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Abstract: Clinical manifestations of coronavirus disease 2019 (COVID-19) in pregnant women are
diverse, and little is known of the impact of the disease on placental physiology. Severe acute
respiratory syndrome coronavirus (SARS-CoV-2) has been detected in the human placenta, and its
binding receptor ACE2 is present in a variety of placental cells, including endothelium. Here, we
analyze the impact of COVID-19 in placental endothelium, studying by immunofluorescence the
expression of von Willebrand factor (vWf), claudin-5, and vascular endothelial (VE) cadherin in the
decidua and chorionic villi of placentas from women with mild and severe COVID-19 in comparison
to healthy controls. Our results indicate that: (1) vWf expression increases in the endothelium
of decidua and chorionic villi of placentas derived from women with COVID-19, being higher in
severe cases; (2) Claudin-5 and VE-cadherin expression decrease in the decidua and chorionic villus
of placentas from women with severe COVID-19 but not in those with mild disease. Placental
histological analysis reveals thrombosis, infarcts, and vascular wall remodeling, confirming the
deleterious effect of COVID-19 on placental vessels. Together, these results suggest that placentas
from women with COVID-19 have a condition of leaky endothelium and thrombosis, which is
sensitive to disease severity.
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1. Introduction

Coronavirus infections have ranged from asymptomatic to mild, moderate or severe
symptoms in pregnant women. In the Middle East respiratory syndrome coronavirus
(MERS-CoV) pandemic, which originated on the Arabian Peninsula in 2012, the preg-
nancy outcomes remained apparently unaffected [1]. However, during the severe acute
respiratory syndrome coronavirus (SARS-CoV) epidemic of 2002–2003 in China, pregnant
women had spontaneous miscarriages in the first trimester, delivered preterm, or had
pregnancies complicated by intrauterine growth restriction [2]. With the emergence of the
novel SARS-CoV-2 and the coronavirus disease 2019 (COVID-19), clinical manifestations of
pregnant women with COVID-19 have varied widely from asymptomatic to very severe,
and pregnancy complications have included miscarriages [3], fetal distress, premature
rupture of membranes, preterm labor, stillbirth [4] and uncontrolled hemorrhage during
cesarean delivery [5]. According to the Centers for Disease Control and Prevention in the
USA, a higher proportion (12.9%) of preterm live births among women with SARS-CoV-2
infection during pregnancy is present in comparison to the general population (10.2%) [6].

Vertical transmission of SARS-CoV-2 has been suggested, due to positive RT-PCR
nasopharyngeal swabs in newborns delivered by cesarean section with neonatal isolation
implemented immediately after birth [7–9]. Some infants born to mothers with confirmed
COVID-19 have displayed problems, including fetal distress, lethargy, vomiting, fever,
respiratory distress, thrombocytopenia accompanied by abnormal liver function and even
death [9–11]. Such symptoms have been displayed in newborns with a SARS-CoV-2
positive and negative RT-PCR test (for review, see [12]), and even with mothers having
COVID-19, but with negative RT-PCR tests in amniotic fluid, vaginal secretions, placenta,
and breast milk [13].

With the COVID-19 pandemic, interest has arisen concerning the impact of the disease
on placental physiology. In pregnant women with COVID-19, placental swabs have been
positive for SARS-CoV-2 RNA by RT-PCR in cases where the newborns tested either
positive [14] or negative [15,16] for SARS-CoV-2, as in a second-trimester miscarriage
with a SARS-CoV-2-negative fetus [3]. The presence of this coronavirus in the placental
syncytiotrophoblast (STB) cell layer has been further demonstrated by immunostaining
with antibodies against SARS-CoV-2 proteins [17,18] or by RNA in situ hybridization of
SARS-CoV-2 spike antigen [19]. Moreover, SARS-CoV-2 virus has been observed invading
the human placenta using electron microscopy [20]. However, this observation has been
questioned, suggesting that the structures identified are clathrin-coated vesicles and not
SARS-CoV-2 virus particles [21].

SARS-CoV-2 cell entry depends on binding of the spike protein organized in trimers
to receptor angiotensin-converting enzyme 2 (ACE2) [22]. This receptor is critical, since
sequestering ACE2 inside cells due to the loss of Rab7A, a key regulator of endo-lysosomal
trafficking, reduces viral entry [23]. SARS-CoV-2 spike protein harbors a multibasic site
S1/S2 that undergoes proteolytic cleavage by host proteases like furin, TMPRSS2 and
Cathepsin L, which allow the posterior fusion of the viral membrane with a cellular
membrane in the endocytic pathway and the release of viral RNA in the cytoplasm of the
host cell [22,24].

ACE2 is abundantly present in the lung and small intestine epithelia, as in arterial
and venous endothelial cells in all organs [25]. In the human placenta, ACE2 is present
in the stromal and perivascular cells of decidua [26], fetal placental vessels [27], and in
cytotrophoblast [26]. In the STB cell layer, ACE2 is also present and has been proposed to
promote maternal vasodilation through Ang 1–7 release into the maternal circulation [27].

SARS-CoV-2 infects organoids of human blood vessels [28]. Accordingly, viral in-
clusions have been observed in pulmonary endothelial cells [29], brain [30], transplanted
kidney [31], and dermis of patients with COVID-19 chilblain-like lesions [32], where SARS-
CoV-2 proteins have also been identified by immunohistochemistry in cutaneous dermal
vessels [32,33]. Endothelial cell infection with SARS-CoV-2 is accompanied by a variety of
pathological signs, including the accumulation of inflammatory cells, thrombosis, swelling,
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apoptosis, and pyroptosis [29,31–33], a pathway to cell death mediated by caspase-1, which
activates the inflammatory cytokines IL-1β and IL-18 (for review, see [34]). These obser-
vations suggest that SARS-CoV-2 induces endotheliitis, which could explain the systemic
thrombotic and microvascular injury syndrome observed in COVID-19 patients (for review,
see [35]). In brain biopsies of patients with COVID-19, no evidence of vasculitis has been
found, but thrombotic microangiopathy caused by severe endothelial injury has been
observed [36].

Von Willebrand Factor (vWf) plays a critical role in hemostasis as it binds and stabi-
lizes factor VIII in the circulation and mediates platelet–endothelial and platelet–platelet
interaction at high shear (for review, see [37]). vWf is assembled as a multimeric protein in
endothelial Weibel Palade bodies and is exocyted in response to several stimuli, including
inflammatory cytokines. The ultra-large multimers of vWf tether circulating platelets to
damaged endothelial sites under high shear stress conditions. In normal circumstances, the
metalloproteinase ADAMTS13 cleaves vWf into smaller and less thrombogenic units (for
review, see [37]). In thrombotic microangiopathy, like that observed in purpura and other
thrombocytopenic conditions like severe sepsis, disseminated intravascular coagulation,
and complicated malarial infections, an excess of vWf with a deficiency of ADAMTS13 is
observed [38]. Likewise, in patients with severe COVID-19, plasma levels of vWf antigen
are increased [39–44], while ADAMTS13 activity is normal [42] or diminished [39,40].

Vascular endothelial (VE) cadherin and claudin-5 are adherens and tight junctions (AJ,
TJ) proteins, respectively, involved in endothelial cell–cell adhesion and barrier function.
VE-cadherin is a classical cadherin present at the adherens junction of endothelial cells,
required to prevent the disassembly of blood vessels [45]. Deletion of the VE-cadherin
gene leads to early embryonic death associated with severe vascular anomalies [46] and
endothelial apoptosis [47]. Likewise, antibodies against VE-cadherin ectodomain block
endothelial cell–cell adhesion and increase vascular paracellular permeability [48].

Claudins are major constituents of TJ and are responsible for the ionic selectivity of the
paracellular pathway (for review, see [49]). Claudin-5 is specifically present in endothelial
cells, and when transfected in L fibroblasts that lack TJs, forms strands that resemble those
of endothelial cells where the extracellular, and not the protoplasmic, face of the membrane
associates to TJ filaments [50]. In the brain, claudin-5 is required for the establishment of
the blood–brain barrier against small molecules (<800 D) [51].

Considering this, we aimed to analyze the impact of COVID-19 in placental endothe-
lium. For this purpose, we have studied the expression of vWf, claudin-5, and vascular
endothelial (VE) cadherin in the decidua and chorionic villi of placentas derived from
women with mild and severe COVID-19. Here, we found that in the endothelium of de-
cidua and chorionic villi of placentas derived from women with COVID-19, the expression
of vWf is increased, being higher in severe cases, suggesting the existence of a thrombotic
condition. The altered state of the endothelium in the decidua and chorionic villi of placen-
tas from women with COVID-19 is further confirmed by a decreased expression of both
claudin-5 and VE-cadherin in the placentas of women with severe COVID-19, suggesting
enhanced vessel permeability. The histological analysis of these placentas revealed throm-
bosis, infarcts, and remodeling of vascular walls in chorionic villi and decidua, indicating
fetal and maternal malperfusion.

2. Materials and Methods
2.1. Ethics Statement

The study protocol followed the Declaration of Helsinki Ethical Principles for Medical
Research Involving Human Subjects. The participants signed the informed consent before
their inclusion in this work. The study was approved by the Ethics and Research Internal
Review Board of the Instituto Nacional de Perinatología in Mexico City (2020-1-32).
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2.2. Patient Selection and Specimens

Universal testing with nasopharyngeal swabs and RT-PCR test (La Charité, Berlin
protocol) to detect SARS-CoV-2 infection was implemented at the Instituto Nacional de
Perinatología for all women who were admitted for delivery, even if asymptomatic; for all
positive cases, newborns were tested for SARS-CoV-2 infection using saliva samples.

Placental tissues were obtained immediately after delivery from 11 women with
COVID-19 (five mild and six severe) and four control women who delivered by cesarean
section, with no evidence of labor. The RT-PCR diagnosis was done during the acute phase
of SARS-CoV-2 infection upon admission to delivery. Healthy controls were paired by
gestational age. Clinical data and outcomes of enrolled women were obtained from the
electronic medical records.

2.3. RT-PCR for Placental SARS-CoV-2 Infection

For detection of SARS-CoV-2 RNA in the placenta, the tissue was disrupted through
mechanical lysis using a FastPrep instrument (MP Biomedicals, Solon, OH, USA), within
1 h after obtention. Then, RNA was purified using the Direct-zol RNA Miniprep Kit (Cat.
R2050; Zymo Research, Irvine, CA, USA). SARS-CoV-2 RNA was detected following La
Charité, Berlin protocol [52], using TaqPath 1 step RT-PCR master Mix, CG commercial kit
(Cat. A15299 Thermo Fisher Scientific, Waltham, MA, USA), and probes and primers designed
for RdRP and E viral genes. RNase P human gene was used as RNA isolation control. RT-
qPCR was performed on a StepOnePlus instrument (Applied Biosystems/Thermo Fisher
Scientific, Waltham, MA, USA). Each RT-PCR reaction contained an enzyme mix, primers,
probes, and RNA (5 µL each one) [52]. Conditions at the thermocycler were set as previously
reported [52]. Ct values were collected using threshold at 0.035 fluorescence level.

2.4. Immunofluorescence

Placental tissues in paraffin blocks were cut to a thickness of 1 µm, heated overnight
at 60 ◦C and deparaffinized in xylene (Cat. X3s-4; Fisher Scientific, Loughborough, Le-
icestershire, UK), rehydrated in 100% ethanol (Cat. E-7023; Sigma-Aldrich, St. Louis,
MO, USA), 90% ethanol, 70% ethanol, and twice in H2O. In the case of VE-cadherin and
claudin-5, for epitope retrieval, sections were kept for 40 min in 10 mM citrate buffer
at 95 ◦C. Subsequently, sections used for the detection of vWf were permeabilized with
PBS containing 0.5% Triton X-100 for 30 min and incubated in pre-warmed 0.23% (w/v)
pepsin (Cat. P-7000; Sigma-Aldrich) in 0.01 M HCl at 37 ◦C for 8 min, and then rinsed in
distilled H2O. These sections were then washed with PBS containing 0.2% Triton X-100
and immunofluorescence buffer (Cat. A3059; Sigma, Poole, Dorset, UK). Alternatively,
sections used to detect VE-cadherin and claudin-5 were washed with PBS containing 0.2%
Triton X-100 for 10 min. Then, samples were blocked with BSA (immunoglobulin (Ig)
free, Cat. 1331-A, Research Organics, Cleveland, OH, USA) for 1 h. Samples were next
incubated overnight at 4 ◦C in a humidified chamber with sheep polyclonal antibodies
anti-vWf conjugated with fluorescein isothiocyanate (FITC) (Cat. ab8822; Abcam, Cam-
bridge, MA, USA; dilution 1:100), rabbit polyclonal antibodies anti-claudin-5 (Cat. 34–1600,
Invitrogen, Camarillo, CA, USA) and mouse monoclonal antibodies anti-VE-cadherin
(Cat. sc-9989, Santa Cruz Biotechnology, Santa Cruz, CA, USA). We also used donkey
antibodies coupled to Alexa 647 against mouse IgG (Cat. A31571, Invitrogen), and rab-
bit IgG (Cat. A31573, Invitrogen). Cell nuclei were evidenced through DNA staining
with 300 nM DAPI (4′,6-diamidino-2-phenylindole, dilactate) (Cat. 422801; Biolegend,
San Diego, CA, USA) and mounted using Dako Fluorescent mounting medium (Cat. S3023;
Dako, Carpinteria, CA, USA). For claudin-5 and VE-cadherin, we also added the autofluo-
rescence quenching kit True View™ (Cat. SP-8400, Vector laboratories, Burlingame, CA,
USA), before mounting. Samples were analyzed on an LSM 510 Meta inverted confocal
microscope based on an Axiovert 200 M motorized microscope (Carl Zeiss, Oberkochen,
Germany) or on an SP8 confocal microscope (Leica, Weitzlar, Germany). The Fiji-ImageJ
software (National Institute of Mental Health, Bethesda, MD, USA) [53] was employed to
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obtain the fluorescence intensity values. For florescence quantification, three random fields
per experimental condition were selected, and the figures show representative images of
these fields.

2.5. Histochemical Staining and Hofbauer Cell Assessment

Placental tissues were fixed with 10% para-formaldehyde and then embedded in
paraffin. Sections of 3 µm were cut and stained with hematoxylin and eosin according to
standard protocols [54]. Hofbauer cells were identified in these tissues by immunohisto-
chemical analysis, using a rat monoclonal antibody against CD68 (Cat. ab53444, Abcam,
San Diego, CA, USA; dilution 1:1000), counterstained with hematoxylin. The number of
Hofbauer cells present in the tissue was determined using the analysis of software Zen
(version ZEN 2.3 lite, Carl Zeiss Microscopy, Jena, Germany). Fields were selected at 20×,
and CD68+ macrophage count was performed at 40× in five different high-power optical
fields per placenta.

2.6. Statistical Analysis

The three tests of normality of D’Agostino (Skewness, Kurtosis and Omnibus), and
the equal variances test of Levene and Bartlett were employed to confirm the assumptions
about residuals in One-Way ANOVA. The F test of ANOVA for equal variances and the
F test with Welch correction for unequal variances were used, followed by the multiple
comparison tests of Bonferroni, Dunnett, or Duncan. The Kruskal–Wallis test and its
multiple comparison test were used for not normally distributed data. The legend of
each figure indicates the detailed statistical analysis employed. Data are expressed as
mean ± SD, and statistical significance was considered for p < 0.05.

3. Results

Here, we studied the expression of vWf, claudin-5, and VE-cadherin in the decidua
and chorionic villi of placentas derived from control and SARS-CoV-2 infected women. The
clinical data and outcomes of control women and those with mild and severe COVID-19
are summarized in Tables 1–3, respectively.

Table 1. Clinical data of control women and their newborns.

Cnt1 Cnt2 Cnt3 Cnt4

Maternal Age (years) 24 17 17 20
Maternal comorbidity None None None None
Maternal weight (kg) NA 53.7 62.1 65.0
Maternal height (m) NA 1.67 1.64 1.59

GA at Diagnosis (weeks)
GA at Delivery 13.6 38.1 40.2 30.3

(weeks) 13.6 38.1 40.2 30.3
Delivery mode Curettage CS CS CS
NB weight (g) NA 2315 3170 1320

NB Gender NA Male Female Female
NB weight classification NA SGA AGA AGA

White blood cell count/UL 7500 6600 10,500 11,300
Lymphocyte count (%) 9.0 15.1 10.1 9.8

Platelets cells/UL 187,000 236,000 274,000 167,000
Thrombin time (s) 11.0 9.5 10.9 10.8
Prothrombin time 26.9 24.9 36.2 29.6

NA, Not Available; NB, Newborn; CS, Cesarean Section; AGA, Appropriate for Gestational Age; SGA, Small for
Gestational Age.
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Table 2. Clinical data of women with mild COVID-19 and their newborns.

mCV1 mCV2 mCV3 mCV4 mCV5

Maternal Age (years) 28 20 34 19 20
Maternal comorbidity None None Epilepsy None None
Maternal weight (kg) NA 65.4 93.7 75.0 57.0
Maternal height (m) NA 1.69 1.67 1.59 1.50

COVID-19 stage Acute Acute Acute Acute Acute
PCR Mother + + + + +

PCR NB/Fetal + + + + +
PCR Placenta − − − − −

COVID-19 symptoms Cough
headache None None None None

GA at Diagnosis
(weeks)

GA at Delivery
13.0 40.3 39.5 33.4 26.4

(weeks) 13.0 40.4 39.5 33.5 26.6
Delivery mode Curettage CS CS CS CS
NB weight (g) NA 3410 3615 1946 978

NB Gender NA Male Male Male Female
NB weight

classification NA AGA LGA AGA AGA

White blood cell
count/UL NA 8400 7900 10,200 107,700

Lymphocyte count (%) NA 30.1 17 2.9 11
Platelets cells/UL NA 224,000 208,000 177,000 341,000
Thrombin time (s) NA 9.2 10.3 10.8 10.3
Prothrombin time NA 29.8 23.8 28.6 30.4

mCV, mild COVID-19; NA, Not Available; NB, Newborn; CS, Cesarean Section; AGA, Appropriate for Gestational
Age; LGA, Large for Gestational Age.

Table 3. Clinical data of women with severe COVID-19 and their newborns.

sCV1 sCV2 sCV3 sCV4 sCV5 sCV6

Maternal Age (years) 37 25 25 37 36 39

Maternal comorbidity None None None None None None

Maternal weight (kg) 91 67 66 60 75.5 77.5

Maternal height (m) 1.65 1.55 1.60 1.50 1.60 1.64

COVID-19 stage Acute Acute Acute Acute Acute Acute

PCR Mother + + + + + +

PCR NB/Fetal − − − − − −
PCR Placenta − − − − − −

COVID-19 symptoms

Dyspnea,
myalgias,
arthralgia,
diarrhea

Cough, fever,
dyspnea,
myalgias,

arthralgias,
rhinorrhea

Cough, fever,
dyspnea,
myalgias,

arthralgias,
diarrhea,

rhinorrhea

Cough, fever,
myalgias,

arthralgias

Cough, fever,
dyspnea

Cough, fever,
dyspnea

GA at Diagnosis (weeks) 27.6 34.6 28.0 38 39.1 39.1

GA at Delivery (weeks) 27.6 34.6 28.0 38 39.1 39.1

Delivery mode CS CS CS CS CS CS
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Table 3. Cont.

sCV1 sCV2 sCV3 sCV4 sCV5 sCV6

NB weight (g) 1600 2200 1250 2640 2330 2900

NB Gender Female Female Female Female Female Male

NB weight classification AGA AGA AGA AGA SGA AGA

White blood cell count/UL 11,200 8900 16,500 7600 9900 8800

Lymphocyte count (%) 16.3 9.5 4.7 24.2 24.1 24.0

Platelets cells/UL 365,000 218,000 347,000 327,000 275,000 232,000

Thrombin time (s) 10.8 9.6 10.0 10.9 13.6 16.4

Prothrombin time 30.8 30.7 22.6 21.5 24.7 23.0

Aspartate
aminotransferase (U/L) 28 48 28 22 10 28

Alanine aminotransferase
(U/L) 8 24 8 14 10 56

Creatinine (mg/dl) 0.52 1.14 0.53 0.6 0.49 0.64

Fibrinogen (mg/dL) 681 485 856 479 498 601

D-dimer (ng/mL) 1267 1346 1739 3500 5993 4716

Procalcitonin (ng/mL) 0.12 1.72 0.28 1.18 0.02 0.05

Rx or CAT (COVID signs) + + + + + +

Orotracheal intubation + − + − − −
Supplemental O2 − + − + + +

sCV, severe COVID-19; NB, Newborn; CS, Cesarean Section; AGA, Appropriate for Gestational Age; Rx, X-ray; CAT, Computerized axial
tomography.

3.1. vWf Is Overexpressed in the Endothelium of Decidua and Chorionic Villi of Placentas Derived
from Women with COVID-19 according to Disease Severity

Placentas from control women show a clear immunofluorescence staining for vWf
in decidual endothelium (Figure 1a,b) and chorionic villi (Figure 2a,b). In the placenta
of women with COVID-19, staining of vWf significantly increases in the decidual and
chorionic villi endothelium. The most abundant vWf stain was observed in severe cases.
Hence, this result indicates that the placental endothelium of women with COVID-19
displays a characteristic frequently observed in a thrombotic condition.
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Figure 1. The expression of vWf augments in decidual endothelium of placentas of women with COVID-19. Paraffin
blocks of placenta from women with COVID-19 and controls were cut in 1 µm slices, deparaffinized and processed for
immunofluorescence with antibodies against vWf. (a) Representative images of vWf in decidua. DNA of nuclei was stained
with DAPI. Bar, 100 µm. (b) Quantification of mean fluorescent intensity done on three independent images from each
condition. Data are expressed as mean ± SD; F ANOVA test followed by Duncan’s multiple comparison test, *** p < 0.001.
Cnt, control; mCV, mild COVID-19; sCV, severe COVID-19.
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Figure 2. The expression of vWf increases in the endothelium of chorionic villi in placentas of women with COVID-19.
Paraffin blocks of placentas derived from women with COVID-19 and controls were cut in 1 µm slices, deparaffinized and
processed for immunofluorescence with antibodies against vWf. (a) Representative images of vWf in chorionic villi. DNA
of nuclei was stained with DAPI. Bar, 100 µm. (b) Quantification of mean fluorescent intensity done on three independent
images from each condition. Data are expressed as mean ± SD; F ANOVA test followed by Duncan’s multiple comparison
test, *** p < 0.001. Cnt, control; mCV, mild COVID-19; sCV, severe COVID-19.

3.2. The Expression of Claudin-5 Diminishes in the Endothelium of Decidua and Chorionic Villi of
Placentas from Women with Severe COVID-19

Next, we analyzed the expression of claudin-5 in the endothelium of the decidua and
chorionic villi of control women and those with mild or severe COVID-19. By immunofluo-
rescence, we did not observe significant changes in the expression of claudin-5 in decidua
(Figure 3a,b) and chorionic villi (Figure 4a,b) of women with mild COVID-19 in comparison
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to control. However, in placentas of women with the severe form of the disease, we found
a significant decrease in claudin-5 expression in decidua (Figure 3a,b) and chorionic villi
(Figure 4a,b). Since claudin-5 is the main claudin of endothelial cells [50], these results
strongly suggest that TJs in the decidual endothelium and chorionic villi of women with
COVID-19 become leaky as the severity of the disease augments.
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Figure 3. The expression of claudin-5 decreases in decidual endothelium of women with severe COVID-19. Paraffin blocks
of placentas derived from women with COVID-19 and controls were cut in 1 µm slices, deparaffinized, and processed for
immunofluorescence with antibodies against claudin-5. (a) Representative images of claudin-5 in decidua. DNA of nuclei
was stained with DAPI. Bar, 100 µm. (b) Quantification of mean fluorescent intensity done on three independent images
from each condition. Data are expressed as mean ± SD; F test with Welch correction followed by the multiple comparison
tests of Bonferroni and Dunnett, *** p < 0.001. Cnt, control; mCV, mild COVID-19; sCV, severe COVID-19.
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Figure 4. Claudin-5 expression diminishes in the endothelium of chorionic villi of placentas from women with severe
COVID-19. Paraffin blocks of placentas derived from women with COVID-19 and controls were cut in 1 µm slices,
deparaffinized, and processed for immunofluorescence with antibodies against claudin-5. (a) Representative images of
claudin-5 in chorionic villi. DNA of nuclei was stained with DAPI. Bar, 100 µm. (b) Quantification of mean fluorescent
intensity done on three independent images from each condition. Data are expressed as mean ± SD; One way ANOVA
F test followed by the multiple comparison tests of Bonferroni and Dunnett, *** p < 0.001. Cnt, control; mCV, mild COVID-19;
sCV, severe COVID-19.

3.3. VE-Cadherin Expression Diminishes in Decidua and Chorionic Villi Endothelium of Placentas
from Women with Severe COVID-19

Since VE-cadherin is a crucial protein of the AJs of endothelial cells [45] whose alteration
leads to an increase in vascular permeability [48], we next analyzed the expression of this
protein in the endothelium of the decidua and chorionic villi. By immunofluorescence, we
detected no significant change in VE-cadherin expression in the decidua of women with mild
COVID-19 compared to control women. In contrast, VE-cadherin expression in the decidua
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is significantly reduced in women with severe COVID-19 (Figure 5a,b). A similar pattern
is observed in the chorionic microvilli, where the decreased expression of VE-cadherin is
detected in women with severe COVID-19 but not in those with mild disease (Figure 6a,b).
These results reinforce the observations done with claudin-5, suggesting that COVID-19
augments the paracellular permeability of the endothelium in the chorionic villi.

Cells 2021, 10, x FOR PEER REVIEW 12 of 21 
 

 

women with mild COVID-19 compared to control women. In contrast, VE-cadherin ex-

pression in the decidua is significantly reduced in women with severe COVID-19 (Figure 

5a,b). A similar pattern is observed in the chorionic microvilli, where the decreased ex-

pression of VE-cadherin is detected in women with severe COVID-19 but not in those with 

mild disease (Figure 6a,b). These results reinforce the observations done with claudin-5, 

suggesting that COVID-19 augments the paracellular permeability of the endothelium in 

the chorionic villi. 

 

Figure 5. VE-cadherin expression in decidual endothelium decreases in placentas from women with severe COVID-19 but 

no in those with mild disease. Paraffin blocks of placental tissue derived from women with COVID-19 and controls were 

cut in 1 µm slices, deparaffinized, and processed for immunofluorescence with antibodies against VE-cadherin. (a) Rep-

resentative images of VE-cadherin in decidua. DNA of nuclei was stained with DAPI. Bar, 100 μm. (b) Quantification of 

mean fluorescent intensity done on three independent images from each condition. Data are expressed as mean ± SD; F 

test with Welch correction followed by the multiple comparison tests of Bonferroni and Dunnett, *** p < 0.001. Cnt, control; 

mCV, mild COVID-19; sCV, severe COVID-19. 

DAPI 

●
 C

n
t1

 
●

 C
n

t2
 

Control 

COVID-19 a) 

●
 C

n
t3

 

DAPI VE-cadherin VE-cadherin DAPI 

●
 s

C
V

1
 

●
 s

C
V

2
 

●
 s

C
V

3
 

VE-cadherin 

 ●
 C

n
t4

 

●
 m

C
V

1
 

●
 m

C
V

2
 

●
 m

C
V

3
 

●
 m

C
V

4
 

●
 m

C
V

5
 

Mild Severe 

b) 

●
 s

C
V

4
 

●
 s

C
V

5
 

●
 s

C
V

6
 

C n t m C V s C V

4

8

1 2

1 6

2 0

2 4

F
lu

o
r
e

s
c

e
n

c
e

 i
n

t
e

n
s

it
y

(
A

r
b

it
r
a

r
y

 u
n

it
s

)

** *
** *

Figure 5. VE-cadherin expression in decidual endothelium decreases in placentas from women with severe COVID-19
but no in those with mild disease. Paraffin blocks of placental tissue derived from women with COVID-19 and controls
were cut in 1 µm slices, deparaffinized, and processed for immunofluorescence with antibodies against VE-cadherin.
(a) Representative images of VE-cadherin in decidua. DNA of nuclei was stained with DAPI. Bar, 100 µm. (b) Quantification
of mean fluorescent intensity done on three independent images from each condition. Data are expressed as mean ± SD;
F test with Welch correction followed by the multiple comparison tests of Bonferroni and Dunnett, *** p < 0.001. Cnt, control;
mCV, mild COVID-19; sCV, severe COVID-19.
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Figure 6. VE-cadherin expression diminishes in the endothelium of chorionic villi of placentas from women with severe
COVID-19. Paraffin blocks of placentas derived from women with COVID-19 and controls were cut in 1 µm slices,
deparaffinized, and processed for immunofluorescence with antibodies against VE-cadherin. (a) Representative images of
VE-cadherin in chorionic villi. DNA of nuclei was stained with DAPI. Bar, 100 µm. (b) Quantification of mean fluorescent
intensity done on three independent images from each condition. Data are expressed as median ± SD; Kruskal–Wallis test
and its multiple comparison test, ** p = 0.02, *** p < 0.001. Cnt, control; mCV, mild COVID-19; sCV, severe COVID-19.

3.4. Placentas of Women with COVID-19 Display Histological Alterations Indicative of
Vasculopathy and a Higher Number of Hofbauer Cells Is Observed in Placentas from Women with
Severe COVID-19

Since thrombotic and microvascular injury syndrome has been observed in patients with
COVID-19 (for review, see [35]), we next analyzed if histological alterations indicative of
fetal vascular malperfusion (FVM) or maternal vascular malperfusion (MVM) were present
in the placentas of women with COVID-19. The histological analysis revealed the presence
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in chorionic villi of subacute thrombosis with remodeling of vascular wall, and extensive
parenchymal infarcts with intervillositis. In the decidua of women with COVID-19, we found
vasculopathy with remodeling of the vascular wall. Instead, placentas from control women
had no histological alterations (Figure 7). In addition, to confirm the inflammatory state of
placentas of women with COVID-19, we assessed the number of fetal macrophages, known as
Hofbauer cells, in the parenchyma of chorionic villi. Figure 8 shows an increase in Hofbauer
cells in chorionic villi of women with severe COVID-19, compared to control placentas and
tissues from women with the mild form of the disease (** p < 0.01).
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Figure 7. Histopathology of placentas from women with mild and severe COVID-19 shows signs of maternal and fetal
vascular malperfusion and decidual vasculopathy. Representative placental sections stained with H&E (3 µm). Villous
placental parenchyma from control women with no histological alterations ((A); 10×). Placental tissue from women with
mild COVID 19 showing decidual vasculopathy characterized by fibrinoid necrosis (arrows), and karyorrhexis (*) ((B,C); 40×
and 10×, respectively), avascular villous (*), and accelerate villous maturation (small villi not expected for gestational age)
(arrow) ((D); 20×), and chorangiosis (arrow) ((E); 20×). Placental tissue from women with severe COVID 19 showing extensive
parenchymal infarcts with accumulation of fibrin (*) ((F); 10×), acute and chronic inflammation in villous space (villitis, black
arrow) and villous (intervillositis, white arrow) (F); magnification, 20×); subacute thrombosis of the intermediate villi with
remodeling of the vascular wall (*) ((G); 10×) and vessel obliteration (arrow) ((G); magnification, 20×); avascular villi (*)
((H); magnification, 20×), and severe maternal vascular malperfusion with accelerate villous maturation (small villi not expected
for gestational age) ((I); 10×) and increased syncytial knots (arrows) ((I); magnification, 20×).
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Figure 8. Placental chorionic villi from women with severe COVID-19 display a higher number of Hofbauer cells. Hofbauer
cells (arrows) were detected with an antibody against CD68 and counterstained with hematoxylin. Representative 3 µm
placental sections (20×) from control women (A,D), women with mild COVID-19 (B,E), and women with severe COVID-19
(C,F). (G) Quantification of Hofbauer cells in placentas from control women (Cnt), with mild COVID-19 (mCV), and severe
COVID-19 (sCV). The number of Hofbauer cells was obtained by counting CD68+ positive cells in five optical fields per
placenta. Each dot represents the mean of Hofbauer cells in five fields per placenta of each condition. Data are expressed as
mean ± SD; F ANOVA test followed by Duncan’s multiple comparison test, ** p < 0.01.

4. Discussion

COVID-19 induces, in some patients, a thrombotic and microvascular injury syndrome
triggered by several mechanisms, including a cytokine storm, hypoxic vaso-occlusion,
direct activation of immune and vascular cells by virus infection, and the development of
pathogenic autoantibodies targeting phospholipids and phospholipid-binding proteins [55]
(for review, see [35]).

SARS-CoV-2 has been detected in the placenta of women with COVID-19 [14–19], and
its receptor ACE2 is present in numerous endothelium [29–33]. Since COVID-19 induces, in
some patients, a thrombotic and microvascular injury syndrome (for review, see [35]), here,
we have explored if placentas from women with COVID-19 exhibit an altered expression
of vWf, claudin-5 and VE-cadherin in the decidua and chorionic villi.

In patients with severe COVID-19, plasma levels of vWf antigen are increased [39–44],
and in the placenta of healthy women, vWf has been found in endothelium, STB and
chorionic villous stroma [56]. In placentas from women with COVID-19 we found that
this factor, whose increase may predict an augmented risk of thrombosis [57], is elevated
compared to controls in the endothelium of both decidua and chorionic villi, especially
in severe cases. This observation suggests that COVID-19 represents a thrombotic risk in
human placenta.

Changes in vWf expression have been explored in other pathological conditions of
pregnancy. Thus, in pregnancies with intrauterine growth restriction that occurs when a
fetus does not reach its growth potential, the expression of vWf is higher, although not
at a statistically significant level [58]. In preeclampsia, a higher amount of vWf is found
in maternal plasma [56,59], with no differences in the expression in the chorionic villous
endothelium and stroma in comparison to normal pregnancies [56]. Others instead reported
a decrease in placental vWf in the STB accompanied by an increase in the intervillous space
in preeclampsia, thus suggesting injury to the STB cell layer that favors the release of vWf
from Weibel–Palade bodies into the maternal space [60].

The cell–cell adhesion complex of endothelial cells constituted by AJ and TJs is critical
to prevent vascular leakage and for proper placental perfusion. To test if COVID-19 induced
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damage to placental vessels, we analyzed the expression of VE-cadherin and claudin-5,
the main molecular components of endothelial AJ [45–48] and TJs, respectively. We found
that while there is no significant change in expression of VE-cadherin and claudin-5 in the
decidua and chorionic villi of placentas from women with mild COVID-19, the amount of
both adhesion molecules decreases significantly in the tissues derived from women with
severe COVID-19. Hence, these results indicate that AJ and TJ proteins are sensitive to
damage induced by COVID-19, and further reveal that the deleterious effect detected on
the apical junctional complex of placental endothelium correlates with COVID-19 severity
and the development of inflammation determined by the increased number of Hofbauer
cells present in the parenchyma of chorionic villi.

Previous studies have reported the expression of AJ and TJ proteins in chorionic villi
of human placenta at term, finding that the STB expresses E-cadherin, ZO-1 and ZO-2,
JAM-B, occludin, claudins -1, -3, -4, -5 -7 and -16, while the vessels in the parenchyma of
chorionic villi display ZO-1, occludin, JAM-C, and claudins -1, -3, -4 and -5 [61–63]. ZO-1,
JAM-C, and claudin-5 can be observed in large and small vessels, whereas occludin and
claudins 1, -3 and -4 are mainly present in large placental vessels [61,62].

In human placenta, VE-cadherin was previously observed in endothelial cells of the
decidua [64] and the chorionic villus [65,66], as well as in the STB, where the expression
decreases towards term in normal pregnancies but not in those complicated by preeclamp-
sia [67]. However, in preeclampsia, VE-cadherin expression in chorionic villi endothelial
cells was not altered [66]. Diabetes mellitus is another disease linked to endothelial dysfunc-
tion (for reviews, see [68,69]), and in insulin-treated gestational diabetes (GDM), a reduction
in VE-cadherin expression in chorionic vessels was found [70]. In contrast, placentas of
women with diabetes type 1, type 2, and GDM display normal levels of VE-cadherin in the
chorionic vessels if not treated with insulin [71].

Previous studies have shown that the amount of claudins -1 and -5 present in Triton
X-100 insoluble fractions, which corresponds to claudin associated with the actomyosin
cytoskeleton, diminishes in preeclamptic compared to healthy placentas [61], whereas the
expression of claudin-4 at the basolateral membrane of the STB diminishes in placentas
derived from ZIKV-infected women [62].

Our histological analysis of COVID-19 placentas revealed the presence of thrombosis,
infarcts, and vascular wall remodeling in chorionic villi and decidua. These findings are
in agreement with previous observations done in placentas from women with COVID-19,
showing that the chorionic terminal villi have features of fetal vascular malperfusion in-
cluding infarctions [14,72], avascular villi [72–74], fibrin deposition in fetal vessels [72],
intervillous hemorrhages [16] and thrombi [72,73], capillary congestion and focal micro-
chorangiosis [16], a vascular hyperplastic process observed in placental tissue after periods
of low-grade hypoxia [75]. Maternal vascular malperfusion has also been reported with
decidual arteriophathy, including maternal vessels with artherosis and fibrinoid necrosis
as well as hypertrophy of membrane arterioles [72].

We also observed a higher number of Hofbauer cells in placentas from women with
severe COVID-19. Similar observations have been done in placental pathologies involving
infection and inflammation [76], and, in the case of placentas of women with COVID-19,
other studies have reported intervillositis with inflammatory infiltrate of macrophages, T
lymphocytes, neutrophils, and monocytes [3,17–19].

A preeclampsia-like syndrome has been described in pregnant women with COVID-19,
with indistinguishable clinical symptoms and similar histopathological findings [77]. This
could be due to the pyroptosis induced by SARS-CoV-2 replication and release [78]. In early
preeclampsia, pyroptosis is known to induce the release of alarmins and placental debris
into maternal circulation [79], which triggers thrombosis, intramural fibrin deposition,
villous stromal-vascular karyorrhexis, and villous infarction [72–74]. Altogether, these
changes lead to placental dysfunction and fetal growth restriction [80]. In this context,
our findings pose a challenge to the differential diagnosis of the hypertensive disease of
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pregnancy, highlighting the importance of considering the molecular profile of the disease
and not only the associated signs and symptoms.

Although placental vasculopathy associated with COVID-19 has been reported previ-
ously, it was described in placentas from a heterogeneous population, including women
with associated comorbidities (e.g., severe preeclampsia, infection, placenta previa, preterm
labor, or diabetes), and vaginal delivery or cesarean section [81–84]. Instead, our study
is more homogeneous, including only women in the acute phase of infection, without
associated comorbidities, and having babies delivered by cesarean section. This approach
allows us to assume that the placental histological findings and the molecular changes that
correlate with these histological observations and with the severity of the disease are due
to COVID-19 infection. On the other hand, the limitations of our study are that we were
not able to measure circulating vWf in the studied women and that severity markers, such
as fibrinogen, D-dimer, and procalcitonin as well as X-rays and CAT, were determined only
in women with severe COVID-19.

In conclusion, our study reveals that placentas from women with COVID-19 display
a thrombotic and microvascular injury syndrome, including the overexpression of vWf
in endothelium coupled with the decreased expression of VE-cadherin and claudin-5
in chorionic villus and decidua that correlate with disease severity. The presence of
thrombosis, infarcts, and vascular wall remodeling in chorionic villi and decidua further
confirm the deleterious effect of COVID-19 on placental vessels.
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