

In order to investigate the prognostic significance of 

these differently expressed RBPs, we performed 

univariate Cox regression analyses both in 

transcriptomic data and proteomic data. We intersected 

mRNA-based prognostic RBPs and protein-based 

prognostic RBPs, and obtained 65 prognosis-associated 

candidate RBPs. Furthermore, we selected the 

prognostic RBPs to construct prognostic model by using 

Lasso Cox regression analysis (Figure 4A, 4B). Overall, 

11 RBPs (BRIX1, DYNC1H1, GTPBP4, PRKDC, 

RAN, RBM19, SF3B4, SMG5, SPATS2, TAF9, and 

THOC5) were elected to establish a risk score system 

due to their integrated prognostic relevance. All these 

RBPs had positive coefficients in the Lasso-penalized 

Cox regression analysis and severed as independent 

prognostic factors for overall survival of HCC patients.  

 

 
 

Figure 1. Identification of differentially expressed RBPs between HCC tumor and normal tissues. (A) Flow chart for analysis of 

RBPs in HCC. (B) Volcano plot for RBPs. Red indicates high expression while green indicates low expression. Black indicates genes that had no 
differences between HCC tumor and normal tissues. (C) Hierarchical clustering analysis of differentially expressed RBPs. The columns indicate 
samples and the rows are RBPs. Blue represents downregulation while red represents upregulation. 
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A risk score formula for each patient was calculated 

based on expression values of 11 RBPs, and weighed by 

their estimated regression coefficients in the Lasso Cox 

regression analysis. We further divided HCC patients 

into low-risk group and high-risk group based on the 

median of risk score values. We conducted survival 

analysis and the results showed that patients in the  

high-risk group had poorer overall survival compared to 

patients in the low-risk group (Figure 4C). Furthermore, 

we carried out the time-dependent receiver operating 

characteristic (ROC) analysis to assess the prognostic 

ability. Results indicated that the areas under the ROC 

curve (AUC) of this risk score model in the TCGA-

LIHC cohort were 0.784, 0.699 and 0.637 at 1 year,

 

 
 

Figure 2. GO and KEGG pathway analysis of differentially expressed RBPs. (A) The top 10 significantly enriched BPs, CCs and MFs in 

GO analysis. (B) The top 8 significantly enriched pathways in KEGG pathway analysis.  



 

www.aging-us.com 2484 AGING 

3 years and 5 years, respectively (Figure 4D). The risk 

score model seems to be more precise in the short-term 

follow-up of HCC patients. We also marked the risk 

score values of each HCC patient and exhibited their 

distribution (Figure 4E). Accordingly, there were lower 

survival time and higher mortality rates in the high-risk 

group than the low-risk group (Figure 4F). The 

expression pattern of the 11 prognostic RBPs between 

the high-risk group and low-risk group is shown in 

Figure 4G. We found that all 11 prognostic RBPs over 

expressed in the high-risk group (Figure 4G). 

 

We subsequently conducted univariate Cox regression 

analysis to screen potential indicators correlated with 

OS in the TCGA-LIHC patients. The results showed 

that both the TNM stage and risk score were statistically 

significant (Figure 5A). According to the multivariate 

Cox regression analysis, the risk score system derived

 

 
 

Figure 3. Key modules inferred from protein-protein interaction (PPI) network of differentially expressed RBPs. (A) Module 1. 

MCODE score=56.877, Nodes=58, Edges=1621. (B) Module 2. MCODE score=30.611, Nodes=73, Edges=1102. (C) Module 3. MCODE score=14, 
Nodes=14, Edges=91. 
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Figure 4. Construction of risk score model based on prognostic RBPs in the TCGA-LIHC cohort. (A) Each curve represents an RBP, 

and the best lambda was calculated to minimize mean cross-validated error. (B) Cross‐validation for tuning parameter selection in the 
proportional hazards model. (C) Kaplan–Meier survival curve of TCGA-LIHC patients. (D) Time-dependent ROC curves for predicting OS based 
on risk scores. (E) TCGA-LIHC patients were divided into low-risk group and high-risk group by the median of risk score values. (F) Scatter plots 
show that different risk scores indicate different survival outcomes in the TCGA-LIHC patients. (G) The heatmap exhibited the 11 RBPs 
expression profiles in each TCGA-LIHC patient. Red was defined as high expression and blue indicated as low expression. 
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from the expression levels of the 11 RBPs and TNM 

stage were independent prognostic indicators of OS for 

HCC patients (Figure 5B). We further assessed the 

AUC values of available clinical indicators at 1-year, 3-

year, and 5-year. These data suggested that the risk 

score model accurately predicted 1-year and 3-year OS 

rates of HCC patients compared to other clinical 

indicators (Figure 6A). 

 

Validation of the 11 RBPs signature for overall 

survival prediction in CPTAC-LIHC cohort 

 

Next, we used LIHC patients with reliable prognostic 

information from the CPTAC database as a validation 

cohort to confirm the predictive ability of this 

prognostic model. We calculated the risk scores of each 

patient based on expression of the previously identified 

11 RBPs and regression coefficients for the OS model. 

Similarly, we subdivided CPTAC-LIHC patients into 

high-risk group and low-risk group by the median of 

risk score values. There was a significant difference 

between the high-risk and the low-risk groups (p < 0.05) 

(Figure 6B). The ROC curve analysis validated that the 

AUC values for the OS model at 1 years, 3 years and 5 

years were 0.662, 0.696 and 0.725, respectively (Figure 

6C). These results demonstrated that the risk score 

model accurately predicted prognosis of CPTAC-LIHC 

patients in long-term follow-up. 

 

Relationships between the prognostic RBPs and 

clinicopathological features 

 

We analyzed the relevance between the 11 prognostic 

RBPs and clinicopathological features, such as tumor 

grade and TNM stage, in order to explore the 

differentially diagnostic capability of the prognostic 

signature. All 11 RBPs (BRIX1, DYNC1H1, GTPBP4, 

PRKDC, RAN, RBM19, SF3B4, SMG5, SPATS2, 

 

 
 

Figure 5. Assessing the role of prognostic model in survival outcomes. (A) Univariate Cox regression analysis. (B) Multivariate Cox 

regression analysis. 
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TAF9, and THOC5) were found to be significantly 

higher in patients with advanced tumor grade (p < 0.05). 

Only seven RBPs (BRIX1, DYNC1H1, GTPBP4, 

PRKDC, RAN, SPATS2, THOC5) expressed at higher 

levels in patients with advanced TNM stage (p < 0.05) 

(Figure 7). However, the risk score model was related to 

both tumor grade and TNM stage. 

 

Genomic information and drug-RBPs interaction of 

the eleven RBPs 

 

We explored the genetic alterations of these prognostic 

RBPs in the cBioPortal database. Figure 8A, 8B 

presents data on genetic alterations including missense 

mutation, truncating mutation, amplification, deep 

deletion and no alterations. In total, 11 RBPs were 

altered in about 29% (106/366) of queried samples in 

HCC (TCGA, Firehose Legacy). Among these, SMG5, 

SF3B4 and PRKDC are the top 3 most significantly 

altered genes in HCC samples. 

The 11 prognostic RBPs served as promising targets for 

HCC patients. We explored the drug-gene interactions 

through the DGIdb database. Among these 11 RBPs, 

only PRKDC and RAN were identified as 

chemotherapeutic targets. Table 1 shows that most of 

the drugs were inhibitors of PRKDC. Therefore, we 

hypothesize that the additional 9 genes (BRIX1, 

DYNC1H1, GTPBP4, RBM19, SF3B4, SMG5, 

SPATS2, TAF9, and THOC5) might be novel targets in 

the future. 

 

External validation of prognostic RBPs expression in 

the HPA database 

 

We further explored the expression of the 11 prognostic 

RBPs in the Human Protein Atlas (HPA) database. The 

immunohistochemistry (IHC) results demonstrated that 

DYNC1H1, GTPBP4, PRKDC, RBM19, SF3B4, 

SPATS2 and TAF9 were significantly increased in 

HCC tumor cells compared to normal hepatocytes

 

 
 

Figure 6. Validating the reliability of this risk score model. (A) Time-dependent ROC curves for estimating OS based on risk scores and 

clinical indicators in the TCGA-LIHC cohort. (B) Kaplan–Meier survival curve of CPTAC-LIHC patients. (C) Time-dependent ROC curves for 
estimating OS based on risk scores in the CPTAC-LIHC cohort. 
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Figure 7. The relevance between 11 prognostic RBPs and clinicopathologic features. (A) The relationship between 11 prognostic 
RBPs and tumor grade. (B) The relationship between 11 prognostic RBPs and TNM stage. 



 

www.aging-us.com 2489 AGING 

(Figures 9, 10). However, IHC staining of BRIX1, 

RAN, SMG5 and THOC5 was missing and was pending 

further analysis.  

 

Concrete clinical analysis and functional study of 

SPATS2 in HCC 

 

Next, we selected SPATS2 as a representative 

prognostic RBP for validation. We determined the 

expression of SPATS2 by immunohistochemistry across 

98 pairs of HCC samples acquired from Peking 

University Cancer Hospital and Institute. SPATS2 was 

notably up-regulated in HCC tumor tissues compared to 

non-tumor tissues (Figure 11A). Our results indicated 

that HCC patients with high expression of SPATS2 had 

lower overall survival rates and disease-free survival 

rates compared to the low expression group (p < 0.001, 

Figure 11B). Next, we analyzed the correlation between 

up-regulated expression of SPATS2 and clinico-

pathological features of HCC patients. Our results 

showed that SPATS2 up-regulation was significantly 

correlated to tumor size (p = 0.015) (Table 2). 

Univariate Cox analysis also indicated that there was 

significant correlation between tumor size, serum AFP 

levels, microscopic vascular invasion, Edmondson-

Steiner grade, SPATS2 up-regulation and overall 

survival (p < 0.05). On the other hand, the tumor nodule 

number and distant metastasis were not significantly 

associated with overall survival (p > 0.05). In order to 

rule out the possibility that the above single factor 

 

 
 

Figure 8. Exploration of 11 prognostic RBPs as potentially therapeutic targets for HCC patients. (A) Genetic alterations of each 
prognostic RBP. (B) An overview of all genomic changes for 11 prognostic RBPs. 
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Table 1. Candidate drugs targeting prognostic RBPs. 

Number Gene Drug Interaction type Sources Scorea 

1 PRKDC CHEMBL1086377 inhibitor GuideToPharmacologyInteractions 1 

2 PRKDC CHEMBL188678 inhibitor GuideToPharmacologyInteractions 1 

3 PRKDC PI-103 inhibitor GuideToPharmacologyInteractions 1 

4 PRKDC CHEMBL1081312 inhibitor GuideToPharmacologyInteractions 1 

5 PRKDC WORTMANNIN inhibitor GuideToPharmacologyInteractions 1 

6 PRKDC CC-115 inhibitor ChemblInteractions 1 

7 PRKDC SF-1126 — TdgClinicalTrial, DrugBank 2 

8 RAN CHEMBL384759 — DrugBank 2 

a The score is the combined number of database sources and PubMed references supporting a given interaction. 

 

variable was a covariate, further multivariate Cox 

analysis manifested that the tumor size, serum AFP 

levels, Edmondson-Steiner grade and SPATS2 up-

regulation were independent prognostic factors for 

overall survival in HCC (p < 0.05, Table 3). 

 

In order to explore whether SPATS2 has an effect on 

the function of HCC cells, we transiently transfected 

siRNAs into HepG2 cells and Huh7 cells (Figure 12A). 

According to results of the CCK8 assay, knockdown of 

SPATS2 inhibited cell growth compared to the negative 

control (Figure 12B, p < 0.05). Consistently, EdU cell 

proliferation assay indicated that SPATS2 depletion led 

to a significant reduction of S phase cells (Figure 12C, 

12D, p < 0.05). However, there were no significant 

changes in the migration assay between the negative 

control and siRNAs (Figure 13A, p > 0.05). In 

conclusion, our results proved that SPATS2 depletion 

inhibited proliferation of HCC cells.  

 

DISCUSSION 
 

In this study, we identified RBP-based molecular 

biomarkers that can predict overall survival of HCC 

patients. Metastasis and recurrence after resection are 

major limitations to the treatment of HCC patients [3]. 

Therefore, prognostic assessment is a crucial step. In 

clinic, prognostic evaluation incorporates not only 

tumor stage and cancer-related symptoms, but also the 

degree of liver function impairment [18]. Transcriptome 

sequencing and mass-spectrometry technologies help us 

decode transcriptomic and proteomic changes in the 

development of cancer, which are beneficial for 

identifying promising biomarkers for cancer diagnosis, 

treatment, and prognosis [19–22]. 

 

RBPs bind all types of RNAs through RNA-binding 

domains (RBDs) that form steady secondary and 

tertiary structures [13]. The common RBDs include 

RNA recognition motif (RRM), K-homology domain 

(KH), Zinc finger domain (ZNF), double stranded 

RNA binding domain (dsRBD), cold shock domain 

(CSD), La motif, Piwi/Argonaute/Zwille (PAZ) 

domain, and Piwi domain [7]. RBPs with multiple 

modules define the fundamental structural unit that is 

responsible for biological function [7]. RBPs are 

known for their role in many regulatory processes, 

including post-transcriptional regulation of RNA 

stability, splicing, editing, maturation, translation and 

localization, which ultimately impacts gene 

expression [9]. Dysregulation of RBPs contributes to 

transcriptomic imbalance in tumor cells and drives 

tumorigenicity, including in HCC. NELFE, an 

oncogenic RBP, is able to activate MYC signaling by 

binding directly to MYC or its targets and enhances 

HCC development [23]. It has been reported that 

HuR, a member of the ELAV family of RNA-binding 

proteins, is associated with MAT2A 3’ UTR and 

enhances MAT2A mRNA stability, whereas AUF1 is 

associated with MAT1A 3’UTR and decreases 

MAT1A mRNA stability [24]. HuR is an important 

regulator of liver de-differentiation, development, 

proliferation and carcinogenesis through the post-

translational regulation of MAT1A and MAT2A 

mRNAs [24]. Another study indicates that the liver-

specific lncRNA HULC is discovered to be an 

IGF2BP substrate and destabilizes through CNOT1-

mediated deadenylation recruited by IGF2BP1 [25]. 

Moreover, RPS3 as an RBP is frequently up-regulated 

in human HCC [26]. A study unveils a novel role of 

RPS3 in facilitating hepatocarcinogenesis through 

stabilizing SIRT1 mRNA [26]. 

 

Our study integrated TCGA-LIHC RNA sequencing 

data and CPTAC-LIHC proteomic data in order to 

select differentially expressed RBPs between HCC 

tumor tissues and normal tissues. Total 406 RBPs were 

observed to have consistent changes at both the 

transcriptional and protein levels. Then, we conducted 

GO enrichment and KEGG pathway analysis, and 

constructed a protein-protein interaction network. The 
key modules displayed that the differentially expressed 

RBPs were greatly associated with spliceosome, mRNA 

surveillance pathway, RNA transport and ribosome 

http://www.guidetopharmacology.org/
http://www.guidetopharmacology.org/
http://www.guidetopharmacology.org/
http://www.guidetopharmacology.org/
http://www.guidetopharmacology.org/
https://www.ebi.ac.uk/chembl
http://www.ncbi.nlm.nih.gov/pubmed/24016212
http://www.drugbank.ca/
http://www.drugbank.ca/
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Figure 9. Validation of prognostic RBP expression in the HPA database. (A) Representative immunohistochemical staining of HCC 
primary tumor tissues and normal liver tissues. 
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biogenesis. In addition, we discussed the potential clinical 

application of these RBPs. Univariate Cox regression 

analysis identified 65 prognostic-associated candidate 

RBPs. With Lasso Cox regression analysis, we selected 

11 RBPs (BRIX1, DYNC1H1, GTPBP4, PRKDC, RAN, 

RBM19, SF3B4, SMG5, SPATS2, TAF9, and THOC5) 

to build a risk score model. The TCGA-LIHC patients 

were further assigned to low-risk and high-risk groups 

based on the risk score median and patients in high-risk 

group had poorer overall survival compared to patients in 

the low-risk group. The ROC curve analysis revealed that 

these 11 RBPs signature had a better prognostic capability 

for HCC patients. Simultaneously, we validated the 

conclusion in CPTAC-LIHC patients. This implied that 

we initiatively performed the first transcriptomic and 

proteomic characterization of RBPs-based HCC. The 

combined analyses of RNA sequencing and mass 

spectrometry generated more comprehensive knowledge 

that united cancer ‘‘genotype’’ with ‘‘phenotype’’ 

through functional proteomics and signaling networks 

[27]. In addition, both types of data wielded a more 

integrated view of tumor biology that helped patients 

identify more effective treatments than they would by 

using genomics alone [28]. 

 

 
 

Figure 10. Validation of prognostic RBP expression in the HPA database. (A) Representative immunohistochemical staining of HCC 
primary tumor tissues and normal liver tissues. 
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On the other hand, each RBP in the prognostic signature 

was evaluated for its relationship with clinicopathological 

features. All 11 RBPs (BRIX1, DYNC1H1, GTPBP4, 

PRKDC, RAN, RBM19, SF3B4, SMG5, SPATS2, TAF9, 

and THOC5) were expressed at significantly higher levels 

in patients with advanced tumor grade. Only seven RBPs 

(BRIX1, DYNC1H1, GTPBP4, PRKDC, RAN, SPATS2, 

THOC5) were expressed higher in patients at advanced 

TNM stage. We conducted in-depth exploration of altered 

genetic information for the 11 prognostic RBPs, including 

missense mutation, truncating mutation, amplification and 

deep deletion. Taken together, these were abnormally 

expressed in every gene. PRKDC, SF3B4 and SMG5 

ranked top three with high amplification ratio. Among 

these RBPs, the known drug targets were PRKDC and 

RAN. It has been reported that oncogenic RBPs such as 

GTPBP4, PRKDC, RAN, SF3B4, SMG5, SPATS2, 

TAF9, and THOC5 promoted HCC cell proliferation, 

apoptosis, migration and invasion, which led to 

tumorigenesis and poor overall survival. These findings 

may contribute to the development of novel biomarkers 

for treatment and prognosis of HCC patients. 

 

GTPBP4, also known as NOG1 or NGB, is a novel 

member of the GTPase family and resembles the α 

subunits of the heterotrimeric G-proteins [29]. The 

nucleolar localization of NOG1 is associated with a 

precursor particle to the 60S subunit as well as co-

precipitation with the 60S precursor RNAs [30]. It has 

been reported that GTPBP4 is a p53 interactor and 

knockdown of GTPBP4 induces p53 accumulation and 

activation in absence of nucleolar disruption [31]. In 

addition, high expression of GTPBP4 is significantly 

correlated with reduced survival in breast cancer, 

colorectal carcinoma and HCC [31–33]. Knockdown of 

GTPBP4 delays cell proliferation, induces cell cycle 

 

 
 

Figure 11. SPATS2 is upregulated in HCC primary tumor tissues and correlates with poorer prognosis. (A) Representatives of 
SPATS2 staining in a pair of tumor tissue and adjacent non-tumor tissue. The boxed regions are amplified as images below. (B) Kaplan-Meier 
plots of overall survival and disease-free survival. 
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Table 2. Association analysis between SPATS2 up-regulation in tumor and clinicopathologic characteristics of HCC 
patients. 

Clinicopathologic  
Characteristics 

Total  SPATS2 up-regulation P value 

Tumor size (cm)   0.015 
 <=5 60 26 (43.3%)  
  >5 38 26 (68.4%)  

Serum AFP level (ng/ml)   0.286 
 <=200  65 32(49.2%)  
  >200  33 20 (60.6%)  

Tumor nodule number   0.230 
  Solitary 78 39 (50.0%)  
  Multiple 20 13 (65.0%)  

Microscopic vascular invasion    0.383 
 Absent 66 33 (50.0%)  
 Present 32 19 (59.4%)  

Edmondson-Steiner grade    0.744 
 I+II 76 41 (53.9%)  
 III+IV 22 11 (50.0%)  

Distant metastasis   0.436 
 Absent 93 48(51.6%)  
 Present 5 4(80.0%)  

 

Table 3. Univariate and multivariate Cox analyses of prognostic variables in HCC patients. 

Clinicopathologic 

characteristics 

Univariable  analysis* Multivariable  analysis* 

HR (95%CI) P value HR (95%CI) P value 

Tumor size 2.539(1.366~4.717) 0.003 2.521(1.305~4.872) 0.006 

Serum AFP level 2.631(1.420~4.876) 0.002 2.366(1.270~4.407) 0.007 

Tumor nodule number 1.864(0.948~3.663) 0.071   

Microscopic vascular invasion  2.389(1.291~4.420) 0.006   

Edmondson-Steiner grade  2.068(1.070~3.994) 0.031 2.654(1.318~5.341) 0.006 

Distant metastasis 2.637(0.938~7.410) 0.066   

SPATS2 

up-regulation 

1.285(1.121~1.474) <0.001 1.302(1.115~1.521) 0.001 

*Cox regression model was used in the analyses;  
HR, Hazards ratio;  CI, confidence interval.  

 

arrest in G2/M period and promotes apoptosis in HCC 

cell lines [33]. 

 

PRKDC/DNA-PKcs encodes the catalytic subunit of the 

DNA-dependent protein kinase (DNA-PK). Ku 

heterodimer protein and DNA-PKcs collectively 

comprise the DNA-PK [34]. Once double-strand DNA 

breaks, Ku binds to DNA ends, recruits and activates 

DNA-PKcs which has a diverse array of nuclease 

activities, and initiates the classical non-homologous 

end-joining (cNHEJ) [34, 35]. Ku also drives the 

assembly of DNA-PKcs on a wide range of cellular 

RNAs, including the U3 small nucleolar RNA, which is 

essential 18S rRNA processing [36, 37]. Additionally, 

DNA-PK has an RNA-dependent, cNHEJ-independent 

function during ribosome biogenesis that requires 

kinase activity of DNA-PKcs [37]. Based on these 

features, DNA-PKcs often protects tumor cells from 

DNA damage that derives from chemotherapy and 

radiotherapy [38–41]. Specifically, DNA-PKcs 

promotes proliferation, inhibits apoptosis and facilitates 

DNA-repair of HCC cells independent of p53 [42]. 

Clinically, DNA-PKcs is a candidate driver gene of 

hepatocarcinogenesis and elevated DNA-PKcs 

identifies HCC patients with treatment-resistance, 

whereas elevation of activated pDNA-PK independently 

predicts poor survival [43]. Furthermore, DNA-PKcs is 

summarized as a promising therapeutic target in human 

HCC [44]. 

 

RAN (Ras-related nuclear protein), a member of the 

RAS superfamily of small GTPases, is essential for 

translocation of RNA and proteins through the nuclear 

pore complex during cell cycle [45, 46]. For example, 

miRNAs are initially produced from pre-miRNAs. 

Exportin-5 in a complex with RAN recognizes and 
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Figure 12. Knockdown of SPATS2 inhibits cell proliferation of HCC cells. (A) SPATS2 expression in transfected HepG2 and Huh7 cells 
is confirmed by western blotting. (B) CCK8 assay is used to compare cell growth between SPATS2 knockdown cells and negative control cells. 
(*p < 0.05). (C, D) EdU assay is used to compare cell proliferation between SPATS2 knockdown cells and negative control cells. (*p < 0.05). 
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binds to the pre-miRNA molecule, exporting it to the 

cytoplasm [47]. In HCC, genetic variations in miRNA 

processing genes (rs1057035 in DICER1, rs3803012 in 

RAN, and rs10773771 in PIWIL1) have an effect on 

miRNA biogenesis [48]. Finally, RAN rs3803012 

AG/GG variant genotypes increased the risk of HBV 

persistent infection [48]. It has also been reported that a 

panel of 5 genes (TAF9, RAMP3, HN1, KRT19, and 

RAN) showed the strongest prognostic relevance. 

Among these genes, RAN was up-regulated in poor 

prognosis of HCC [49]. 

 

SF3B4 is a member of the splicing factor 3b (SF3b) 

complex family that is essential for accurate excision of 

introns from pre-messenger RNAs [50]. A study 

demonstrated that SF3B4 overexpression triggered 

SF3b complex to splice the tumor suppressor KLF4 

transcript to nonfunctional skipped exon transcripts. 

This contributed to malignant transformation and 

growth of hepatocytes through transcriptional 

inactivation of p27/Kip1 and simultaneously activation 

of Slug genes [51].  

 

SMG5 is involved in nonsense-mediated mRNA decay 

(NMD) [52]. NMD degrades transcripts with premature 

or aberrant translation termination codons and thereby 

prevents the synthesis of C-terminally truncated 

proteins [53]. The central NMD factor UPF1 recruits 

the endonuclease SMG6 and the deadenylation-

promoting SMG5/7 complex to participate in endo- and 

exonucleolytic decay [54]. Up-regulation of SMG5 is 

also associated with poor prognosis in HCC [55]. 

 

TAF9 encodes a smaller subunit of TFIID, mediates 

transcriptional activation of p53-mediated trans-

criptional activity and leads to p53-dependent growth 

arrest in fibroblasts [56]. Once other components of the 

p53 pathway is mutated, this coactivator of p53-

mediated transcription results in disease [57]. On the 

other hand, the complex STAGA (SPT3-TAF9-GCN5-

acetylase) recruits a mediator to the MYC oncoprotein 

in order to stimulate transcription and cell proliferation 

[58]. TAF9 is also up-regulated in HCC patients with 

poor prognosis [49].  

 

THOC5 is a member of the THO complex and is 

involved in processing and transport of mRNAs [59]. 

THOC5 influences more than 90% of growth 

factor/cytokine-induced genes [60]. For instance, 

THOC5 is indispensable for processing of mRNAs 

(Sox9 and Ascl2) that are induced by Wnt signaling 

[61]. THOC5 contributes to pathway from 

leukemogenic oncogenes and stem cell chemokines to 

RNA processing [59]. Moreover, 50% depletion of 

THOC5 in the HCC cell lines Huh7 and HepG2 induces 

apoptosis, and THOC5 expression is enhanced in 78% 

of cytological differentiation grading G2 and G3 tumor 

in primary HCC [62]. 

 

SPATS2 is a novel candidate biomarker for squamous 

cell carcinoma [63]. Interestingly, high expression of 

SPATS2 is associated with poor prognosis in liver 

cancer as well [64]. In our study, we demonstrate that 

up-regulation of SPATS2 is an independent prognostic 

factor for overall survival in HCC. Furthermore, we find 

that SPATS2 upregulation is significantly correlated 

with tumor size. Functional analysis indicates that 

SPATS2 depletion inhibits cell proliferation rather than 

migration in HCC cell lines. Therefore, we conclude 

that SPATS2 accelerates cell proliferation in hepato-

carcinogenesis. 

 

Although our study indicates that RNA-binding proteins 

prominently contribute to the progress of HCC, there 

are several limitations. It is still not fully understood 

that the detailed biological functions and molecular 

mechanism of the 11 RBPs contribute to hepatocellular 

carcinogenesis. Hence, there should be further 

 

 
 

Figure 13. Knockdown of SPATS2 does not inhibit cell migration of HCC cells. (A) Representative and summary of cell migration 
assays performed with SPATS2 knockdown cells and negative control cells. 
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exploration of potential mechanisms in the future. 

Meanwhile, most of drugs targeting RBPs are PRKDC 

inhibitors that have not been used in clinical medicine. 

More studies and clinical trials are needed to identify 

effective drugs for targeting prognostic RBPs in HCC 

patients. Valuable insights will be pushed into the 

individualized therapy based on high-throughput 

technology to suit the circumstance of each patient with 

HCC, as well. 

 

MATERIALS AND METHODS 
 

Data acquisition and analysis 

 

A panel of 1542 RNA-binding proteins (RBPs) were 

included in this study [9]. The RNA sequencing data and 

corresponding clinical data were downloaded from the 

Cancer Genome Atlas database (TCGA, 

https://portal.gdc.cancer.gov/) [21]. Then we extracted 

RBP expression from TCGA-LIHC dataset including 374 

hepatocellular carcinoma (HCC) samples and 50 normal 

samples for subsequent analysis. All raw data were 

preprocessed by the Limma package in R software 

(Version 3.5.1). We recognized the differentially 

expressed RBPs between normal and tumor tissues with 

the following criteria: |log2 FC|≥1 and FDR < 0.05. The 

proteomic data and corresponding clinical data, including 

159 paired HCC samples, were acquired from the CPTAC 

Data Portal (https://cptac-data-portal.georgetown. 

edu/cptacPublic/). Data used in this publication was 

generated by the National Cancer Institute Clinical 

Proteomic Tumor Analysis Consortium (CPTAC) [22]. 

The differentially expressed proteins between tumor and 

normal tissues were identified using the following criteria: 

|log2 FC|≥0 and FDR < 0.05. Unsupervised clustering 

analysis was performed by using the “pheatmap” package 

in R software. 

 

KEGG pathway and GO enrichment analyses 

 

GO enrichment analysis and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway analysis were 

performed in R software. The GO analysis terms 

included cellular component (CC), molecular function 

(MF) and biological process (BP). P < 0.05 was used as 

the threshold for statistical significance. 

 

Protein-protein interaction (PPI) network 

construction and key modules analysis 

 

We submitted the differentially expressed RBPs to the 

STRING database (http://www.string-db.org/) to build 

PPI network [65]. The TSV file generated by STRING 

database was imported into Cytoscape 3.7.1 software in 

order to identify the key modules by using Molecular 

Complex Detection (MCODE) plug-in with both 

MCODE score and node counts more than 10. MCODE 

was used to identify clusters (highly interconnected 

regions) in a network where clusters were often protein 

complexes and parts of pathways. Additionally, clusters in 

a protein similarity network represent protein families 

[66]. P < 0.05 were chosen as the significance threshold. 

 

RBPs-based prognostic model construction 

 

Using the “survival” package in R and Univariate Cox 

regression analysis, we confirmed relevant prognostic 

signatures from differentially expressed RBPs. P < 0.05 

was considered statistically significant. In total, 11 gene 

signatures were selected by Lasso Cox regression 

analysis using the “glmnet” package. Next, we 

calculated a risk score to assess patient prognoses. The 

risk score formula for each sample was calculated 

according to RBPs expression (Expi) and coefficient 

value (βi): risk score= exp (0.048* BRIX1+ 0.014* 

DYNC1H1+ 0.017* GTPBP4+ 0.002* PRKDC+ 

0.00001* RAN+ 0.022* RBM19+ 0.001* SF3B4+ 

0.006* SMG5+ 0.027* SPATS2+ 0.011*TAF9+ 0.023* 

THOC5). HCC patients were divided into low-risk 

group and high-risk group based on the median of risk 

score values. Then, we used the “survival” package to 

compare differences of OS between the two groups. 

Additionally, a receiver operating characteristic (ROC) 

curve analysis was implemented using the 

“survivalROC” package to evaluate the prognostic 

capability of this model. 

 

Correlation analysis of clinical traits 

 

Boxplot illustrated by using "beeswarm" package was 

aimed to explore the relationship between the 11 RBPs 

and clinicopathologic features. P < 0.05 was considered 

statistically significant. 

 

Genomic analysis and drug-prognostic RBPs 

interaction 

 

The cBioPortal for Cancer Genomics (https://www. 

cbioportal.org/) was an open access tool which allowed 

for analysis, visualization, and downloads of various 

cancer genomics datasets [67]. We compared the genomic 

alterations of the selected 11 RBPs in HCC (TCGA, 

Firehose Legacy). The DGIdb database (http://www. 

dgidb.org/) was searched for candidate drugs for HCC 

patients based on prognostic RBPs.  

 

Validation of the prognostic RBPs expression in the 

HPA database 

 
The immunohistochemistry staining of the 11 prognostic 

RBPs was detected in the Human Protein Atlas database 

(HPA, https://www.proteinatlas.org/) [68]. 

https://portal.gdc.cancer.gov/
https://cptac-data-portal.georgetown.edu/cptacPublic/
https://cptac-data-portal.georgetown.edu/cptacPublic/
http://www.string-db.org/
https://www.cbioportal.org/
https://www.cbioportal.org/
http://www.dgidb.org/
http://www.dgidb.org/
https://www.proteinatlas.org/
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Clinical samples and immunohistochemistry staining 

 

In total, 98 HCC patient tissues were collected from the 

Peking University Cancer Hospital and Institute. Clinical 

research was approved by the ethics committee of the 

Peking University Cancer Hospital and Institute. None of 

patients received any preoperative treatment. All tissues 

were histologically confirmed by pathologists. 

Immunohistochemistry staining was performed according 

to previously published protocols [69]. In brief, the 

staining index (0-12) was calculated by staining intensity 

(negative-0; weak-1; moderate-2; or strong-3) multiplying 

the percentage of SPATS2 positive staining (<5%-0; 5% 

~ 25%-1; 25% ~ 50%-2; 50% ~ 75%-3;>75%-4). If the 

staining index of tumor tissues was greater than or equal 

to the median, then the expression of SPATS2 protein was 

identified as upregulated, and vice versa. The antibody 

used in this study was anti-SPATS2 (Bioss Inc, USA). 
 

Cell culture and transfection 
 

HepG2 and Huh7 cells were cultured in Dulbecco’s 

Modified Eagle Medium (DMEM) with 10% fetal 

bovine serum and incubated in a humidified chamber in 

5% CO2 at 37° C. Two synthesized siRNAs 

were transfected into cells with Lipofectamine 2000™ 

(Invitrogen) according to manufacturer’s instructions. 

Knockdown efficiency for SPATS2 in HCC cells was 

confirmed by western blot. 
 

Cell growth assay and EdU cell proliferation assay 
 

In total, 2 × 103 HCC cells were suspended per well and 

added into 96-well culture plates. After 24 h, the cells 

were incubated with CCK8 solution for 1 h and 

measured at OD450 using a microplate reader. In the 

EdU assay, a total of 5 × 104 HCC cell suspension per 

well were seeded into 96-well culture plates. After 24 h, 

the EdU solution was added to label S phase cells and 

Apollo staining was conducted based on the 

instructions. Each assay was repeated in triplicate. 
 

Cell migration assays 
 

For migration assay, 5 × 104 cells suspended in serum-free 

DMEM were seeded into the internal of the transwell 

chamber (Corning, NY, USA), while outside the chamber 

contained DMEM with 10% fetal bovine serum. After 36 

hours, chambers were fixed with 4% paraformaldehyde, 

stained with crystal violet, and counted under a 

microscope. The assay was repeated in triplicate. 
 

Statistical analyses 
 

Statistical analyses were performed using the SPSS 20.0 

software (SPSS, Inc., Chicago, IL). The overall and 

disease-free survival curves were plotted using Kaplan-

Meier analysis, and differences were evaluated by log-

rank test. The Pearson and chi-square test were used to 

examine the relationship between SPATS2 expression 

and clinicopathological features. Univariate and 

multivariate Cox analyses were used to assess 

independent prognostic factors. A Student’s t-test was 

performed to compare differences between two groups 

of samples. P < 0.05 was regarded as statistically 

significant. 

 

Editorial note 
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Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. The function of module 1 within PPI network. 

 

Supplementary Table 2. The function of module 2 within PPI network.  

Term ID 
Term 

description 

Observed 
gene 
count 

Background 
gene count 

False 
discovery 

rate 

Matching proteins in your 
network (IDs) 

Matching 
proteins in your 
network (labels) 

hsa03010 
 
 
 
 
 
 
 
 
 

Ribosome 
 
 
 
 
 
 
 
 
 

18 
 
 
 
 
 
 
 
 
 

130 
 
 
 
 
 
 
 
 
 

7.24E-22 
 
 
 
 
 
 
 
 
 

ENSP00000222247, 
ENSP00000230050, 
ENSP00000262584, 
ENSP00000270625, 
ENSP00000272317, 
ENSP00000346015, 
ENSP00000346037, 
ENSP00000346080, 
ENSP00000357555, 
ENSP00000379506, 
ENSP00000400467, 
ENSP00000404375, 
ENSP00000416429, 
ENSP00000418082, 
ENSP00000428085, 
ENSP00000429374, 
ENSP00000472469, 
ENSP00000472985 

 

RPL14, RPL18A, 
RPL22L1, 

RPL27A, RPL30, 
RPL32, RPL36A, 
RPL37A, RPL8, 
RPL9, RPLP1, 
RPS11, RPS12, 
RPS20, RPS27, 

RPS27A, RPS28, 
RPS5 

 

hsa03013 
 
 
 
 
 
 
 
 
 
 

RNA 
transport 

 
 
 
 
 
 
 
 
 

19 
 
 
 
 
 
 
 
 
 
 

159 
 
 
 
 
 
 
 
 
 
 

7.24E-22 
 
 
 
 
 
 
 
 
 
 

ENSP00000216190, 
ENSP00000220849, 
ENSP00000245838, 
ENSP00000253108, 
ENSP00000258742, 
ENSP00000261600, 
ENSP00000265097, 
ENSP00000313007, 
ENSP00000326531, 
ENSP00000354125, 
ENSP00000356448, 
ENSP00000364448, 
ENSP00000369391, 
ENSP00000379182, 
ENSP00000379475, 
ENSP00000389182, 
ENSP00000420306, 
ENSP00000429931, 
ENSP00000436679 

 

DDX39B, 
EIF3B, EIF3D, 
EIF3E, EIF3G, 

EIF3H, NUPL2, 
NXF1, PABPC1, 
RAE1, RPP30, 

RPP40, THOC1, 
THOC2, 
THOC3, 
THOC5, 

THOC6, TPR, 
UPF3A 

 
 

hsa03008 
 
 
 
 
 

Ribosome 
biogenesis 

in 
eukaryotes 

 
 
 

12 
 
 
 
 
 

76 
 
 
 
 
 

1.77E-15 
 
 
 
 
 

ENSP00000221801, 
ENSP00000225298, 
ENSP00000261708, 
ENSP00000264279, 
ENSP00000321449, 
ENSP00000355541, 
ENSP00000369162, 
ENSP00000369391, 
ENSP00000370589, 
ENSP00000377944, 
ENSP00000389182, 
ENSP00000436679 

FBL, HEATR1, 
NOP56, NOP58, 
NXF1, RIOK1, 
RPP30, RPP40, 

RRP7A, 
UTP14A, 

UTP18, UTP6 
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hsa03018 
 
 
 
 
 

RNA 
degradation 

 
 
 
 

8 
 
 
 
 
 

77 
 
 
 
 
 

2.82E-09 
 
 
 
 
 

ENSP00000221233, 
ENSP00000258169, 
ENSP00000313007, 
ENSP00000315476, 
ENSP00000359939, 
ENSP00000361433, 
ENSP00000368984, 
ENSP00000374354 

 
 

EXOSC1, 
EXOSC2, 
EXOSC4, 
EXOSC5, 
EXOSC8, 
EXOSC9, 

MPHOSPH6, 
PABPC1 

 

hsa03015 
 
 
 

mRNA 
surveillance 

pathway 
 

6 
 
 
 

89 
 
 
 

3.44E-06 
 
 
 

ENSP00000313007, 
ENSP00000355261, 
ENSP00000364448, 
ENSP00000379475, 
ENSP00000425133, 
ENSP00000436679 

 

DDX39B, NXF1, 
PABPC1, SMG5, 
SMG7, UPF3A 

 

hsa03040 
 
 

Spliceosome 
 
 

4 
 
 

130 
 
 

0.0031 
 
 

ENSP00000245838, 
ENSP00000261600, 
ENSP00000265097, 
ENSP00000379475 

 

DDX39B, 
THOC1, 

THOC2, THOC3 
 

hsa05164 
 

Influenza A 
 

3 
 

168 
 

0.0444 
 

ENSP00000379182, 
ENSP00000379475, 
ENSP00000436679 

DDX39B, NXF1, 
RAE1 

 

Supplementary Table 3. The function of module 3 within PPI network.  

Term ID 
Term 

description 

Observed 
gene 
count 

Background 
gene count 

False 
discovery 

rate 

Matching proteins in your 
network (IDs) 

Matching 
proteins in your 
network (labels) 

hsa03010 
 
 
 

Ribosome 
 
 
 

8 
 
 
 

130 
 
 
 

1.44E-14 
 
 
 

ENSP00000288937, 
ENSP00000296102, 
ENSP00000306548, 
ENSP00000354525, 
ENSP00000354580, 
ENSP00000357823, 
ENSP00000384952, 
ENSP00000461930 

MRPL13, 
MRPL17, 
MRPL21, 
MRPL24, 
MRPL33, 
MRPL9, 
MRPS12, 
MRPS21 

 

 

 
 


