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Mosquito-borne diseases having the greatest impact on human health are typically
prevalent in the tropical belt of the world. However, these diseases are conquering
temperate regions, raising the question of the role of temperature on their dynamics
and expansion. Temperature is one of the most significant abiotic factors affecting,
in many ways, insect vectors and the pathogens they transmit. Here, we debate the
veracity of this claim by synthesizing current knowledge on the effects of temperature
on arboviruses and their vectors, as well as the outcome of their interactions.
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INTRODUCTION

Viral pathogens with high epidemic potential have been historically a major concern for global
economies and health. Over the past decades, efforts put into vaccination programs, alongside the
development of effective antiviral treatments, have led to major medical advances. However, in a
constantly changing world, viral diseases remain a major challenge; infectious agents continuously
evolve and find opportunities to emerge (Malik Peiris and Parrish, 2011). Over time, vector-
borne diseases (VBDs) have become increasingly important, reaching nearly 30% of emerging
infectious disease events (Jones et al., 2008). More precisely, in the past 30 years, mosquito-
borne viruses (MBVs) have dramatically expanded their distribution range within increasingly
frequent and large epidemics (Gubler, 1996, 2002b; Mayer et al., 2017). MBVs such as Zika virus
(ZIKV; Flaviviridae, Flavivirus), dengue virus (DENV; Flaviviridae, Flavivirus), yellow fever virus
(YFV; Flaviviridae, Flavivirus), West Nile virus (WNV; Flaviviridae, Flavivirus), and chikungunya
virus (CHIKV; Togaviridae, Alphavirus) have been responsible for millions of human cases with
significant morbidity and mortality over the last decade (Gould et al., 2017; Figure 1).

In 2016, ZIKV was designated as a public health emergency of international concern by the
World Health Organization (WHO). Indeed, 50 years after its first isolation from a human case
in East Africa (Simpson, 1964; Gubler et al., 2017), ZIKV largely spread in the Pacific islands and
the Americas accompanied by unusual notifications of microcephaly in newborns. The sudden
and rapid spread of ZIKV received widespread media coverage, yet the upsurge or expansion of
historical flaviviruses (YFV and DENV) is also of major importance and raises questions about
our ability to eliminate arboviruses. DENV is one of the most widespread MBV with nearly half
of the world’s population (128 countries) at risk of infection (Brady et al., 2012; Messina et al.,
2014); it affects annually 50–100 million people (Bhatt et al., 2013) at a cost of US$ 8–9 billion
(Shepard et al., 2016). While classic dengue fever occurs practically everywhere in the distribution
range of its principal vector, Aedes aegypti, dengue hemorrhagic fever is more widespread in
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FIGURE 1 | This map shows the global distribution of five arboviruses (current or past local transmission). Little squares refer to the period of first documented
detection in humans (virus introduction). Phylogenetic studies suggest an African origin for all five viruses (Braack et al., 2018).

South-East Asia and tropical America. In the absence of vaccines
without restriction use and specific antiviral treatments, the
dengue situation is worsening with a notable rise in mortality
rates (Ong et al., 2007). In addition, YFV originated from Africa,
caused devastating urban epidemics from the 18th to the early
20th century in the Americas (Monath and Vasconcelos, 2015).
The development of vaccines in the 1930s as well as mosquito
control programs led to an elimination of urban yellow fever.
While YFV infections are now mainly acquired in the forest
cycle, the number of urban human cases is increasing, evidencing
a significant epidemiological change of yellow fever in South
America (Vasconcelos and Monath, 2016). Another important
member of the Flavivirus genus, WNV, transmitted by Culex
species mosquitoes, gradually became the most widely distributed
MBV (Chancey et al., 2015). In the late 1990s, the epidemiology
and clinical spectrum of WNV remarkably changed. Notably,
in 1999, from a small focus in New York City, WNV spread
throughout the United States (US) accompanied by the detection
of encephalitis cases. In the following years, the virus spread
throughout the continent and in 2002, the United States recorded
the largest outbreak of West Nile meningo-encephalitis ever
documented in the world (Sejvar, 2003). The WNV outbreak in
the United States (1999–2010) is a reminder that the importation
and establishment of vector-borne pathogens outside their
original distribution range represents a serious threat to the
world1. Following the WNV episode, the American continent was
again hit by another MBV in 2013; this time, it was an Alphavirus,
the CHIKV. After decades of sporadic outbreaks in Africa and

1https://www.who.int/news-room/fact-sheets/detail/west-nile-virus

Asia, CHIKV finally emerged as a global pathogen causing large
scale epidemics in Africa, Asia, America and to a lesser extent,
in Europe (Zouache and Failloux, 2015; Silva and Dermody,
2017). CHIKV caused the first local Aedes albopictus-vectored
virus transmission in Europe, with hundreds of cases in Italy and
France (Grandadam et al., 2011; Calba et al., 2017; Rezza, 2018),
less than 20 years after the first detection of Ae. albopictus in Italy
(Sabatini et al., 1990). Later, Ae. albopictus was responsible for
local cases of DENV and ZIKV in Croatia, France, and Spain
(Gjenero-Margan et al., 2011; Aranda et al., 2018; Brady and Hay,
2019). The changing epidemiology of arboviral diseases results
from a complex set of factors (Gubler, 2002a; Gould et al., 2017),
combining both intrinsic and extrinsic interactions (Lambrechts
et al., 2009; Zouache et al., 2014; Gloria-Soria et al., 2017).

In addition to human activities and globalization as key
contributors in vector and pathogen spread, climate change
exerts determinant effects on VBDs (Reeves et al., 1994;
Gould and Higgs, 2009; Mills et al., 2010; IPCC, 2014).
Because arthropods are poikilothermic ectotherms (i.e.,
body internal temperature is not constant and depends on
temperature of surrounding environment), they are highly
vulnerable to temperature changes, as are the pathogens
they host. Environmental temperature is then, one of the most
important abiotic factors influencing mosquito ecology, behavior,
physiology and ultimately, virus transmission (Samuel et al.,
2016; Reinhold et al., 2018). This review compiles the current
knowledge on the effects of temperature on mosquito and
virus biology with the goal of understanding how collectively
these effects have an impact on virus-mosquito interactions and
viral transmission.
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MAIN FEATURES OF MOSQUITO-BORNE
DISEASES

Clinical Aspects
Most mosquito-borne viral infections are asymptomatic or
non-specific mild infections (Endy et al., 2011). Symptomatic
infections are often identified as a systemic febrile illness
with non-specific symptoms, thus making mosquito-borne
diseases (MBDs) very difficult to diagnose (Pezzi et al., 2019).
Headache, weakness and rashes are common manifestations.
Muscle and joint aches are also very frequent, especially with
Alphavirus infections, for which these symptoms can persist
for months or even years. In most cases, MBDs febrile illness
ends with a full recovery. In only a few cases, illness may
evolve to more severe forms, which principally include hepato-
nephritis, hemorrhagic fever, and encephalitis (Young, 2018).
Currently, there are only two marketed vaccines [against YFV
and Japanese encephalitis virus (JEV)] and treatments are not
specific. It is worth mentioning that asymptomatic cases are
epidemiologically important, although clinically unapparent.
In absence of symptoms, people can still transmit the virus
either because they have sufficient viremia to participate to the
natural transmission cycle (Duong et al., 2015) or because of
other transmission routes such as blood transfusion or organ
transplantation (Chastel, 2011).

Complex Transmission Cycles
Mosquito-borne viruses circulate primarily within enzootic
cycles between zoophilic mosquitoes and wild animals. Spillovers
of enzootic viruses from a sylvatic cycle occur when anthropo-
zoophilic mosquitoes serve as bridge vectors for transmission of
the virus from animals to humans. It is then, an opportunity for
the virus to enter epidemic cycles where mosquitoes are vectors
and humans are either (i) dead-end host, because infection
does not lead to a viremia high enough to infect mosquitoes
[e.g., West Nile virus (WNV), Venezuelan equine encephalitis
virus (VEEV) or JEV] or (ii) reservoir and amplification host,
when infection in humans leads to high viremia, ensuring
an inter-human transmission (e.g., DENV, ZIKV, CHIKV, and
YFV) (Young, 2018; Valentine et al., 2019). In the first scheme,
epidemics rely on regular virus spillover from enzootic cycles
while in the second scheme, epidemic cycles are self-sustaining,
having lost the requirement of enzootic cycles to cause outbreaks
(Weaver and Reisen, 2010). Some transmission cycles may be
relatively simple with a main vector and a main host species (e.g.,
DENV, CHIKV, and ZIKV), while some others are more complex,
involving several host and vector species [e.g., Rift Valley Fever
Virus (RVFV), JEV, WNV] (Young, 2018).

VIRUS CYCLE IN THE VECTOR AND
EFFECTS OF TEMPERATURE

Mosquito-borne viruses are arthropod-borne viruses
(arboviruses), a group of viruses typically transmitted from
infected to susceptible vertebrate hosts by hematophagous

arthropods (vectors). Most arboviruses causing human diseases
belong to three main families: Flaviviridae (genus Flavivirus),
Togaviridae (genus Alphavirus) and Phenuiviridae (genus
Phlebovirus). These viruses share different types of genomes,
structural organization and replication strategies (Holmes, 2003;
Duffy et al., 2008; Bradwell et al., 2013), but have in common,
single stranded RNAs as carriers of their genetic information.

Characteristics of RNA Genomes
Because of their chemical structures, RNAs appears as an
unreliable support for transmission of genetic information in
comparison to DNA (Lindahl, 1996; Lazcano et al., 1988;
Krokan et al., 2002). A striking attribute of RNA viruses
is their high mutation rate. During RNA replication, the
mutational rate is in the range of 10−6 to 10−4 substitutions
per nucleotide, corresponding roughly to 0.01 to 1 mutation
per 10 kb of genome (Domingo and Holland, 1997; Lauring
et al., 2013). This high mutation rate greatly contrasts with
that of prokaryotic or eukaryotic genomes (Drake et al., 1998;
Drake, 1999; Nachman and Crowell, 2000), as well as with
that of DNA viruses (range of 10−8 to 10−6) (Sanjuan et al.,
2010). The high fidelity of DNA replication is not merely
insured by the accuracy of DNA polymerases but also by
the combined action of proofreading enzymes and mismatch
repair system (Sanjuan and Domingo-Calap, 2016). The absence
of such correction activity during RNA replication results
in a more error-prone replication mode (Steinhauer et al.,
1992). Consequently, RNA viruses circulate as dynamic mutant
clouds of closely related genome sequences referred to as a
quasispecies (Domingo et al., 2008). In the multi-component
viral system, replicative infectious particles coexist with defective
genomes, including defective interfering genomes (DIs) that are
degenerated and non-replicative forms of viral genomes. DIs
depend on the co-infection with the self-infectious virus for
replication and play a significant role in triggering immune
responses, modulating disease outcome and influencing virus
replication and evolution (Rezelj et al., 2018). High mutation
rates and short generation times are largely responsible for the
extremely high genetic variability of RNA virus populations
(Moya et al., 2000). Other source of variation in RNA
viruses include recombination and reassortment (Domingo and
Holland, 1997). Overall, RNA virus populations behave as
huge reservoirs of mutants that permit rapid adaptation to
environmental changes. In the mutant cloud, sequences are
subject to constant genetic changes, competition and selection
for the most suitable combination of viral genomes (Andino and
Domingo, 2015; Domingo and Perales, 2019). RNA viruses can
then exploit multiple adaptive solutions to overcome selective
pressures such as immune responses, antiviral therapies or
fluctuating environments.

Dual Host Cycling and Virus Adaptation
Despite inherent potential for mutation and subsequent
adaptation, arboviruses exhibit lower mutational rates
than non-vectored RNA viruses (by a factor of 10) (Jenkins
et al., 2002; Vasilakis et al., 2009). This evolutionary stasis is
generally attributed to the alternated transmission between
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hosts belonging to two disparate phyla, each of which
presenting different demands for viral replication. According
to the trade-off hypothesis, the virus is constrained to a
compromised fitness for an optimal replication in both vector
and vertebrate hosts (Coffey et al., 2008; Ciota and Kramer,
2010), although this explanation is not always well supported
by other studies (Novella et al., 1999; Ciota et al., 2009;
Deardorff et al., 2011).

Transmission occurs when the virus ingested by the vector
replicates successfully in midgut epithelial cells, peripheral
tissues/organs and salivary glands, prior to its expectoration
through the insect bite (Figure 2). During this journey

in the vector, viral populations undergo successive genetic
bottlenecks that greatly modify initial population structures
(Forrester et al., 2014). A study performed with DENV-2 showed
that more than 90% of single nucleotide variants (SNVs)
were lost upon transmission from infected patients to Ae.
aegypti mosquitoes, as well as from mosquito midgut to
salivary glands; new variants were generated at each step
of infection in vector, thereby maintaining the level of viral
diversity (Coffey et al., 2013; Sim et al., 2015). Bottlenecks
encountered by viruses differ according to mosquito species and
probably, mosquito-virus combinations (Grubaugh et al., 2016).
Viruses are thus exposed to the specific selective pressures

FIGURE 2 | Female mosquitoes acquire the virus during a blood meal on a viremic host (1). Then the virus infects the midgut epithelium from which it escapes and
disseminates to peripheral tissues/organs (2a). The virus reaches the salivary glands (2b) in which it replicates prior to be released in saliva during a blood meal (3).
The time between the ingestion of the virus and its presence in saliva is referred to as the EIP. Transmission cycles are influenced by multiple extrinsic environmental
factors.
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of their hosts. These selective pressures, including virus entry
(appropriate receptors), microbiota and immune responses,
directly shape virus evolutionary patterns and ultimately, their
potential to emerge (Ruckert and Ebel, 2018). For instance,
the adaptive amino acid change from alanine to valine at
the position 226 of the E1 glycoprotein (E1-A226V) of the
East/Central/South African (ECSA) CHIKV arose from an
unusual transmission by Ae. albopictus instead of the classical
vector Ae. aegypti. This specific mutation led to an enhanced
transmission of CHIKV by Ae. albopictus (Tsetsarkin et al.,
2007; Vazeille et al., 2007) causing 266 000 human cases during
the 2005–2006 epidemic on La Réunion island (Schuffenecker
et al., 2006). However, the benefit of the E1-A226V mutation
in Ae. albopictus may vary according to the environmental
temperature (Zouache et al., 2014). As vectors are exposed
to a multitude of environmental variables, which can modify
their intrinsic properties, consequences on viral populations
are expected; viral populations may explore possibilities of
adaptation and thus follow evolutionary processes associated

with molecular and phenotypic changes (Ciota and Kramer, 2010;
Coffey et al., 2013).

Effects of Temperature on Viral
Populations
In their vertebrate host, arboviruses replicate at temperatures
ranging from 37◦C up to 44◦C (Kinney et al., 2006), then switch
to their ectotherm vectors where temperatures vary depending
on the ambient temperature (as low as ∼15◦C; Table 1).
The fact that arboviruses tolerate such drastic temperature
changes raises a number of questions: the effects of temperature
on quasispecies structures and dynamics, the selection of
temperature-adapted variants and impacts on virus transmission,
expansion and pathogenesis. Temperature is known to induce
molecular changes that impact lipids, nucleic acids and protein
structures and functions (Pain, 1987). Temperature is thus very
likely to modify properties of virions and their interactions
with cellular components during replication. Studies on enzyme

TABLE 1 | Effect of temperature on vector competence.

Virus strains Mosquito
Species

Mosquito
populations

Temperatures Results References

DENV

DENV-2 (New
Guinea C)

Ae. albopictus China (Foshan) 18, 23, 28, and
32◦C

EIP was shorter at the highest temperature Liu et al., 2017

DENV-2 (New
Guinea C)

Ae. albopictus China (Shangai) 18, 21, 26, 31,
and 36◦C

EIP gradually decreased when temperature increased. Infection rates
increased along with temperature until 31◦C

Xiao et al.,
2014

DENV-2 (Kenya,
2012)

Ae. aegypti Kenya (Kilifi and
Nairobi)

26 and 30◦C Infection rates were higher at 30◦C Chepkorir et al.,
2014

DENV-2 (434S
and 6H)

Ae. aegypti Vietnam (Hanoi
and Ho Chi Minh)

25, 27, and 32◦C The mosquito population from Ho Chi Minh City was more susceptible
to infection at lower temperature than the mosquito population from
Hanoi. For both virus strains, highest infection rates were obtained at
25◦C for the mosquito population from Ho Chi Minh City

Gloria-Soria
et al., 2017

ZIKV

Asian lineage
(PRVABC59)

Ae. aegypti United States
(California)

18, 21, 26, and
30◦C

EIP decreased as temperature increased. At 18◦C, a 15%
transmission efficiency was reached at day 31 post infection (pi),
while a 100% transmission was observed at 21 days pi at 30◦C

Winokur et al.,
2020

Asian lineage
(FB-GWUH-2016)

Ae. japonicus Germany 21, 24, and 27◦C Infection rates increased with temperature and virus transmission was
detected exclusively at 27◦C

Jansen et al.,
2018

WNV

WN-FL03p2–3 Cx.
quinquefasciatus

United States
(Florida)

25, 28, and 30◦C Infection rates increased as temperature increased Richards et al.,
2007

NY99_crow
397-99

Cx. pipiens United States
(New-York)

18, 20, 26, and
30◦C

Infection rates increased as temperature increased Dohm et al.,
2002

NY99-3356 and
WN02-1956

Cx. pipiens United States
(Pennsylvania)

15, 18, 22, and
32◦C

EIP was significantly shorter and transmission rates higher at 32◦C Kilpatrick et al.,
2008

WNV lineage 2
(Greece 2010)

Cx. pipiens Netherlands
(Amsterdam
and Best)

18, 23. and 28◦C Biotype pipiens and hybrids showed significant increased
transmission rates at higher temperatures. Biotype molestus
transmission rate did not increase with temperature

Vogels et al.,
2016

CHIKV

ECSA; (Mauritius,
2006) Asian;
(Caribbean, 2014)

Ae. albopictus Australia 18 and 28◦C EIP was shorter at 28◦C. At 18◦C, mosquitoes infected with the Asian
genotype showed no evidence of virus in saliva even at the latest
analysis time point (7 days post infection)

Wimalasiri-
Yapa et al.,
2019

ECSA
(CNR_24/2014)

Ae. albopictus Germany, Italy 18, 21, and 24◦C Transmission rates were higher at lower temperatures Heitmann et al.,
2018

ECSA (Lamu001) Ae. aegypti Kenya (Western
and Coastal
regions)

26 and 32◦C Western mosquitoes exhibited higher infection rates at 32◦C than at
26◦C. In contrast, coastal mosquitoes did not show any statistical
difference in infection rates whatever the temperature

Mbaika et al.,
2016
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functional attributes most sensitive to temperature indicate
that ligand binding affinity and catalytic rate are key targets
during temperature adaptation; ligand affinity decreases during
cold adaptation to allow more rapid catalysis (Fields et al.,
2015). Whereas, thermodynamic models suggest that at low
temperatures, enhanced cell binding may compensate for lower
replication kinetic rates such that some transmission can
still occur (Gale, 2019). Some DENV serotypes undergo a
temperature dependent conformational change from a “smooth”
form at lower temperatures to a “bumpy” form at temperatures
approaching 37◦C (Rey, 2013; Zhang et al., 2015). In addition,
alphaviruses were found to enter mammalian cells via a
temperature-dependent alternative mechanism. At temperatures
that inhibit virus receptor-mediated endocytosis (classical entry
for arboviruses), viral genomes were internalized directly at
the plasma membrane (Vancini et al., 2013). Furthermore,
silent mutations (i.e., mutations without amino acid sequence
changes) are believed to play important roles in adaptation of
RNA virus to elevated temperature (Kashiwagi et al., 2014).
Temperature could influence the incidence and severity risk of
arboviruses outbreaks by altering arboviruses evolution, selection
and transmission.

MOSQUITO BIOLOGY, PHYSIOLOGY,
BEHAVIOR AND EFFECTS OF
TEMPERATURE

Mosquitoes are the principal vector of arboviruses, although
other arthropod taxa such as ticks, sandflies and biting midges are
also implicated in medically important arboviruses transmission
(Alkan et al., 2013; Kazimirova et al., 2017; Sick et al., 2019).
Mosquitoes have a complex life cycle characterized by complete
metamorphosis and four distinct life stages: egg, larva, pupa and
adult. The first three stages occur in water whereas adults are
active flying insects, with females being hematophagous. The
period between blood feeding and eggs laying corresponds to
the gonotrophic cycle; females undergo successive gonotrophic
cycles during their entire life.

Effects of Temperature on Mosquito
Distribution and Life History Traits
Environmental temperature is an overriding factor defining
the geographic distribution range limits of many organisms,
in particular ectotherms. Mosquitoes can only survive and
reproduce in suitable environments that depend on the ecological
characteristics of the mosquito species. Many studies have used
temperature to map global or regional suitability and distribution
of mosquito species (Nawrocki and Hawley, 1987; Brady et al.,
2013, 2014; Samy et al., 2016; Ding et al., 2018). With their model,
Kraemer et al. (2015) estimated Ae. aegypti and Ae. albopictus
distributions to be now extensive in all continents, including
North America and Europe. For both species, the most important
predictor of distribution was temperature (Kraemer et al., 2015).
Sensitivity of mosquitoes to temperature reflects the effects of
temperature on the main mosquito physiological processes.

First, temperature has a significant effect on eggs viability and
hatching time, with optimal temperatures for hatching depending
on mosquito species (Hawley et al., 1989; Hanson and Craig,
1994; Impoinvil et al., 2007; Mohammed and Chadee, 2011).
Eggs of the temperate mosquito, Ae. albopictus, tolerate lower
temperatures than eggs of tropical Ae. aegypti (Hanson and Craig,
1994); this contributes significantly to the larger geographical
distribution of Ae. albopictus encompassing both tropical and
temperate regions (Kraemer et al., 2015). Besides, eggs of Ae.
albopictus from temperate regions have lower lethal temperatures
than eggs of the same species from tropical regions (Hanson
and Craig, 1995), emphasizing thermal acclimation. Along
with photoperiod, cold temperatures trigger the production of
diapausing eggs in Ae. albopictus. Diapause is a genetically
programmed mechanism crucial for mosquitoes to overwinter
(Thomas et al., 2012); it is a hormonally controlled developmental
arrest that is triggered by unfavorable environmental conditions
and lifted with the return of favorable conditions (Denlinger and
Armbruster, 2014).

Secondly, larvae and pupae are strictly aquatic stages and
thus submitted to temperature variations of breeding sites. In
addition to other factors such as nutrient availability, competition
for food, presence of predators/parasites, pollution with organic
matter and chemicals, temperature is critical for the survival,
development and emergence time of immature stages (Tun-
Lin et al., 2000; Bayoh and Lindsay, 2004; Delatte et al., 2009;
Dodson et al., 2012). Notably, survival of immature stages was
compromised below 16◦C and above 38◦C for Ae. aegypti with
an optimal survival rate at 26◦C (Carrington et al., 2013). It
is commonly found that as temperature increases, immature
stages development time decreases (Shelton, 1973; Loetti et al.,
2011; Dodson et al., 2012; Grech et al., 2015), up to a critical
thermal threshold for survival (Delatte et al., 2009; Loetti et al.,
2011). Development time of Ae. aegypti (from egg to adult) was
inversely proportional to temperature, ranging from 7.2 days at
35◦C to 39.7 days at 15◦C (Tun-Lin et al., 2000). In addition,
temperature stress during immature stages have carry-over effects
on adult life traits such as fecundity, survival (Ezeakacha and Yee,
2019) and body size, with cooler temperatures producing larger
mosquitoes (Mohammed and Chadee, 2011; Dodson et al., 2012).
Correlations between body size and other physiological features
such as blood feeding behavior have been largely discussed (Xue
et al., 1995; Scott et al., 2000; Farjana and Tuno, 2013). Small
mosquitoes presented exacerbated host-seeking behavior with
multiple attempts to blood feed, enhancing contact frequency
with hosts (Farjana and Tuno, 2013) while conflicting results
were obtain elsewhere (Xue et al., 1995).

Regardless of temperature stress encountered during
immature stages, temperature also has a direct impact on
mosquito adult stage. In Culex species, female longevity
significantly increased when adult holding temperature decreased
(Ciota et al., 2014). Similarly, Ae. albopictus adult survival was
inversely correlated with temperature, presenting the highest
survival rate at 15◦C and the lowest at 35◦C (Delatte et al., 2009).
Mosquito flight activity is important for many life history traits
such as reproduction, nutrition and host-seeking. Ae. aegypti is
able to fly in a temperature range of 15 to 32◦C with an optimum
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at 21◦C (Rowley and Graham, 1968). The gonotrophic cycle
length is an indicator of mosquito abundance and a proxy of
contact frequencies between hosts and vectors. The shorter the
gonotrophic cycle, the more often females will come in contact
with their hosts and the more generations will be produced,
resulting in higher mosquito densities and greater population
genetic diversity (increased potential to adapt to contrasting
environments). In Ae. aegypti, the duration of the gonotrophic
cycle decreases when temperature increases. Temperature also
influences the time for the first blood meal; females kept at
higher temperatures have their first blood meal within 48 h of
emergence. Finally, temperature had a significant effect on the
number of eggs laid that peaks at nearly 80 eggs per female when
reared at 26◦C (Carrington et al., 2013).

It is noteworthy to mention that results obtained under
constant temperatures can vary from those under fluctuating
temperatures that better mimic field conditions. Temperature
effects on life history traits like adult reproduction, larval survival
and development time depend on the combination of mean
temperature and magnitude of fluctuations (Lambrechts et al.,
2011; Carrington et al., 2013; Liu-Helmersson et al., 2014).

Effects of Temperature on Microbiota
Mosquitoes harbor very complex, abundant and dynamic
microbial communities that are found at high concentrations
in the different intestinal portions (Dillon and Dillon, 2004;
Engel and Moran, 2013). These micro-organisms are comprised
of protozoans, fungi, bacteria and viruses (Guegan et al.,
2018b; Strand, 2018). The combination of the host and its
associated microbiota is referred to as the holobiont. This
concept, where macro-organisms and their microbiota are seen
as a cooperative unit, highlights the strong symbiotic interactions
within the holobiont. Most of the literature focuses on bacterial
communities, which were shown to play a major role in insect
biology (contribution to nutrition, protection against pathogens,
modulation of immune responses) (Engel and Moran, 2013;
Guegan et al., 2018a; Sicard et al., 2019). While mosquitoes
naturally host multiple bacteria [genera Acinetobacter, Asaia,
Delftia, Pseudomonas, Wolbachia, Bacillus (Zouache et al., 2011)],
their role in priming the mosquito immune responses is
largely debated; the mosquito’s microbiota elicits basal immune
responses which act against pathogens and reduce density of the
midgut microbial load itself (Ramirez et al., 2012). Temperature is
a substantial factor shaping microbial communities of organisms,
especially in insects (Prado et al., 2010; Lokmer and Mathias
Wegner, 2015; Kikuchi et al., 2016; Moghadam et al., 2018). It was
shown in flies that developmental temperature is a decisive factor
influencing bacterial community structures with consequences
on the flies’ thermal tolerance (Moghadam et al., 2018). Similarly,
in mosquitoes, temperature may affect midgut microbial diversity
and structure. Compositional changes in Ae. albopictus midgut
microbiota were found to be induced by a temperature decrease
(Guegan et al., 2018a). Furthermore, higher temperatures were
shown to reduce Wolbachia abundance in Culex pipiens/restuans
mosquitoes, which in turn, was correlated with a higher
susceptibility to WNV in subsequent mosquito generations and
higher prevalence of the virus (Novakova et al., 2017).

Effects of Temperature on Mosquito
Gene Expression and Immunity
Regulation of gene expression is a common mechanism that
organisms use to adapt their phenotypes and maintain fitness in
response to stressors such as temperature (Pigllucci, 1996; Morris
and Rogers, 2014). Ae. aegypti adult mosquitoes held at 20◦C had
a very different transcriptomics profile from those held at 28◦C,
whereas at a higher temperature (36◦C), mosquitoes showed
no significant transcriptional differences from the standard
holding temperature of 28◦C (Gonçalves Ferreira et al., 2020).
Genes, whose expression were altered at 20◦C, are involved
in various aspects of mosquito biology: blood-meal digestion,
ROS metabolism and mosquito innate immunity (Gonçalves
Ferreira et al., 2020). Mosquito immunity constitutes a powerful
protection in symbiotic, entomopathogenic and mosquito-borne
pathogen infections. To defend against pathogens, mosquitoes
activate several immune-signaling pathways: Toll, JAK-STAT,
Imd/JNK and RNAi (RNA interference) pathways (Fragkoudis
et al., 2009; Kumar et al., 2018). Temperature has complex
effects on mosquito immune functions (Murdock et al., 2012).
In Ae. aegypti, a differential expression of immune-specific
and detoxification genes was found in fourth instar larvae
exposed to temperature stress (32◦C). Thermal stress undergone
during larval development had also remnant effects on adults’
genes expression levels (Muturi et al., 2011). RNAi is the
most significant antiviral immune response in mosquitoes
(Blair, 2011). The triggering of the RNAi pathways can be
destabilized when mosquitoes are reared at cooler temperatures
(18◦C) (Adelman et al., 2013). Impairment of immune barriers
may profoundly affect mosquito interactions with symbionts,
entomopathogenic organisms and mosquito-borne pathogens
but also interactions of these latter together. Studies have
correlated the alteration of the immune system by thermal stress
with changed susceptibility to CHIKV, YFV, and Sindbis virus
(SINV) (Muturi et al., 2011; Adelman et al., 2013). The subtle
balance between effects of temperatures on mosquito antiviral
immune responses and virus replication likely conditions the
outcome of virus transmission.

Collectively, by affecting mosquito biology, physiology and
behavior, temperature plays a key role in mosquito dynamics (El
Moustaid and Johnson, 2019). Changes in mosquito geographical
distribution, survival, development time, gonotrophic cycle,
microbiota or immune responses can have critical impacts on
their role as vector of pathogens (Waldock et al., 2013a; da Cruz
Ferreira et al., 2017).

TEMPERATURE AND ITS POTENTIAL TO
INFLUENCE ARBOVIRUSES
TRANSMISSION

Major Concepts in Medical Entomology
Arboviruses emergence is driven by the need of their arthropod
vectors to uptake blood from vertebrate hosts. During a blood
meal on a viremic host, female mosquitoes ingest the virus along
with the blood. To transmit the virus to following hosts, the
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mosquito has to be competent for the virus (Figure 2). A key
concept in medical entomology, vector competence is defined
as the ability of an arthropod vector to uptake and transmit
afterward a given pathogen (Hardy et al., 1983). In mosquitoes,
it is generally determined by the crossing of four major barriers:
(Malik Peiris and Parrish, 2011) the midgut infection barrier,
(Jones et al., 2008) the midgut escape barrier, (Gubler, 1996)
the salivary gland infection barrier and (Gubler, 2002b) the
salivary gland escape barrier (Franz et al., 2015). Basically, the
virus infects and replicates in the midgut epithelium before
crossing the midgut basal lamina and disseminates to peripheral
tissues/organs. Ultimately, the virus reaches the salivary glands
in which it replicates prior to be released in the saliva
(Figure 2). Competent females develop persistent infections, thus
transmitting the virus for the rest of their lives at each blood meal
on susceptible hosts via the injection of infectious saliva. Vector
competence is controlled by both intrinsic (i.e., microbiota,
mosquito and virus genetic) (Hardy et al., 1983; Lambrechts
et al., 2009; Jupatanakul et al., 2014; Hegde et al., 2015; Houe
et al., 2019) and extrinsic (i.e., temperature) factors (Zouache
et al., 2014; Ciota et al., 2018). The concept of vector competence
is integrated in a broader one that is vectorial capacity which
is an epidemiological measure of the transmissibility of an
infectious agent by a particular vector species/population in the
field (Macdonald, 1957). The mathematical equation used to
evaluate the vectorial capacity (Figure 3) includes the following
parameters: vector-host ratio (m), mosquito biting rate on human
(a), daily survival rate (p), infectiousness of the mosquito to the
vertebrate host (b), susceptibility of the vertebrate host to the
virus (c), extrinsic incubation period (n) and vertebrate host
infectious period (1/r) (Fontenille and Powell, 2020). Factors
influencing the vectorial capacity have been largely discussed
(Kramer and Ciota, 2015); the most determining variables are
mosquito survival rate and extrinsic incubation period (EIP). The
EIP equals the time required between the ingestion of a virus

and the ability of the vector to transmit it. When this period
increases, the vectorial capacity decreases. All else being equal,
a virus that takes 3 days to be transmitted versus one that takes
10 days within the same vector will have a much higher epidemic
potential. Indeed, the shorter the EIP, the more likely the virus is
transmitted before the vector dies.

Effects of Temperature on Vectorial
Capacity
Temperature can affect important parameters of the vectorial
capacity (Figure 3). First, the mosquito density, which relies
on temperature-sensitive life-history traits like reproduction,
gonotrophic cycles and developmental time, determines contact
rates between hosts and vectors. For example, in a location where
mosquitoes are at high densities, contacts between mosquitoes
and hosts are increased, and so is pathogen transmission
risk (Honorio et al., 2009). Second, the biting rate includes
mosquito trophic preferences and requires an active host-seeking
behavior which includes temperature-sensitive parameters (flight
activity, gonotrophic cycle). Highly anthropophilic and active
mosquitoes are more prone to transmit human pathogens
and ensure their propagation. Third, mosquito survival, often
negatively correlated with temperature, increases the time during
which infected females serve as vectors (Christofferson and
Mores, 2016). Older females are often considered as more
epidemiologically dangerous, as they are more likely to have
been infected and to subsequently, transmit the virus during
their lifetime. Lastly, vector competence and EIP result from
a complex combination of many intrinsic factors such as
virus dynamics, virus and vector genetic, vector physiological
traits, microbiota and immunity. Vector competence and EIP
depends strongly and unimodally on temperature. Thermal
optima and limits of transmission vary across vector-pathogen
systems (Mordecai et al., 2019). By affecting major components

FIGURE 3 | The vectorial capacity represents the number of potential infectious bites that a vector dispenses after the EIP is completed. It describes the efficiency at
which a vector population transmits a pathogen in natural settings. Temperature is a key factor affecting major parameters in this equation.
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of vectorial capacity, temperature may tip the scales toward either
an increase or a decrease of arbovirus transmission potential.

Principal Temperature-Dependent
Factors Influencing MBV Transmission
First described as temperature dependent by Davis in 1932
(Davis, 1932), EIP is often used as an index of vector competence.
Higher temperatures are associated with reduced EIP and
enhanced vector competence in many virus-vector pairings
(Chamberlain and Sudia, 1955; Richards et al., 2007; Xiao et al.,
2014; Liu et al., 2017; Wimalasiri-Yapa et al., 2019; Winokur
et al., 2020). Virus replication rates generally increase with
temperature, and since dissemination and transmission correlate
with viral load (Kramer and Ciota, 2015), lower temperature
is generally less advantageous for arbovirus transmission.
However, some exceptions sprinkle the literature; Cx. tarsalis
mosquitoes, for example, were less competent for Western
Equine Encephalitis Virus (WEEV) at 32◦C than at lower
temperatures (18 and 25◦C) (Kramer et al., 1983). Likewise,
higher infection and transmission rates were detected at lower
temperature in Ae. aegypti infected with DENV (Heitmann et al.,
2018) and in Ae. albopictus infected with CHIKV (Heitmann
et al., 2018), respectively. These conflicting evidences are likely to
result from disparate effects of temperature on virus replication
and vector immune responses in each virus-vector combination.

Thermal exposure undergone during larval development has
remnant effects on mosquito susceptibility to virus infection
(Turell, 1993; Alto and Bettinardi, 2013). Immature stages of
Ae. albopictus reared at lower temperatures gave adults with
decreased viral dissemination when orally infected with DENV-
1 (Alto and Bettinardi, 2013). Surprisingly, conflicting results
were found with CHIKV and DENV-2, where susceptibility to
infection increased at lower rearing temperature (Westbrook
et al., 2010; Evans et al., 2018). The same trend was observed
for VEEV and RVFV in Ae. taeniorhynchus (Turell, 1993).
Interestingly, larval rearing temperature did not show any
effect on Culex mosquito susceptibility to RVFV or WNV
(Brubaker and Turell, 1998; Dodson et al., 2012). These
inconsistencies may reflect different interactions between virus
and vectors and may suggest the presence of interfering factors
sensitive to temperature.

Several life-history traits such as adult body size vary
according to rearing temperature of immature stages. Large
females absorb twice the volume of blood than smaller females
(Briegel, 1990), thus potentially increasing viral load ingested
by larger females. Ae. albopictus immature stages exposed to
cooler temperatures grew into larger adults with increased
CHIKV susceptibility (Westbrook et al., 2010). However, smaller-
sized Ae. aegypti and Ae. albopictus were significantly more
likely to become infected and to disseminate DENV-2 than
larger individuals (Alto et al., 2008). Indeed, smaller mosquitoes
might have higher ratios of infective dose/body weight and
thus acquire higher concentrations of virus per body weight.
Moreover, temperature can interfere with other stressors of the
larval environment. At a low temperature, high larval density
led to high infection rates of adults with SINV while the reverse

was observed at high temperature (Muturi et al., 2012). In
addition, cooler rearing temperature of immature stages resulted
in enhanced trans-stadial transmission (from larvae to adult) of
Saint Louis encephalitis virus (SLEV) in Aedes epactius (Hardy
et al., 1980); the number of newly emerged adults harboring
the virus was significantly higher in mosquitoes reared during
immature stages at 18◦C than those reared at 27◦C. Virus vertical
transmission from females to their offspring is considered as a
mechanism of persistence by which viruses are maintained in
nature during unfavorable periods for horizontal transmission.
Although debated, this phenomenon could have a significant
impact on the subsistence and emergence of arboviruses
outbreaks (Lequime and Lambrechts, 2014; Agarwal et al., 2017).

In nature, mosquitoes are submitted to daily and seasonal
fluctuations of temperature. Understanding how temperature
variations affect arbovirus transmission dynamics is critical to
anticipate and limit the geographic and seasonal spread of
MBDs. In that sense, mathematical models are pivotal tools in
demonstrating the key role of temperature in VBD transmission
(Huber et al., 2018; Tesla et al., 2018; Mordecai et al., 2019). More
precisely, Mordecai et al. (2017) predicted in their mechanistic
model that most tropical and subtropical regions are suitable for
CHIKV, ZIKV, and DENV transmission during most months of
the year while transmission in temperate regions is limited to
only few months in summer, reducing the probability of major
epidemics in those regions (Mordecai et al., 2017). In addition,
thermodynamics models show that in tropical areas (mean
temperature close to 29◦C), small diurnal temperature range
(DTR), increases DENV transmission potential while under large
DTR, it decreases. Whereas in cold temperate or extremely
hot climates, DENV transmission potential increases as DTR
increases (Lambrechts et al., 2011; Carrington et al., 2013; Liu-
Helmersson et al., 2014). Using climate change projections based
on predicted temperature and DTR, mapped models showed
an increasing trend over time for DENV epidemic potential in
temperate regions (Liu-Helmersson et al., 2014).

The effect of climate change, especially global warming,
on infectious diseases transmission has been the topic of
intense debate. A large body of literature assumes that climate
change will considerably modify VBDs epidemiological patterns
(Reeves et al., 1994; Gould and Higgs, 2009; Mills et al.,
2010; IPCC, 2014; Ryan et al., 2019). However, due to the
complex interactions involved in transmission cycles and the
unpredictable nature of both vectors and virus evolution,
predicting the effects of climatic and environmental changes
on VBDs emergence is extremely challenging (Tabachnick,
2010). Local adaptation to temperature of parasites and
vectors may modulate the effects of climate change on
VBDs dynamics and distribution (Sternberg and Thomas,
2014). Moreover, since mosquitoes are mobile and may move
from habitats to stay in an optimal environment, they are
not fully exposed to large temperature variations (Kramer,
2016). Microclimates encountered in urban areas (subways,
houses. . .) have often higher and more stable temperatures than
outdoor environments. This fosters vector survival and allows
transmission cycle to persist despite adverse meteorological
conditions (Haider et al., 2017). Thus, urbanization modifies
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climate within cities forming warmer spots; roads (with concrete
and asphalt substrates) and air pollutants store the heat during
daytime and release it at night, causing a rise in temperature
compared to vegetated areas outside cities (Reisen, 2010).
Obviously, other environmental factors including humidity,
droughts, precipitation and flood act in concert with temperature
to shape MBDs emergence and dynamics (Waldock et al., 2013b).

DISCUSSION

Typically, prevalent in the tropical belt, MBDs are now spreading,
reaching even temperate regions. Over the last few decades, major
pathogen-carrying vectors, like Ae. aegypti and Ae. albopictus,
have significantly expanded their global distributions. MBDs
burden is expected to continue to increase, especially under
anticipated climate change scenarios. This situation raises many
concerns about how temperature could change the current
dynamics and expansion of MBDs. In this paper, we review
current knowledge on the intricate interactions that reside
between temperature, viruses and their vectors, in order to
understand how collectively these effects may shape transmission
dynamics. Temperature is one of the most significant abiotic
factors affecting, in many ways, both the vectors and the
pathogens they transmit. With great variance depending on
vector species, populations and viral strains, temperature
influences vector survival, vector population growth, distribution
and genetic structure, host contact and feeding, virus
susceptibility, EIP, virus structure and replication (Agarwal et al.,
2017). While it is clear that factors such as high mosquito
density, biting and survival rates promote transmission, it is
more challenging to connect transmission to specific genetic
(virus, mosquito holobiont. . .) and environmental variables
(temperature, humidity, pollution. . .). Obviously, there are some
combinations of factors that promote transmission while others
hinder it; emergence happens when promoting factors outweigh
hindering factors. There is an evident gap of information about
how temperature influences virus evolution and phenotypes.
In addition, deciphering how mosquito microbiota and
immune functions implicated in viral transmission respond to
temperature has a great importance.

In its overall effects, temperature may have a profound
impact on natural ecosystems of rural and sylvatic cycles.
New serotypes or currently unknown viruses could emerge
from wildlife and affect humans following ecosystem alterations

related to temperature changes; forest cycles are breeding
grounds of unknown viruses representing a bottomless source
of pathogens threatening human health (Fontenille and Powell,
2020). Neglected arboviruses are expected to become increasingly
important, with temperature as a determinant factor of
emergence (Lorenz et al., 2017). Beside temperature, many
anthropophilic factors play crucial roles in the current success
of MBDs (Kilpatrick and Randolph, 2012; Gould et al., 2017;
Young, 2018). Human behavior, movement and land use
in relation to climate change (population migration, water
storage, unplanned urbanization. . .) are also subjects to explore.
Notably, vector control strategies should include a temperature
component in testing insecticide efficacy used in public health
(Glunt et al., 2018).

Owing to the complex interactions between all partners of
the vectorial system, more studies on the role of temperature
on viral transmission are required. A better understanding of
how transmission cycles interact with changing environments
will help to better respond to future arbovirus outbreaks.
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