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Abstract: The structure, morphology, and sonophotocatalytic activity of Ni-Zn-Co ferrite nanoparti-
cles, embedded in a SiO2 matrix and produced by a modified sol-gel method, followed by thermal
treatment, were investigated. The thermal analysis confirmed the formation of metal succinate
precursors up to 200 ◦C, their decomposition to metal oxides and the formation of Ni-Zn-Co ferrites
up to 500 ◦C. The crystalline phases, crystallite size and lattice parameter were determined based
on X-ray diffraction patterns. Transmission electron microscopy revealed the shape, size, and distri-
bution pattern of the ferrite nanoparticles. The particle sizes ranged between 34 and 40 nm. All the
samples showed optical responses in the visible range. The best sonophotocatalytic activity against
the rhodamine B solution under visible irradiation was obtained for Ni0.3Zn0.3Co0.4Fe2O4@SiO2.

Keywords: nickel-zinc-cobalt ferrite; thermal behavior; crystalline phase; sonophotocatalysis

1. Introduction

Despite the measures taken to reduce pollution, industrial effluents containing dyes
and pigments used in the textile industry often resurface in the surrounding environment.
Dyes are complex organic structures with a high resistance to chemical and biological
degradation, high water solubility, and have a negative impact on the environment, partic-
ularly aquatic ecosystems [1,2]. Therefore, the efficient treatment of industrial effluents and
wastewaters containing dyes is crucial for environmental protection.

The photocatalytic degradation of dyes is a simple, cost-effective, and environmentally
friendly approach for wastewater treatment as it allows the decomposition of complex
organic structures into CO2 and water [3,4]. In the last few years, the use of sonophotocatal-
ysis for the degradation of a wide range of organic pollutants in aqueous systems has been
the topic of several studies [5,6]. Sonophotocatalysis use the synergistic effects of ultrasonic
waves, UV-Vis irradiation and photocatalyst to form highly reactive free radicals in an aque-
ous medium that further react with dyes and lead to their degradation [7]. By providing
additional nuclei, the heterogeneous catalyst enhances the formation of cavitation bubbles,
which in turn increases the formation of reactive radicals through water pyrolysis [5]. The
mechanism of sonophotocatalytic degradation, as well as the main advantages of combined
ultrasound and photocatalytic processes, are presented by Abdurahman et al. [5]. The high
energy consumption of sonophotocatalysis makes its large-scale application difficult, how-
ever, the high costs could be compensated by the low time required for the degradation of
organic compounds [7]. Due to their magnetic properties, their recovery using an external
magnetic field and their reuse is possible [8,9].
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Oxides containing at least two types of metals are potential candidates for photoelec-
trochemistry and photocatalysis due to their band structure and energy position [10]. The
bandgap of several MFe2O4-type ferrites are presented by Dillert et al. [11]. Nanosized spinel-
type ferrites, containing first-row transition metals such are Ni, Co, Zn, Mn are attractive
materials in electronics, magnetic storage, ferrofluid technology, gas sensors, catalysis, photo-
catalysis and biomedicine, including magnet-guided drug carriers, contrast agents and tracers
for positive magnetic resonance imaging [12–17]. They are also promising candidates for
wastewater treatment as they could act both as adsorbents, due to their high specific surface
area, and as photocatalysis, due to their low energy band gap, that allow the conversion of UV
or visible light into chemical energy that favors the degradation of dyes [8,17–21]. The strong
photodegradation capacity of 3d transition metal ferrites such as CoFe2O4, CuFe2O4, NiFe2O4,
and ZnFe2O4, with magnetic properties, was previously demonstrated for different organic
compounds [12,13,21–27]. The surface coating of the ferrite nanoparticles with different ma-
terials, especially semiconductor materials such as TiO2 and SiO2, was proven to enhance
the photocatalytic activity [28]. CoFe2O4 nanoparticles coated with TiO2–SiO2 efficiently
degraded (up to 98%) the methylene blue dye [2], while Rhodamine B (RhB) degradation
by CoFe2O4, was only 80% [29,30]. The enhancement of the photocatalytic performance of
NixCo1-xFe2O4, prepared by the coprecipitation method against methylene blue at a high Ni
content, was reported by Lassoued and Li [31]. A good photodegradation efficiency (about
80%) of methylene blue under visible light irradiation was also delineated for Co-Zn ferrite
with various Co and Zn contents, obtained using the citrate precursor method [32]. The
increase of the rate constant with the increasing Co content was also observed [32]. The pho-
tocatalytic activity of Co0.6Zn0.4NixFe2-xO4 powders, obtained by the sol-gel method under
visible light against methyl orange dye in an aqueous solution, was also reported [33].

The spinel ferrite properties are determined by their composition, structure, particle
size, and morphology [34–37]. These characteristics strongly depend on the synthesis route,
chemical composition, doping cations, and sintering conditions [36,38]. The change in
preparation method and temperature affects the microstructure, cation distribution among
tetrahedral (A) and octahedral (B) sites and magnetic properties. Thus, to produce spinel
ferrite nanoparticles with a desired stoichiometry, high compositional control, excellent
chemical stability, high purity, crystallinity, saturation magnetization, and low coercivity
are of interest and the selection of the synthesis route is critical [15,38].

Soft chemical routes such as sol-gel, solid-phase, hydrothermal, coprecipitation, sono-
chemical, spray pyrolysis, citrate gel, microwave refluxing, flash auto combustion, etc., are
currently preferred for the synthesis of nano ferrites [17,37,39,40]. The solid-state reaction is a
simple and attractive preparation method that allows large productivity and well-controllable
grain sizes [41]. The conventional ceramic method is based on the solid-state reaction of metal
oxides/carbonates at high temperatures (>1000 ◦C) and produces particles in the micrometer
regime; however, agglomeration due to slow reaction kinetics is unavoidable [39]. Hence,
wet chemical methods have been used intensively to avoid the limitations of conventional
ceramic methods and to produce nanoscale materials with improved magnetic properties [35].
Wet chemical routes, such as hydrothermal, sol-gel method, and auto combustion, have been
employed to obtain ferrite nanoparticles at low temperatures [34,39,41]. The main drawback
of the wet methods is the formation of different oxide impurities, particularly Fe2O3 [17].
Highly homogenous Ni-Zn nanoferrite powders can be easily produced by a wet chemical
route, using low-cost raw materials, and in air atmospheres. Its properties can be adjusted to
fit the requirements of different applications by appropriately adjusting the Ni-Zn ratio and
the sintering process [37,42]. The properties of Ni-Zn nanoferrites can be further improved by
adding low amounts of other divalent ions such as Co2+ [37].

This paper investigates the formation, structure, morphology, and sonophotocatalytic
activity of mixed Ni-Zn-Co ferrites embedded in SiO2, obtained by a modified sol-gel
method and followed by thermal treatment. The reaction progress was investigated through
thermal analysis (TG-DTA) and Fourier transform infrared spectroscopy (FT-IR), while the
Ni-Zn-Co ferrites composition was investigated by inductively coupled plasma optical
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emission spectrometry (ICP-OES). The formation of the crystalline phase, crystallite size,
and lattice constant were monitored by X-ray diffraction (XRD). The surface (specific surface
area and porosity) was investigated using the Brunauer-Emmett-Teller (BET) method. The
sonophotocatalytic properties of the samples were evaluated under visible light irradiation,
assisted by sonication against RhB.

2. Results and Discussion
2.1. Thermal Analysis

The TG-DTA curves of all of the samples show three endothermic and two exothermic
processes characterized by very close, overlapping peaks (Figure 1).

The endothermic effect at 61–70 ◦C, accompanied by 3–5% mass loss, is attributed to
the loss of crystallization and constitution water. The endothermic effect at 136–144 ◦C,
accompanied by 17–26% mass loss, is assigned to the formation of divalent metal precursors
(Co, Ni, and Zn succinates), while the endothermic effect at 187–201 ◦C accompanied by
9–14% mass loss, is ascribed to the formation of a trivalent metal precursor (Fe succinate).
The distinct behavior of Fe succinate, compared to the divalent metal (Co, Ni, Zn) succinates,
can be attributed to the redox reaction between Fe(NO3)3 and 1,4BD, as well as to the
stronger acidity of the aqua-cation [Fe(H2O)6]3 [43]. The overlapping exothermic effects,
at 270–292 ◦C and 310–325 ◦C, accompanied by 19–25% mass loss, are attributed to the
decomposition of metal succinates to metal oxides, which leads to the formation of ferrites.

The exothermic peak, characteristic of the decomposition of divalent metal succi-
nates, decreases with the increasing Zn content and shifts toward higher temperatures,
leading to the increase of the exothermic peak, attributed to the decomposition of the Fe
succinates. The SiO2 matrix suffers various transformations during the thermal process,
making the demarcation of the processes attributed to the formation and decomposition
of succinate precursors difficult [44]. The total mass loss increases in the following order:
Ni0.5Zn0.1Co0.4Fe2O4@SiO2 < Zn0.6Co0.4Fe2O4@SiO2 < Ni0.3Zn0.3Co0.4Fe2O4@SiO2 < Ni0.6
Co0.4Fe2O4@SiO2 < Ni0.2Zn0.4Co0.4Fe2O4@SiO2 < Ni0.4Zn0.2Co0.4Fe2O4@SiO2 < Ni0.1Zn0.5
Co0.4Fe2O4@SiO2.

In the case of the samples dried at 40 ◦C, the intense band at 1379–1389 cm−1 is associated
with the N-O bonds stretching vibration in metal nitrates. This band disappears in the case
of samples dried at 200 ◦C, indicating the decomposition of nitrates [44]. The bands at
2958–2963 cm−1 and 2872–2888 cm−1 are specific to the symmetric and asymmetric vibration
of C-H bonds in 1,4-BD or succinate precursors. These bands also disappear in samples heat-
treated at 200 ◦C. The bands at 1578–1605 and 3200–3210 cm−1 are attributed to the stretching
and bending vibrations of O-H in 1,4-BD and adsorbed molecular water [44,45]. In the
samples dried at 200 ◦C, the band at 3200–3210 cm−1 is shifted towards higher wavenumbers
(3421–3437 cm−1), indicating that the metal succinates are hygroscopic [44,45]. The presence of
this absorption band could also be due to the O-H stretching vibration and Si-OH deformation
vibration caused by the hydrolysis of –Si(OC2H5)4 [44,45]. For samples dried at 40 and 200 ◦C,
the bands at 557–568 cm−1 are attributed to Ni-O and Zn-O vibrations, while the band at
433–452 cm−1 is attributed to the Fe-O vibration in the nitrates [44,45]. In samples at 40 ◦C,
the band at 683–393 cm−1 is assigned to the Co-O bond vibration in the cobalt nitrate [44,45].
The formation of the SiO2 matrix in the samples dried at 40 and 200 ◦C is confirmed by
the presence of specific bands of Si-O bond vibration (433–452 cm−1), cyclic Si-O-Si bonds
vibration (557–568 cm−1, more noticeable in samples dried at 40 ◦C), Si-O symmetric stretching
and bending vibration (792–815 cm−1), Si-OH bonds (938–943 cm−1, well delimited only in
case of samples dried at 40 ◦C) vibration and Si-O-Si bonds stretching vibration (1045 cm−1

at 40 ◦C and 1058–1068 cm−1 at 200 ◦C). The band at 938–943 cm−1 is distinguishable for
the samples dried at 40 ◦C, indicating the presence of unreacted TEOS, while the band at
1045 cm−1 suggests the formation of amorphous SiO2 [44,45]. Figure 3a shows the FT-IR
spectra of NCs thermally treated at 1000 ◦C. The band at 618–626 cm−1 is attributed to the
vibration of the M(II)-O (Co-O, Ni-O, Zn-O) bonds, while that at 485–490 cm−1 is attributed to
the Fe-O bond [44–46].
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Figure 1. TG-DTA diagrams of Zn0.6Co0.4Fe2O4@SiO2, Ni0.1Zn0.5Co0.4Fe2O4@SiO2, 

Ni0.2Zn0.4Co0.4Fe2O4@SiO2, Ni0.3Zn0.3Co0.4Fe2O4@SiO2, Ni0.4Zn0.2Co0.4Fe2O4@SiO2, 

Ni0.5Zn0.1Co0.4Fe2O4@SiO2 and Ni0.6Co0.4Fe2O4@SiO2 samples. 

2.2. FT-IR Analysis 

Figure 1. TG-DTA diagrams of Zn0.6Co0.4Fe2O4@SiO2, Ni0.1Zn0.5Co0.4Fe2O4@SiO2, Ni0.2Zn0.4Co0.4

Fe2O4@SiO2, Ni0.3Zn0.3Co0.4Fe2O4@SiO2, Ni0.4Zn0.2Co0.4Fe2O4@SiO2, Ni0.5Zn0.1Co0.4Fe2O4@SiO2

and Ni0.6Co0.4Fe2O4@SiO2 samples.
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2.2. FT-IR Analysis

As vibrational modes in FT-IR spectroscopy are determined by the bond type, the
symmetry of the lattice sites and the elements in the crystal lattice, the monitoring of the
ferrite formation process is possible [44]. The FT-IR spectra of the gels dried at 40 and
200 ◦C are presented in Figure 2.
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Figure 3. FT-IR spectra (a) and XRD patterns (b) of Zn0.6Co0.4Fe2O4@SiO2 (1), Ni0.1Zn0.5Co0.4Fe2O4

@SiO2 (2), Ni0.2Zn0.4Co0.4Fe2O4@SiO2 (3), Ni0.3Zn0.3Co0.4Fe2O4@SiO2 (4), Ni0.4Zn0.2Co0.4Fe2O4@SiO2 (5),
Ni0.5Zn0.1Co0.4Fe2O4@SiO2 (6) and Ni0.6Co0.4Fe2O4@SiO2 (7) samples at 1000 ◦C.

In comparison to the samples dried at 40 ◦C and 200 ◦C, in the samples thermally
treated at 1000 ◦C, the wavenumbers specific to Co-O bond vibration decrease, and the
wavenumbers specific to M(II)-O increase. The Jan-Teller effect, determined by the presence of
Fe2+ ions in the sublattices, can lead to band splitting, small bands and/or shoulders [47]. The
Fe2+ ions may result from the hopping process, namely M2+ + Fe3+↔M3+ + Fe2+ (M = Co,
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Ni, Zn). The Co3+ ion may migrate to tetrahedral (A) sites, while the Fe2+ ions remain in
their sites [31].

The bands at 790–795 cm−1 are characteristic for the vibration of the Si-O bond in SiO2
matrix, while those at 1090–1095 cm−1 and 485–490 cm−1 are characteristic to the stretching
and bending vibration of Si-O-Si chains and show a low degree of polycondensation of the
SiO2 network [44,45]. The difference in band position could be attributed to the difference
in M-O distance in the tetrahedral and octahedral sites [39].

2.3. XRD Analysis

The XRD patterns (Figure 3b) confirm the presence of well-crystallized ferrites in
all of the samples, while the positions and intensities of the diffraction lines support the
spinel structure [47]. The peaks with 2θ values of 30.07, 35.42, 37.07, 43.05, 53.41, 56.94, and
62.52 correspond to the (220), (311), (222), (400), (422), (511), and (440) planes [41,48]. In
all of the samples, the local crystal structure is cubic spinel-type, belonging to the Fd-3m
space group [21,40,41]. Additionally, two crystalline phases of the SiO2 matrix (SiO2-
cristobalite, JCPDS card 39-1425 [48] and SiO2-tridymite, JCPDS card 042-1401 [48]) are
identified. In the case of Zn0.6Co0.4Fe2O4@SiO2, the well-crystallized spinel is composed
by CoFe2O4 (JCPDS card 22-1086 [48]) and ZnFe2O4 (JCPDS card 70-6491 [48]. In the
case of Ni0.6Co0.4Fe2O4@SiO2, the well-crystallized spinel is composed of CoFe2O4 and
NiFe2O4 (JCPDS card 74-2081 [48]), while in the other samples (Ni0.1Zn0.5Co0.4Fe2O4@SiO2,
Ni0.2Zn0.4Co0.4Fe2O4@SiO2, Ni0.3Zn0.3Co0.4Fe2O4@SiO2, Ni0.4Zn0.2Co0.4Fe2O4@SiO2, and
Ni0.5Zn0.1Co0.4Fe2O4@SiO2), the crystalline phase contains NiFe2O4, ZnFe2O4 and CoFe2O4.
In ferrites with a high Zn content, the presence of hematite (Fe2O3, JCPDS card 89-0599 [48])
is also remarked. The presence of Fe2O3 indicates the decomposition of Fe(NO3)3 into
Fe2O3, leading to the formation of spinel ferrite [39]. The excess of metal oxides in insolu-
ble secondary phases (Fe2O3) can contribute to the densification by generating high pore
volumes and demagnetizing fields. During synthesis, the homogeneity of the metal oxide
particles may result in higher defects and pore volumes in the final products [36,42].

The average crystallites size (DXRD) was calculated using the Scherrer equation (Equation (1)).

DXRD =
0.9 ·λ

β ·cos θ
(1)

where λ is the wavelength of the CuKα radiation (1.5406 Å), β is the full width at half-
maximum intensity (FWHM), hkl are the Miller indices and θ is the Bragg angle (◦) [43,44,49,50].

The lattice constant (a), was calculated from Bragg’s law with Nelson-Riley Equat-
ion (2) [44,50].

a =
λ
√

h2 + k2 + l2

2·sin θ
(2)

where λ is the wavelength of CuKα radiation (1.5406 Å), hkl are the Miller indices, θ is the
Bragg angle (◦) [44,50].

The unit cell volume (V) and the hopping length (L) of magnetic ions for tetrahedral
(A) and octahedral (B) sites were calculated using Equations (3)–(5) [44,50].

V = a3 (3)

LA = 0.25·a
√

3 (4)

LB = 0.25·a
√

2 (5)

where a is the lattice constant (Å).
The average crystallite size lies in the nanocrystalline range and increases with the

increasing Ni content, while the lattice parameter (a) decreases with the increasing Ni
content (Table 1).
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Table 1. Parameters obtained from TEM, XRD and ICP-OES analysis for samples thermally treated at
1000 ◦C.

Nanocomposite DTEM
(nm)

DXRD
(nm)

DC
(%)

a
(Å)

V
(Å3)

LA
(Å)

LB
(Å) Quantitative Analysis (%) Ni/Zn/Co

Zn0.6Co0.4Fe2O4@SiO2 34 33.2 89.0 8.456 605 14.6 12.0 12% Zn0.6Co0.4Fe2O4/
4% α-Fe2O3/ 84% SiO2

0/0.60/0.39

Ni0.1Zn0.5Co0.4Fe2O4@SiO2 35 33.6 89.4 8.405 594 14.5 11.9 14% Ni0.1Zn0.5Co0.4Fe2O4/
4% α-Fe2O3/ 82% SiO2

0.08/0.49/0.39

Ni0.2Zn0.4Co0.4Fe2O4@SiO2 36 34.1 89.8 8.375 587 14.5 11.8 15% Ni0.2Zn0.4Co0.4Fe2O4/
4% α-Fe2O3/ 81% SiO2

0.19/0.38/0.41

Ni0.3Zn0.3Co0.4Fe2O4@SiO2 36 34.5 90.1 8.366 586 14.5 11.8 17% Ni0.3Zn0.3Co0.4Fe2O4/
2% α-Fe2O3/ 81% SiO2

0.28/0.27/0.42

Ni0.4Zn0.2Co0.4Fe2O4@SiO2 37 35.0 90.4 8.354 583 14.4 11.8 13% Ni0.4Zn0.2Co0.4Fe2O4/
87% SiO2

0.41/0.08/0.38

Ni0.5Zn0.1Co0.4Fe2O4@SiO2 38 36.6 90.6 8.346 581 14.4 11.8 15% Ni0.5Zn0.1Co0.4Fe2O4/
85% SiO2

0.49/0.08/0.38

Ni0.6Co0.4Fe2O4@SiO2 40 36.9 90.8 8.335 579 14.4 11.7 20% Ni0.6Co0.4Fe2O4/
80% SiO2

0.61/0.39/0

The change in the lattice constant (a) generates internal stress and suppresses addi-
tional grain growth during thermal treatment [44,50,51]. The tetrahedral (A) sites have
smaller radii (0.52 Å) than the octahedral (B) site (0.81 Å) [9]. The ionic radii of Ni2+ (0.69 Å),
Zn2+ (0.74 Å) and Co2+ (0.75 Å) ions are larger than the ionic radius of Fe3+ (0.64 Å) [3,38,52].
The amorphous to crystalline phase transformation and the relative content of crystalline
phases, after thermal treatment at 1000 ◦C, were assessed using the relative degree of
crystallinity (DC), calculated as the ratio between the area of diffraction peaks and the total
area of diffraction peaks and halos. The DC increases with the increase of the crystallite size
and Ni content. The Reference Intensity Ratio (RIR) method was used for the quantitative
phase analysis of NCs thermally treated at 1000 ◦C.

2.4. Elemental Analysis

The Ni/Zn/Co molar ratios, determined by microwave digestion and combined with
inductively coupled plasma optical emission spectrometry, are in good agreement with the
theoretical values (Table 1).

2.5. BET Analysis

Due to the low amount of adsorbed/desorbed nitrogen, the determination of porosity
and specific surface area (SSA) for the samples thermally treated at 1000 ◦C was not possible.
The SSA below the method detection limit (0.5 m2/g) suggests that all ferrites have a non-
porous structure, probably due to particle agglomeration that limits nitrogen absorption.

2.6. TEM Analysis

The TEM images of the mixed Ni-Zn-Co ferrites following thermal treatment at 1000 ◦C
(Figure 4) reveal spherical, small (high Zn content), or large (high Ni content) nanoparticles
that form large spongy aggregates.

The formation of agglomerates with irregular morphology composed of high Zn
content ferrite particles and the homogenous dispersion of high Ni content ferrite particles
is also remarked. The small grains have a high surface area to volume ratio and allow faster
oxygen diffusion than the larger grains, leading to an increase in the stoichiometry of the
sample [35]. Although the small particles are closely arranged together, a clear boundary
between adjacent particles is still observed. The average particle size is 34–36 nm, the
difference being attributed to the grain boundary motion that exerts a dragging force, while
the pores delay the force over the grain [41]. Moreover, the driving force increases the
grain boundaries over the pores, resulting in lower pore volume and higher density [41].
The average crystallite size estimated by XRD is close to the particle size determined by
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TEM, the slight differences being attributed to the amorphous SiO2 matrix and large-size
nanoparticles [43,44,50].
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2.7. UV-VIS Analysis

The optical response of the samples was evaluated by UV-Vis spectroscopy. The UV-
Vis absorption (Figure 5a) shows that all the samples have a broad response in the visible
range. Based on the absorption spectra and using the Tauc’s relation [50], the band gap
energy of the samples was evaluated (Figure 5b).
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The band gap energy values are in the range 1.21–1.49 eV, are lower than that of
NiFe2O4 (2.2 eV), ZnFe2O4 (1.91 eV) and CoFe2O4 (2.31 eV), and are comparable to those
reported for CoFe2O4 xerogel calcined at 500 ◦C (1.5 eV) [33,50]. The band gap of our
samples was also lower than those of NixCo1-xFe2O4 (1.37–1.78 eV) obtained by copre-
cipitation [52]. The optical band gap of the samples is due to the d-d transition. The
crystal field splits the d level in the eg and t2g levels and the band gap energy depends
on octahedral (B) and tetrahedral (A) sites. The band gap energy, in the case of the oc-
tahedral site, is higher than that of the tetrahedral (A) site [53]. The variation of the
band gap energy, by replacing Zn2+ ions with Ni2+, can be explained by the redistri-
bution of Ni2+ ions between the octahedral (B) and tetrahedral (A) sites. In the XRD
data, the peaks corresponding to the plane (220) and (422) are sensitive to the tetrahedral
(A) site, whereas the peak corresponding to the (222) plane is sensitive to the octahe-
dral (B) site [54,55]. The values of the I(220)/I(222) ratio, for the samples annealed at
1000 ◦C, are 4.29 for Zn0.6Co0.4Fe2O4@SiO2, 3.79 for Ni0.1Zn0.5Co0.4Fe2O4@SiO2, 4.26 for
Ni0.2Zn0.4Co0.4Fe2O4@SiO2, 4.10 for Ni0.3Zn0.3Co0.4Fe2O4@SiO2, 3.52 for Ni0.4Zn0.2Co0.4
Fe2O4@SiO2, 3.22 for Ni0.5Zn0.1Co0.4Fe2O4@SiO2 and 3.77 for Ni0.6Co0.4Fe2O4@SiO2, which
indicates that the population at the tetrahedral (A) site tends to decrease with the increase
of the Ni2+ ions. These findings are correlated with the optical band gap values, which
increases with the increase of Ni2+ content. The low band gap energy makes our samples
suitable for the absorption of visible light. The activation energy of the Co0.6Zn0.4NixFe2-xO4
ferrite nanoparticles obtained by sol-gel route decreased with the increasing Ni content,
from 2.71 eV (x = 0.2) to 1.46 eV (x = 1) [33].
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2.8. Sonophotocatalytic Activity

The sonophotocatalytic activity of the samples was evaluated using an RhB synthetic
solution under visible irradiation. Before visible irradiation, the samples were kept in
the dark for 1 h to reach the adsorption-desorption equilibrium. The adsorption capacity
of the sample varied between 7–28%. The adsorption properties depend on the surface
sites and specific surface area. In our case, the samples had almost identical particle sizes;
thus, those surface sites were responsible for the adsorption properties. The removal rate
(Figure 6) was evaluated after 7 h of visible irradiation and varied between 16 and 75%.
Similar removal efficiencies (83.9%) for methylene blue were obtained using Ni-Cu-Zn
ferrite@SiO2@TiO2 by Chen et al. [52,55].
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Figure 6. Removal rate of Zn0.6Co0.4Fe2O4@SiO2 (1), Ni0.1Zn0.5Co0.4Fe2O4@SiO2 (2), Ni0.2Zn0.4Co0.4

Fe2O4@SiO2 (3), Ni0.3Zn0.3Co0.4Fe2O4@SiO2 (4), Ni0.4Zn0.2Co0.4Fe2O4@SiO2 (5), Ni0.5Zn0.1Co0.4Fe2O4

@SiO2 (6) and Ni0.6Co0.4Fe2O4@SiO2 (7) samples.

The sample with similar Zn2+ and Ni2+ ions content (Ni0.3Zn0.3Co0.4Fe2O4@SiO2)
shows the highest removal capacity, indicating that the equilibrium between Ni-ferrite
and Zn-ferrite assures the best photocatalytic performance. In addition, based on the
quantitative crystalline phase analysis, this sample contains a lower amount of α-Fe2O3
(2%) compared with samples Zn0.6Co0.4Fe2O4@SiO2 (1), Ni0.1Zn0.5Co0.4Fe2O4@SiO2 (2),
Ni0.2Zn0.4Co0.4Fe2O4@SiO2 (3), which means that in the case of this sample, α-Fe2O3 does
not significantly influence photocatalytic activity.

For this sample, the photodegradation kinetic was analyzed with respect to the ab-
sorbance of RhB using the pseudo-first order kinetic model (Equation (6)).

− ln
At

A∗0
= ki·t (6)

where At is the absorbance of RhB at time t, A∗0 is the absorbance of RhB at time t0 and ki
is the apparent kinetic constant (min−1). A linear relationship with the irradiation time
(Figure 7), with a rate constant of 2.79 × 10−3 min was obtained.
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3. Materials and Methods
3.1. Synthesis

The Ni-Zn-Co ferrite embedded in SiO2 matrix (60% wt. ferrite, 40% wt. SiO2) were
synthesized by sol-gel method using Ni(NO3)2·6H2O, Zn(NO3)2·6H2O, Co(NO3)2·6H2O,
Fe(NO3)3·9H2O, 1,4-butanediol (1,4-BD), tetraethyl orthosilicate (TEOS), ethanol and
HNO3 65%, using a Ni:Zn:Co:Fe molar ratio of 0:6:4:20 (Zn0.6Co0.4Fe2O4@SiO2), 1:5:4:20
(Ni0.1Zn0.5Co0.4Fe2O4@SiO2), 1:2:2:10 (Ni0.2Zn0.4Co0.4Fe2O4@SiO2), 3:3:4:20 (Ni0.3Zn0.3Co0.4
Fe2O4@SiO2), 2:1:2:10 (Ni0.4Zn0.2Co0.4Fe2O4@SiO2), 5:1:4:20 (Ni0.5Zn0.1Co0.4Fe2O4@SiO2),
6:0:4:20 (Ni0.6Co0.4Fe2O4@SiO2) and a nitrate:1,4-BD:TEOS molar ratio of 1:1:0.67. All
chemicals were of analytical grade (Merck) and used without further purification. The
resulting sols were kept at room temperature until gelation (5 weeks), ground, dried at
40 ◦C (5 h), and then subjected to thermal treatment 1000 ◦C.

3.2. Characterization

The formation and decomposition of the carboxylate-type precursor were investigated
by thermogravimetry (TG) and differential thermal analysis (DTA) using the SDT Q600 ther-
mogravimeter, in air, up to 1000 ◦C, at 10 ◦C·min−1 heating rate, using alumina standards.
The FT-IR spectra were recorded on KBr pellets containing 1% samples using a Perkin Elmer
Spectrum BX II spectrometer, while the XRD patterns were recorded at room temperature
using a Bruker D8 Advance diffractometer with CuKα1 radiation (λ = 1.54060 Å). The
Ni/Zn/Co molar ratios were confirmed using Perkin Elmer ICP-OES Optima 5300 DV
(Norwalk, CT, USA) after closed-vessel microwave-assisted aqua regia digestion using a
Speedwave Xpert system (Berghof, Germany). The specific surface area (SSA) was obtained
using the BET model from N2 adsorption-desorption isotherms recorded at −196 ◦C by a
Sorptomatic 1990 (Thermo Fisher Scientific) instrument. The UV–VIS absorption spectra
were recorded using a JASCO V570 UV–VIS-NIR spectrophotometer, equipped with a
JASCO ARN-475 absolute reflectivity measurement accessory.
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3.3. Sonophotocatalysis

The sonophotocatalytic activity of the samples was evaluated against RhB solution
under visible light irradiation in a Laboratory-Visible-Reactor system using a 400 W halogen
lamp (Osram) and an ultrasonic bath. The catalyst (10 mg) was suspended in an aqueous
solution of RhB (1.0 × 10−5 mol L−1, 20 mL), and the mixture was stirred in the dark to
achieve the adsorption equilibrium on the catalyst surface. Each degradation experiment
was conducted for 240 min. Samples from a given mixture (3.5 mL) were withdrawn for
analysis every 60 min. After separating the catalyst from the suspensions with a permanent
magnet, the solution was analyzed using a UV–Vis spectrophotometer by recording the
maximum absorbance of RhB at 554 nm. The sonophotocatalytic activity was estimated
based on the calculated degradation rate. Before the sonophotodegradation experiments,
the RhB adsorption on the surface of the nanoparticles was analyzed. The adsorption was
verified in the dark by mixing the photocatalyst into the RhB solution for 60 min until the
adsorption-desorption equilibrium was reached.

4. Conclusions

Ni-Zn-Co ferrites, with different Ni:Zn:Co ratios (Zn0.6Co0.4Fe2O4, Ni0.1Zn0.5Co0.4Fe2O4,
Ni0.2Zn0.4Co0.4Fe2O, Ni0.3Zn0.3Co0.4Fe2O4, Ni0.4Zn0.2Co0.4Fe2O4, Ni0.5Zn0.1Co0.4Fe2O4,
and Zn0.6Co0.4Fe2O4@SiO2), embedded in SiO2 were obtained by sol-gel method, fol-
lowed by thermal treatment at 1000 ◦C. The thermal analysis revealed the formation and
decomposition of metal succinate precursors in two stages, with distinct formation and
decomposition of divalent (Ni2+, Zn2+, Co2+) and trivalent (Fe3+) succinates. The shapes of
the DTA curves are similar, with the exception of the divalent metal’s succinate decomposi-
tion stage, where for samples with high Ni content, the intensity of the exothermic peak
decreases and shifts to higher temperatures. The total mass losses vary between 54.4–58.5%.
The precursor formation and their decomposition into ferrites, as well as the formation of
the silica matrix, are also confirmed by the FT-IR spectra. The XRD revealed the presence
of well-crystallized ferrites along two crystalline phases of the SiO2 matrix (cristobalite
and tridymite). In samples with high Zn content, traces of hematite were also identified.
The agglomeration of particles and the particle size of Ni-Zn-Co ferrites increase with
the increasing Ni content, from 34 nm to 40 nm. All of the samples show a good optical
response in the visible range, the best sonophotocatalytic performance being found for the
Ni0.3Zn0.3Co0.4Fe2O4@SiO2 sample, most likely due to the equilibrium between Ni-ferrite
and Zn-ferrite.
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