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Deep Learning (DL) has been broadly applied to solve big data problems in

biomedical fields, which is most successful in image processing. Recently,

many DL methods have been applied to analyze genomic studies. However,

genomic data usually has too small a sample size to fit a complex network.

They do not have common structural patterns like images to utilize pre-

trained networks or take advantage of convolution layers. The concern of

overusing DL methods motivates us to evaluate DL methods’ performance

versus popular non-deep Machine Learning (ML) methods for analyzing

genomic data with a wide range of sample sizes. In this paper, we

conduct a benchmark study using the UK Biobank data and its many

random subsets with different sample sizes. The original UK Biobank data

has about 500k participants. Each patient has comprehensive patient

characteristics, disease histories, and genomic information, i.e., the

genotypes of millions of Single-Nucleotide Polymorphism (SNPs). We are

interested in predicting the risk of three lung diseases: asthma, COPD, and

lung cancer. There are 205,238 participants have recorded disease

outcomes for these three diseases. Five prediction models are

investigated in this benchmark study, including three non-deep machine

learning methods (Elastic Net, XGBoost, and SVM) and two deep learning

methods (DNN and LSTM). Besides the most popular performance metrics,

such as the F1-score, we promote the hit curve, a visual tool to describe the

performance of predicting rare events. We discovered that DL methods

frequently fail to outperform non-deep ML in analyzing genomic data,

even in large datasets with over 200k samples. The experiment results

suggest not overusing DL methods in genomic studies, even with

biobank-level sample sizes. The performance differences between DL and

non-deep ML decrease as the sample size of data increases. This suggests

when the sample size of data is significant, further increasing sample sizes

leads to more performance gain in DL methods. Hence, DL methods could

be better if we analyze genomic data bigger than this study.
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1 Introduction

Machine Learning (ML) has been widely applied in

genomic analysis and disease prediction. ML is considered

an objective and reproducible method that integrates multiple

quantitative variables to improve diagnostic accuracy (Wang

et al., 2021). There are many successful applications. In disease

prediction, Deberneh and Kim (2021) presented an ML model

for predicting the T2D (type 2 diabetes) occurrence in the

following year (Y+1) using variables in the current year (Y).

The model’s performance proved to be reasonably good at

forecasting the occurrence of T2D in the Korean population.

Park and Lee (2021) constructed a disease recurrence

prediction model using ML techniques. Their study

compared the performance of 5 ML models (decision tree,

random forest, eXtreme Gradient Boosting [XGBoost],

LightGBM, and Stacking models) related to recurrence

prediction based on accuracy, and the Decision Tree model

showed the best accuracy at 95%. In another study, Hussain

et al. (2021) proposed a voting ensemble classifier with 24

features to identify the severity of chronic obstructive

pulmonary disease (COPD) patients. Five ML classifiers

were applied, namely random forests (RF), support vector

machine (SVM), gradient boosting machine (GBM), XGBoost,

and K-nearest neighbour (KNN) in their study. These

classifiers were trained with a set of 24 features. After that,

they combined the results with a soft voting ensemble (SVE)

method. The results showed that the SVE classifier

outperforms conventional ML-based methods for patients

with COPD. In addition, ML-based methods for genetic

analysis have also been reported in multiple studies

(Rowlands et al., 2019; Placek et al., 2021), such as ML

approaches for the prioritization of genomic variants

impacting Pre-mRNA splicing; ML suggests the polygenic

risk for cognitive dysfunction in amyotrophic lateral

sclerosis and so on.

Deep Learning (DL) is a subset of ML, and it goes beyond

non-deep ML by creating more complex multi-layered models

to mimic how humans function. DL is known to work well in

big data applications. Still, DL has been used in disease

prediction primarily based on publicly available medical

image data, which have common structural patterns to

utilize pre-trained networks or take advantage of

convolution layers. For example, Chao et al. (2021)

presented a DL CVD risk prediction model, which was

trained with 30,286 LDCTs from the National Lung Cancer

Screening Trial. As a result, the model obtained an area under

the curve (AUC) of 0.871 on a separate test set of 2085 subjects

and was able to identify patients at high risk of CVD mortality

(AUC of 0.768). Zhou et al. (2020) proposed a DL model to

classify the HCM genotypes based on a non-enhanced four-

chamber view of cine images. Lin et al. (2020) developed and

validated a DL algorithm for detecting coronary artery disease

(CAD) based on facial photos. Jin et al. (2021) presented a

multi-task deep learning approach that allows simultaneous

tumour segmentation and response prediction. Their

approach to capturing dynamic information in longitudinal

images may be broadly used for screening, treatment response

evaluation, disease monitoring, and surveillance.

However, compared with image data, genomic data has

less structure information to train a DL model. Moreover,

building an accurate DL model usually requires immense

amounts of data, which is often difficult to find in

biological studies with a limited number of participants.

Therefore, we are motivated to investigate the effectiveness

of DL in genomic analysis and the amount of genomic sample

size fitting for the DL model.

Our study explores and compares three non-deep ML

and two DL methods in genomic analysis, including elastic

net, XGBoost, SVM, long short-term memory (LSTM), and

deep neural network (DNN). These methods are applied to

the UK Biobank study, which includes a wide array of

genotypic and phenotypic information from

502,524 participants. Coupled with the current impact of

COVID-19, lung diseases have attracted widespread

attention. We choose three specific lung diseases from UK

Biobank, combined with SNPs and other relevant covariates

to build prediction models with these five typical non-deep

ML and DL algorithms. Large-scale computation works are

conducted using high-performance computing servers

provided by Compute Canada. To investigate how DL and

non-deep ML methods perform in genomic analysis on

various sample sizes, we generate random subsets of

original data with 10 different levels of sample size and

evaluate the prediction performance of each method using

multiple metrics, including F1 score, precision, recall, and

the hit curve. Besides comparing DL and non-deep ML

methods, we also investigated the relation between

performance change and other important factors, such as

sample sizes increase and the imbalanced ratio (defined as

the proportion of samples in the number of a control group

to the number of case group (Sun et al., 2019).

The rest of the paper is organized as follows. Section 2

provides detailed processing and summary statistics of the

dataset from UK Biobank, and five DL and non-deep ML

methods are discussed in detail. In Section 3, experiment

results are presented and compared. Concluding remarks are

given in Section 4.
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FIGURE 1
Aworkflow diagram of the study process. We perform data preprocessing on 502,524 sample sets fromUK Biobank. After the initial assessment
and quality control, the data is retained for 205,238 cases with detailed procedures in. There are 27,692 asthma cases, 6,449 COPD cases, and
1,202 lung cancer cases. Age, sex, BMI, FEVIZ, and smoking status are covariates. 2,000 SNPs are retained after filtering and screening the original
2 million SNPs. The retained dataset was divided into ten subsets per-sample sets from 10 to 100%. We split the data by disease status into 70%
as training and 30% as testing sets. This study uses three non-deepMLmodels (Elastic net, XGBoost, and SVM) and twoDLmodels (DNN and LSTM) to
construct the prediction models. Finally, the model performance is evaluated by the metrics, such as precision, recall, F1-score, AUC, and hit curve.
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2 Data and methods

The workflow diagram is shown in Figure 1.

2.1 Data

With the rapid spread of COVID-19, lung diseases have

attracted widespread social attention. It was suggested that the

presence of lung diseases, in general, may contribute to severe

COVID-19 symptoms. About 600 million people have asthma,

and lung cancer and COPD are the first and the third leading

cause of death worldwide. Genetic variants such as single

nucleotide polymorphisms (SNPs) have been focused on in

lung disease research.

The dataset we use in our study is the release of the 2018 UK

Biobank. The original dataset has collected a wide array of

phenotypic and phenotypic information from

502,524 participants. We only select three specific lung

diseases (i.e. asthma, COPD, and lung cancer), combined with

participants’ SNPs, sex, body mass index (BMI), age, smoking

status, and Z-score of the forced expiratory volume in one second

(FEV1Z).

2.1.1 Genotype and quality control procedure
Quality control and imputation were performed centrally

by UK Biobank. We exclude the following participants

from our analyses: 1) participants not of white British

ancestry either by self-report or principal component

analysis conducted by UK Biobank, 2) participants with

more than 10% missing genotype data, 3) participants with

putative sex-chromosome aneuploidy, 4) participants where

the self-reported sex does not match the genetically-inferred

sex, 5) participants that UK Biobank has flagged for having

high heterozygosity/missingness and 6) participants with at

least ten putative 3rd-degree relatives. Further, we remove

SNPs with imputation information score < 0.1, minor allele

frequency < 0.001, more than 5% missing genotype data,

p-value < 10−6 in the Hardy-Weinberg Equilibrium test,

and SNPs that fail UK Biobank quality control in at

least one batch. After sample filtering and SNP screening,

we are left with a sample size of 205,238 participants and

2,000 SNPs.

2.1.2 Data statistics
The average age of subjects is 56.5 years, with an age range of

40–69 and a sex ratio (females/males) of 1.35. The selected

features are BMI, sex, age, Smoking status, FEV1Z, and

2,000 SNPs information. The summary of data is shown in

Table 1. To explore the model performance and the

prediction effect of DL and non-deep ML in the case of large

and small data, we randomly generate ten subsets from 10 to

100% and repeat it ten times. The detailed subset information is

shown in the Supplementary Material (Supplementary Tables

S1–S4).

2.2 Methods

2.2.1 Elastic net
In general, the elastic net is the regularized linear regression

method (Zou and Hastie, 2005). It is a middle ground between

ridge regression and lasso regression. The penalty term is a

simple mix of ridge and lasso’s penalties, and the mix ratio

can be controlled. The estimates from the elastic net method are

defined by

β̂ � argmin
β

‖y −Xβ‖2 + λ2‖β‖22 + λ1‖β‖1( ), (1)

TABLE 1 Descriptive statistics of the dataset. This table gives the relationships between smoking status and other covariates, i.e., age, sex, BMI, FEV1Z
score, asthma status, COPD status, and lung cancer status.

Covariates Never smoked Previously smoked Currently smokes

Age

< 55 years 47,137 (42.1%) 22,112 (29.3%) 8,269 (46.6%)

≥55 years 64,826 (57.9%) 53,414 (70.7%) 9,480 (53.4%)

Sex

Male 69,300 (61.9%) 39,670 (52.5%) 8,912 (50.2%)

Female 42,663 (38.1%) 35,856 (47.5%) 8,837 (49.8%)

BMI_mean 27.00 (±4.67) 27.83 (±4.68) 26.93 (±4.65)

FEV1Z_mean 0.31 (±1.05) 0.44 (±1.10) 0.85 (±1.17)

Asthmastatus 15,110 (13.5%) 10,343 (13.7%) 2,239 (12.6%)

COPDstatus 1,350 (1.2%) 3,338 (4.4%) 1,761 (9.9%)

Cancerstatus 185 (0.17%) 627 (0.83%) 390 (2.2%)
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where λ1‖β‖1 and λ2‖β‖22 are the L1 norm and L2 norm,

respectively, y is the response variable vector, and X is

covariates vector. The relationship between λ1 and λ2 can be

written as

λ1 � αλ, (2)
and

λ2 � 1 − α( )
2

λ. (3)

When the mix ratio α approaches 0, the elastic net is equivalent

to ridge regression, and as the ratio α goes to 1, it is equal to

lasso regression. As a result of balancing the L1 norm and

L2 norm, the computational cost of the elastic net is

expensive. However, it reduces the impact of different features

while not eliminating all of the features to improve the model

performance.

In this study, Elastic net models are implemented by R. The

parameters α and λ are tuned and chosen by function cv.

glmnet ().

2.2.2 XGBoost
XGBoost is an optimized distributed gradient boosting

library designed to be efficient, flexible, and portable. It

implements the algorithms in the Gradient Boosting

framework, which integrates many weak classifiers to form a

strong classifier (Ma et al., 2021). The weak classifiers

compensate each other to improve the performance of the

strong classifier.

Unlike the traditional integrated decision tree algorithm,

XGBoost adds a regular term in the loss function to control

the complexity of the model while preventing the model from

overfitting. The objective function is defined by

F x( ) � ∑
n

i�1
l yi, ŷi( ) +∑

K

k�1
Ω fk( ), (4)

where l(yi, ŷi) is the model’s loss function, Ω(fk) is the regular
term, n is the number of samples, and K is the number of the

CART tree. After that, a second-order Taylor expansion

approximation is applied to the loss function, and the

objective function is optimized to approach the actual value

and improve the prediction accuracy.

GridSearchCV function is used to find the optimal

parameters. The parameter max_depth of the XGBoost

model is set to 5. The larger the max_depth, the more

specific and local samples the model learns. The

min_child_weight determines the minimum sum of

instance weight needed in a child, and its value is 4. The

parameter subsample is 0.8, which controls the proportion of

random samples for each tree. The parameter

colsample_bytree is used to manage the percentage of

columns sampled per randomly sampled tree (each column

is a feature), and its value is 0.8. The objective parameter

defines the loss function that needs to be minimized.

Reg_alpha and reg_lambada are the L1 regularization terms

of the weights and the L2 regularization terms of the weights,

respectively. These two parameters help reduce overfitting,

and their values are 60 and 2, respectively.

2.2.3 SVM
SVM is a supervised learning algorithm. The learning

strategy uses supporting vectors and margins to find the

optimal segmentation hyperplane to classify the data (Fan

et al., 2021). SVM can be used for classification and

regression analysis. As a training algorithm, SVM has a highly

accurate and strong generalization ability.

This study uses the LinearSVC module in SVM. LinearSVC

implements a linear classification support vector machine and

can choose a variety of penalty parameters and loss functions.

Normalization also works well when the number of training set

instances is large.

We add the regularization term L1 norm to reduce the

impact of overfitting. The parameter C of the LinearSVC

model is 1.0.

2.2.4 LSTM
LSTM is a recurrent neural network (RNN). It can solve the

problem of gradient disappearance and gradient explosion in

traditional RNN. LSTM consists of a forget gate, an input gate,

and an output gate (Elsheikh et al., 2021). The input vector and

output vector of the hidden layer of LSTM are xt and ht, and the

forward propagation process can be used in Equations 5-9.

The input gate is mainly used to control how many values of

the current input will flow directly to a memory unit, defined as

follows:

it � σ Wxixt +Whiht−1 + bi( ). (5)

The forget gate is an essential component of the LSTM memory

cell, which controls the retention and forgetting of information to

avoid gradient disappearance and gradient explosion caused by

the backward propagation of gradients over time. The value of

the forget gate ft and the value of the memory cell ct are

expressed as:

ft � σ Wxfxt +Whfht−1 + bf( ) (6)
ct � ft ⊗ ct−1 + it ⊗ tanh Wxcxt +Whcht−1 + bc( ). (7)

The role of the output gate is to effectively control the effect of a

memory processing unit on the input and output values in these

messages. The value of the output gate ot and the output ht of

LSTM at moment t are expressed as:

ot � σ Wxoxt +Whoht−1 + bo( ) (8)
ht � ot ⊗ tanh ct( ). (9)
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We construct a network structure with three LSTM layers and

one dense layer and use sigmoid as the activation function and

binary cross-entropy as the loss function. We set batch size and

epoch as 128 and 100, respectively, and the learning rate is

0.0005.

2.2.5 DNN
A deep neural network (DNN) is a framework of deep

learning. It is a neural network with at least one hidden layer

(Ye et al., 2021), which can also be called a multi-layer

perceptron.

For the DNNmodel, We divide it into the input layer, hidden

layer, and output layer. Since we are exploring the classification

and prediction of these three diseases, we choose

binarycrossentropy as our loss function. Secondly, we put three

total connection layers into the hidden layer. The number of

neurons in the hidden layer is set to 64. Each neuron in the top

connection layer is fully connected with all neurons in the

previous layer, which can integrate the local information with

category differentiation in each layer. To improve the network

performance of DNN, we applied the ReLU function to the

activation function of each neuron.

Meanwhile, we found through experiments that when

the batch size was set to 128, the model’s accuracy could

be effectively improved, and the model could converge

more accurately towards the direction where the extreme

value was. Moreover, when the epoch was

200 iterations, the training results tended to be stable

basically. Although the model performance is improved, it

is more prone to overfitting due to many parameters.

Therefore, we added a regularization term L1 norm to

constrain training parameters by adding a penalty norm for

training parameters to the loss function to prevent model

overfitting.

3 Results

In this study, five disease prediction models based on non-

deep ML and DL models, i.e. elastic net, XGBoost, SVM,

LSTM, and DNN, are constructed. The original dataset is

randomly selected into ten sets of 10–100% datasets (shown

in Supplementary Tables S1–S4). In the modelling process, we

perform ten cross-validations on each set of 10–100%

FIGURE 2
Models performance of the 5 methods with the 10 different sample size for predicting asthma, COPD, and lung cancer, respectively.
Performances are shown by precision, recall, and F1-score. the shaded parts are the 1 standard error confidence bounds.
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datasets to find the optimal threshold for prediction and apply

it to the test set. Finally, the mean and the standard deviation

of the accumulated AUC, precision, recall, F1-score values,

and hit curve plot are used as evaluation metrics. The detailed

statistics are described in Supplementary Material

(Supplementary Tables S5–S7).

As shown in Figure 2, the proposed models are evaluated

by the standard metrics of precision, recall, and F1-score,

and an increasing trend is generally discovered. Precision

is the proportion of positive predictions that are actually

correct. Recall is the proportion of actual patients identified

correctly. The F1-score is the harmonic mean of precision and

recall, and is often used to interpret imbalanced data.

However, AUC is not sensitive to imbalanced data (its

results are shown in the Supplementary Material

[Supplementary Tables S5–S7])). Hence, we are more

interested in precision, recall, and F1-score due to the

imbalanced data structure.

3.1 Performance on small-sized datasets

Asthma status prediction. For the 10% dataset, the

highest precision and F1-score are 0.2404 (±0.0127)

and 0.3135 (±0.0098), respectively, obtained by the elastic

net model. SVM beats other models’ recall value, which is

0.4800 (±0.0126). LSTM has the lowest performance on recall

and F1-score, which are 0.1780 (±0.0234) and 0.1891

(±0.0142), respectively. The lowest precision value

generated from SVM is 0.1701 (±0.0092). For the

20% dataset, LSTM significantly improved recall and F1-

score, but still lower than the other four models.

Despite that, the performances of all models remained

the same.

COPD status prediction. For the 10% dataset, elastic net

models’ results are better than that of other models. Its

precision, recall, and F1-score are 0.2938 (±0.0415), 0.3446

(±0.0524), and 0.3153 (±0.0386), respectively. The results of

XGBoost are very close to those of the elastic net model.

However, LSTM has poor performance in this case, and its

precision, recall, and F1-score are 0.1210 (±0.0886), 0.0550

(±0.0443), and 0.0749 (±0.0191), respectively. For the 20%

dataset, the optimum values of each indicator are also derived

from the elastic net. LSTM has a decent improvement in

precision performance. And its precision is 0.2871

(±0.0274), while the elastic net has precision value of

0.3115 (±0.0264).

Cancer status prediction. All metrics of two DL models

underperform that of three non-deep ML models for 10 and

20% datasets. The top F1-score of the two DL models is

0.0402 for the 10% dataset, which is evaluated from the

DNN model, whereas the lowest F1-score from non-deep

ML methods (XGBoost) is 0.0088 higher.

In summary, it is clear that on a small dataset, the

performance of non-deep ML models is superior to that of

DL models.

3.2 Overall model performance on DL and
non-deep ML

As the size of the dataset increases, the overall model

performances increase, and the gap between non-deep ML

and DL decreases.

Asthma status prediction. The F1-score of elastic net,

XGBoost, SVM, LSTM, and DNN for 50% dataset are 0.3214

(±0.0047), 0.3201 (±0.0047), 0.2966 (±0.0043), 0.3088

(±0.0060), and 0.3098 (±0.0032), respectively. As the data

volume rises to 100%, the performances of the five models

do not change a lot.

COPD status prediction. When the dataset size increases

to 50%, LSTM improves its performance rapidly. The F1-

score of LSTM has grown three times from 0.0749 (±0.0191)

to 0.3171 (±0.0154). When the dataset size expands

from 50 to 100%, the optimal F1-score is 0.3699 (±0.0110)

from the elastic net. The F1-scores of XGBoost, SVM,

LSTM and DNN become 0.3307 (±0.0130), 0.3394

(±0.0125), 0.3269 (±0.0145), and 0.3106 (±0.0157),

respectively.

Cancer status prediction. On 50% of the dataset, the

performance of all five models has improved. As the

dataset grows to 100%, all models’ performances are still

climbing up.

In summary, DL models do not outperform non-deep

ML models, even in extensive data with over 200k

samples. The performance of all models improves when the

sample size increases. The performance differences between

DL and non-deep ML decrease as the sample size of data

increases.

3.3 Impact of imbalanced data structure

In this study, the datasets are imbalanced, and the

imbalanced rates (Control/Case) for asthma, COPD, and

lung cancer are 6.5:1, 30.8:1, and 169.6:1, respectively.

Model performances on cancer prediction are the lowest

since the cancer dataset structure is highly imbalanced. For

example, the F1-score of DNN for the 50% dataset is 0.3098

(±0.0032) for predicting asthma status, whereas it is 0.0547

(±0.0187) for predicting cancer status. Moreover, as the

imbalanced rate increases, the confidence bands are getting

wider. For instance, the width of the confidence band of

XGBoost’s F1-score for the 100% dataset is 0.0058 for

predicting asthma; in contrast, it is 0.0202 for predicting

lung cancer.
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3.4 Promote hit curve as a particular visual
tool

To summarize all themetric results we have found, a hit curve is

promoted as a particular visual tool to compare the prediction

models. In a biomedical study, it is impossible for a prediction

model to accurately predict all cases, and a model can be effective

without necessarily accurately predicting all cases. For example, in

our research, a prediction model is considered to be doing an

excellent job if it can choose a relatively small number of subjects,

and correctly label the majority of the condition group. Therefore,

hit curve is used to prioritize case. In this situation, cases with the

largest prediction probabilities are chosen first. As we select cases

according to the prediction probabilities, a “hit” occurs whenever

the case is a success (people we selected are in a certain disease

condition). Say we choose m1 subjects and m2 are diseased, and we

can visually assess a prediction model by plotting m2 against m1, a

so-called hit curve. A good prediction model will have m2

increasing rapidly with m1, as shown in Figure 3 (only the

hit curve plots for 10, 50, and 100% of the dataset are shown

here, and the result plots for the remaining percentage of the dataset

are visible in the Supplementary Material [Supplementary Figures

S1–S30]).

The elastic net curve and XGBoost curve are nearly

identical, but they cross over each other at some points

and are significantly higher than the others in predicting

Asthma and COPD. For lung cancer condition prediction,

XGBoost does not maintain a good performance. However,

elastic net and SVM models are still superior to the LSTM

model. DNN model is inferior to other models in all cases.

Therefore, evidence supports that DL models often cannot

overperform non-deep ML models. The brown bar appears

in the 10 and 50% datasets on predicting asthma conditions.

However, there are no brown bars in the 100% dataset plot. It

implies the performance gap between DL and non-deep ML

decreases as the sample size increases. And the difference

will be trivial when the data sample size is as large as the

biobank level. However, it is difficult to obtain such a large

dataset. Hence, DL models often underperform non-deep

ML models.

FIGURE 3
Hit curve graphs of AsthmaStatus, COPDStatus and CancerStatus classification by five models on 10–100% data sets. The x-axis represents the
number of test subjects we selected by sorting the estimated probability up to down. The y-axis of the hit curve chart represents the number of
subjects with certain conditionswhich are correctly diagnosed in the test set. The point (m1,m2) indicates there arem2 patients in the firstm1 selected
subjects are correctly predicted as diseased. The curves show the average hit curves of five models, and the shaded area denotes the
confidence bounds constructed using 10-fold cross-validation (i.e. ± one standard error). The brown bar at the bottommeans non-deepMLmodels
are significantly better than DL models.
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With lung cancer data’s highly imbalanced data structure, none

of the five models perform well when the data sample size is small.

Their shaded areas are relatively broad, making the difference hard

to tell. As the data sample size increases, their hit curves increase

with different slopes. As a consequence, the performance differences

become substantial. In other words, imbalanced data is also called

weighted data. The effective sample size of a weighted data is smaller

than its original sample size. It is almost impossible to evaluate those

five models’ performances due to a lack of a sufficient sample size.

As the effective sample size gradually increases, the model

performance differences become apparent. However, if the

effective sample size reaches a certain large amount, the

differences among all models are not significant again.

4 Discussion

This study evaluated the potential of DL models (DNN and

LSTM) in predicting asthma, COPD, and lung cancer with

various sample sizes from the UK Biobank dataset, compared

with non-deep ML models (elastic net, XGBoost and SVM).

Besides the most popular performance metrics, such as the F1-

score, the hit curve, as a particular visual tool, is promoted to

describe the performance of predicting rare events. The results

suggest that we should not apply DL methods in most genomic

studies, unless we have data with biobank-level sample sizes.

We conclude not recommending standard deep learning

methods for genomic studies based on the following two

facts we observed in our study. First, the prediction

performances of non-deep machine learning methods vastly

outperform deep learning methods in small datasets (e.g.,

10 and 20% random subsets of UK Biobank). Second, we

observed that deep learning could not outperform non-deep

methods in huge data like the entire cohort of UK Biobank

(500k participants), although increasing sample size leads to

the improvement of the deep learning method’s performance,

and its improvement is faster than non-deep methods.

Therefore, we need more data than UK Biobank to prefer

deep learning methods. However, the sample sizes of most

publicly available genomic data cannot meet this requirement,

which range from tens to few thousands.

Although deep learning methods achieved outstanding

performance in image, video, and natural language analysis,

we found their performance is not attractive in analyzing

genomic studies. We believe this is the result of two

characteristics of genomic data: 1) genomic data typically

has small sample sizes to fit a complex network; and 2)

genomic data lacks common structural patterns like images

to use pre-trained networks or take advantage of convolution

layers.

Besides comparing deep learning methods with non-deep

methods, the following are other important messages we learned

from this study and would like to share with the audience.

We found that cancer status is much harder to predict than

the other two diseases. The results show that the uneven data

structure also affects the model’s performance. The control/case

ratio is 6.5:1 for asthma, 30.8:1 for COPD, and 169.6:1 for lung

cancer, respectively. We notice that all three disease conditions

are imbalanced, and the imbalanced ratio of lung cancer

conditions is particularly extreme, which leads to model

overfitting and underperforming prediction. Therefore, the

imbalanced rate between cases and controls is also a critical

influencing factor. Although we operate by regulation, rare

events are harder to predict. We would do the data

augmentation to prevent the imbalance problem in the future.

Our predictions of disease status are based on genomic

information but not the specific diagnostic tests of related

diseases. Therefore, we don’t expect high accuracy in the

predictions. This prediction aims to segment the patients by

their predicted risk of conditions and manage them differently

(e.g., following up with a different visit frequency or using follow-

up disease-specific diagnostic tests).

There are two types of classification mistakes: 1)

incorrectly labeling a patient as low-risk or healthy; and 2)

incorrectly labeling a healthy individual as a patient or high-

risk. In our case, the first type of mistake is much more

harmful than the second type. Follow-up diagnosis can fix

the second mistake. The first mistake may cause a delay in

treatment, while the timing of treatment can be the most

critical factor in treating diseases like cancer. These two types

of mistakes can be summarised by precision and recall,

respectively. The most popular metric, F1-score, is the

harmonic average of precision and recall, which regards

these two prediction mistakes as costing equally. Fn-score

can weigh two types of mistakes using user-defined weights.

However, it is not easy to define weights objectively. Hence, we

introduced our preferred metric, the hit curve, for rare event

detection, which focus on detecting true positive rate.

Different points on the curve correspond to different

decision rules about who should be labelled as patients.

Users can compare many decision rules between the two

methods using their hit curves. Users can also use this

visual tool to decide which decision rule is best (subjectively).
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