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Abstract: A new compound, exophilone (1), together with nine known compounds (2–10), were iso-
lated from a deep-sea-derived fungus, Exophiala oligosperma. Their chemical structures, including the
absolute configuration of 1, were elucidated using nuclear magnetic resonance (NMR) spectroscopy,
high-resolution electrospray ionization mass spectroscopy (HRESIMS), and electronic circular dichro-
ism (ECD) calculation. Compounds were preliminarily screened for their ability to inhibit collagen
accumulation. Compounds 1, 4, and 7 showed weaker inhibition of TGF-β1-induced total collagen
accumulation in compared with pirfenidone (73.14% inhibition rate). However, pirfenidone exhibited
cytotoxicity (77.57% survival rate), while compounds 1, 4, and 7 showed low cytotoxicity against
the HFL1 cell line. Particularly, exophilone (1) showed moderate collagen deposition inhibition
effect (60.44% inhibition rate) and low toxicity in HFL1 cells (98.14% survival rate) at a concentration
of 10 µM. A molecular docking study suggests that exophilone (1) binds to both TGF-β1 and its
receptor through hydrogen bonding interactions. Thus, exophilone (1) was identified as a promis-
ing anti-pulmonary fibrosis agent. It has the potential to be developed as a drug candidate for
pulmonary fibrosis.

Keywords: Exophiala oligosperma; marine fungus; pulmonary fibrosis (PF); molecular docking

1. Introduction

Deep-sea is one of the extreme ecological environments on earth, with high salinity,
high pressure, low temperature, low oxygen concentration, darkness, and other charac-
teristics [1]. Therefore, organisms, including microbes, that live in deep-sea are normally
equipped with certain physical and biochemical traits that help them survive that extreme
environment [2]. In addition, many of them have the ability to produce specialized metabo-
lites which are different from those produced by terrestrial organisms. Recent studies have
shown that fungi from extreme environments have great potential as a source of clinically
important compounds [1,3].

Tetrahydro carbazole derivatives have been isolated from microorganisms of terres-
trial and marine origin and exhibit a variety of activities, including anti-Candida albicans
activity [4], anti-Bacillus subtilis activity, and anti-Micrococcus luteus activity [5], etc. In
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particular, sorazolons D2, E, and E2 from Sorangium cellulosum strain Soce375 exhibited
anti-fibrosis activity [5]. Pulmonary fibrosis (PF) is a lung disease in which scarring of the
lungs increases over time [6]. The progression of PF is related to environmental pollution,
certain drug use, connective tissue diseases, infections (including COVID-19 and the related
SARS virus), and/or interstitial lung disease [7]. To date, only two drugs, nintedanib and
pirfenidone, have been approved by the FDA for the treatment of idiopathic pulmonary
fibrosis (IPF). Nintedanib can significantly slow disease progression compared to placebo
in IPF patients [8,9]. However, its clinical applications are somewhat limited due to poor
oral bioavailability, metabolic instability, and off-target side effects [10]. Clinical trials have
shown that pirfenidone alleviates the decline in lung function in patients with IPF, but
24.3% of patients stopped pirfenidone treatment due to adverse drug reactions in Japan [11].
Although lung transplantation is considered the most effective treatment for PF, it is limited
by the lack of suitable donor organs [12]. Therefore, there is still an urgent need to identify
and discover new agents to treat PF. PF is characterized by excessive collagen deposition in
the lung; therefore, an in vitro cell screening assay that is based on deposition of collagen
in cells has been established [13].

As part of an effort to discover anti-PF compounds from extremophilic fungi, we
investigated the metabolites of the fungus Exophiala oligosperma MCCC 3A01264, a “black-
yeast” isolated from seawater collected at a depth of 3300 m in the northern basin of the
South China Sea. While E. oligosperma has been reported to cause infections in humans,
particularly in immunocompromised patients [3], little is known about its secondary
metabolism or production of natural products. In this study, we focused our effort on
bioactive compounds that have potential to be developed as drugs for the treatment of
pulmonary fibrosis (PF). Here, we report the isolation, structure characterization, and
collagen accumulation inhibitory activity of a new compound, exophilone (1), together
with eleven known compounds (2–10) from E. oligosperma (Figure 1).
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Figure 1. Chemical structures of compounds 1–10.
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2. Results and Discussion
2.1. Structural Elucidation

Exophilone (1) was isolated as a pale yellow solid, and its molecular formula was
established to be C13H13NO3 by HRESIMS (m/z 232.0967 [M + H]+, calcd. 232.0968)
(Supplementary Figure S1), suggesting eight degrees of unsaturation. Analyses of its 1H,
13C, and HMQC NMR spectra (Table 1 and Supplementary Figures S2–S5) revealed the
presence of one carbonyl (C-1), two aromatic quaternary (C-4a, C-5a), two tertiary amines
(C-8a, C-1a), and four aromatic methines (C-5 to C-8), as well as one tertiary alcohol (C-2),
one secondary alcohol (C-3), one methylene (C-4), and one methyl (C-10). The carbonyl
and four double bonds accounted for five out of the eight degrees of unsaturation required
by the molecular formula, and the remaining three suggested a structure with three rings
in 1. Based on the COSY correlations between H-5 (δH 7.66, d, J = 7.8 Hz) and H-6 (δH 7.08,
ddd, J = 7.8, 7.2, 1.2 Hz), between H-6 and H-7 (δH 7.30, ddd, J = 7.8, 7.2, 1.2 Hz), between
H-7 and H-8 (δH 7.38, d, J = 7.8 Hz), as well as HMBC correlations between H-5 and C-5a
(δC 125.3), C-8a (δC 138.9), and C-4a (δC 123.6), between H-8 and C-5a (δC 125.3) and C-8a
(δC 138.9), between H-9 (δH 11.59, s) and C-4a (δC 123.6), C-5a (δC 125.3), C-8a (δC 138.9),
and C-1a (δC 129.5), the presence of 2,3-substituted indole moiety was confirmed (Figure 2
and Supplementary Figure S6–S7). The third ring was confirmed by C-1 (δC 192.4) to C-4
(δC 27.5), where C-1 attaches to C-1a and C-4 attaches to C-4a. This was supported by the
HMBC correlation between C-4 methylene protons and C-4a, C-1a, C-2, and C-3, between
the methylene protons and the carbonyl C-1, between the methyl protons CH3-10 (δH 1.24,
s) and C-2, C-1, and between H-3 (δH 4.03, m) and C-4a suggested that C-1 is connected
to C-2 and C-2 is connected to C-3 and C-10. Further, the HMBC spectrum allowed the
assignment of the position of the OH groups (δH 5.25 and 5.16 ppm) to C-11 and C-12 from
their correlations with C-1 and C-10 as well as C-2 and C-4, respectively (Figure 2 and
Supplementary Figure S7). Hence, the structure of 1 was elucidated as shown (Figure 1).

Table 1. 1H (400 Hz) and 13C (100 Hz) NMR data for compound 1 in DMSO-d6.

Position δC, Type δH, Mult. (J in Hz)

1 192.4, CO
2 77.3, C
3 74.2, CH 4.03, m

4 27.5, CH2
2.76, m
3.28, m

4a 123.6, C
5a 125.3, C
5 121.2, CH 7.66, d (7.8)
6 119.7, CH 7.08, ddd (7.8, 7.2, 1.2)
7 126.2, CH 7.30, ddd (7.8, 7.2, 1.2)
8 112.8, CH 7.38, d (7.8)
8a 138.9, C
9 NH 11.59, brs
1a 129.5, C
10 18.6, CH3 1.24, s
11 OH 5.25, brs
12 OH 5.16, d (3.6)

Since the NOESY spectrum of 1 (Supplementary Figure S8) did not provide enough
information to determine its configuration, the absolute configuration of 1 was elucidated
to be 2S, 3R by comparisons of the experimental and calculated electronic circular dichroism
(ECD) spectra (Figure 3). Since the structure of 1 has not been reported previously, it is
named exophilone (1).
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Figure 3. Comparisons of the experimental and calculated ECD spectra of 1.

The other eleven compounds were determined to be flazine (2) [14], perlolyrine
(3) [15], (1H-indol-3-yl) oxoacetamide (4) [16], N-acetyl tryptamine (5) [17], indole-3-
methylethanoate (6) [18], 3-(hydroxyacetyl)-indole (7) [19], indole-3-acetic acid (8) [20],
N-acetyl-tyramine (9) [21], and uracil (10) [22] by comparing their NMR data (Supplemen-
tary Figures S9–S26) with those reported in the literature.

2.2. Effect of Compounds 1–10 on HFL1 Cell Viability

To assess the cytotoxicity of compounds 1–10, we performed cell viability assay with
the HFL1 cell line. The cells were treated with compounds 1–10 as well as with pirfenidone
as a positive control for 48 h, and the cell viability was measured and compared with the
untreated control group (control) (Figure 4A and Table 2). Among the compounds tested,
compound 8 and pirfenidone are somewhat toxic to HFL1 cells at 10 µM, with cell survival
rates of 78.49% and 77.57%, respectively. On the other hand, compounds 1, 2–7, 9, and 10
did not significantly affect cell viability at the same concentration. Particularly, compounds
1, 4, and 7 had no cytotoxicity at 10 µM, with the cell survival rates of above 98%.
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Table 2. Collagen accumulation inhibition rate (IR) and cell survival rate (SR) of 1-10.

Compound Inhibition (%) Survival Rate (%)

1 60.44 ± 1.54 98.14 ± 6.20
2 26.28 ± 2.53 98.28 ± 11.15
3 2.19 ± 1.34 81.69 ± 3.36
4 57.37 ± 7.65 91.56 ± 10.17
5 40.88 ± 10.52 96.11 ± 1.80
6 1.46 ± 1.16 87.01 ± 1.13
7 44.96 ± 2.82 99.25 ± 12.96
8 20.15 ± 4.49 78.49 ± 8.92
9 25.11 ± 4.97 84.93 ± 7.86
10 35.62 ± 8.39 86.96 ± 9.81

pirfenidone 73.14 ± 4.72 77.57 ± 0.52
Inhibitory effect against TGF-β1 induced total collagen accumulation in HFL1 cells at a concentration of 10 µM. Cell
survival rate is calculated by CCK8 assay. The results are the mean ± SD of at least three independent experiments.

2.3. Effect of Compounds 1–10 on HFL1 Cell Collagen Accumulation

To evaluate the compounds’ inhibitory activity on TGF-β1-induced total collagen
accumulation, the Sirius red dye staining, which has been accepted to be an effective
and convenient method for the anti-fibrotic screening model in vitro [13,23], was used.
Among the compounds tested, compounds 1, 4, and 7 showed good inhibition of collagen
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accumulation (60.44%, 57.37%, and 44.96%) in HFL1 cells (Table 2 and Figure 4B). While they
are somewhat less active than pirfenidone, their toxicity profiles are less than pirfenidone
(77.57% survival rate) toward HFL1 cells. More significantly, exophilone (1) showed a
respectable collagen deposition inhibition effect (60.44% inhibition rate) and low toxicity
toward HFL1 cells (98.14% survival rate) at a concentration of 10 µM. The cells were
observed with Picro-Sirius Red staining and visualized (Figure 5).
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Figure 5. Picro-Sirius Red (PSR) staining for the total collagen accumulation induced by TGF-β1 in
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compounds 1, 4, 7, pirfenidone, and the control group (untreated normal cells). Scale bar: 200 µM.

2.4. Molecular Docking Study

The inhibitory effect of compound 1 on TGF-β1-induced total collagen accumulation
in HFL1 cells might be due to its competitive binding with TGF-β1 (PDBID: 1KLS) or with
its receptors (PDBID: 3KFD). In order to investigate the binding mode of compound 1,
molecular docking experiments were performed using Autodock software 1.56 [24]. The
results are shown in Figure 6.
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(B) Docking mode of compound 1 to 3KFD (Yellow dotted lines represent hydrogen bonds, and
numbers represent bond distances).
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The docking study showed three hydrogen bonds between compound 1 and the active
site residues of TGF-β1 (1KLS) (Figure 6A); a strong hydrogen bond (distance: 1.7 Å)
between the indole nitrogen atom and the Cys-78 residue of TGF-β1, and two hydrogen
bonds (distance: 2.2, 1.8 Å) between the two hydroxyl groups and Cys-78 and Gly-46,
respectively. The data suggest that compound 1 may inhibit TGF-β1-induced total collagen
accumulation in HFL1 cells by directly binding to TGF-β1. However, the study also showed
three hydrogen bonds between compound 1 and the TGF-β1 receptor (3KFD) (Figure 6B);
one hydrogen bond (distance: 1.7 Å) between the indole nitrogen atom and Cys-76, a
hydrogen bond (distance: 2.9 Å) between the C-1 ketone and Cys-76, and another hydrogen
bond between the C-3 hydroxyl group and Cys-62 (distance: 1.9 Å). The results suggest
that compound 1 may bind to the active site of the TGF-β1 as well as to its receptor by
hydrogen bonding interactions. These may preliminarily explain why compound 1 inhibits
the accumulation of collagen induced by TGF-β1 similar to pirfenidone in HFL1 cells.
The interactions of compound 1 with TGF-β1 and its receptor will be a subject of our
future investigations.

3. Discussion

Exophilone (1) is a tetrahydro carbazole derivative that is structurally very simi-
lar to Sorazolon A [5], which was previously found in soil-derived Sorangium cellulosum
strain soce375 and thus presumably has a similar biosynthetic pathway. The main differ-
ences between exophilone (1) and Sorazolon A are the carbonyl C-1 and the secondary
alcohol C-3 replacing the tertiary alcohol and carbonyl. Natural tetrahydro carbazole
derivatives, including 3-hydroxy-1,2-dimethyl-1,2,3,9-tetrahydrocarbazol-4-one isolated
from Streptomyces ehimensis strain JB201 [4] and carbazomycin dimers and 3-hydroxy-1,2-
dimethyl-2,3-dihydro-1H-carbazol-4-one isolated from Streptomyces sp. BCC26924 [25],
showed antifungal activity and antituberculosis activity. Furthermore, synthetic tetrahydro
carbazole protects DNA against oxidative stress [26]. Natural products are a rich source
of lead molecules for anti-fibrosis drug discovery. Current pulmonary fibrosis treatment
drugs (e.g., colchicine, cyclophosphamide, cyclosporine A, pirfenidone, and nitinol) have
therapeutic effects but also significant side effects. Therefore, it is crucial to screen drugs
with progressive therapeutic effects to treat pulmonary fibrosis [27].

In this study, a new compound, exophilone (1), together with nine known compounds
(2–10), were isolated from a deep-sea-derived fungus, Exophiala oligosperma. Among them,
exophilone (1) showed the best anti-pulmonary fibrosis activity, with low toxicity in HFL1
cells (98.14% survival rate) at a concentration of 10 µM. Exophilone (1) has the potential of
anti-pulmonary fibrosis and may bind to both TGF-β1 and its receptor through hydrogen
bonding interactions.

4. Materials and Methods
4.1. General Procedures

The PerkinElmer Spectrum Two spectrometer (PerkinElmer, Waltham, MA, USA) was
used for IR spectra measurement. ECD spectra were measured on a Chirascan circular
dichroism spectrometer (Applied Photophysics Ltd., Leatherhead, UK). UV spectra were
obtained on a Shimadzu UV-vis-NIR spectrophotometer (Shimadzu Corporation, Nakagyo-
ku, Kyoto, Japan). 1D and 2D NMR spectra were recorded in CDCl3 or DMSO-d6 on Bruker
Avance II 400, Bruker Avance IIIT 500HD, Bruker Avance IIIT 600AV spectrometers (Bruker
Bio Spin AG, Industriestrasse 26, Fällanden, Switzerland). The chemical shifts are relative to
the residual solvent signals (CDCl3: δH 7.260 and δC 77.160; DMSO-d6: δH 2.500, δC 39.520).
The high-resolution ESI-MS spectra were obtained on a Thermo Fisher LTQ Orbitrap Elite
High-Resolution liquid chromatography-mass spectrometer (Thermo Fisher Scientific Inc.,
Waltham, MA, USA). Preparative HPLC was performed using a Shimadzu LC-15C HPLC
pump (Shimadzu Corporation, Nakagyo-ku, Kyoto, Japan) supplied with an SPD-15C
dual λ absorbance detector (Shimadzu Corporation, Nakagyo-ku, Kyoto, Japan), and a
Shim-pack PRC-ODS HPLC column I (250 × 20 mm i.d., 5 µm, Shimadzu Corporation,
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Nakagyo-ku, Kyoto, Japan). Silica gel (SiO2, 200–300 mesh, Qingdao Puke parting Materials
Co., Ltd. Qingdao, China) and Sephadex LH-20 (green herbs, Beijing, China) were used for
column chromatography.

4.2. Fungal Strain and Culture Method

The marine fugus Exophiala oligosperma MCCC 3A01264 was obtained from Marine
Culture Collection of China (MCCC). It was originally isolated from seawater collected
at a depth of 3300 m in northern basin of the South China Sea. A voucher specimen was
stored in the School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P.R.
China. Analysis of the internal transcribed spacer (ITS) rDNA by BLAST database screening
provided a 99.9% match to Exophiala oligosperma.

The fermentation medium contained glucose (15 g/L), peptone (10 g/L), yeast extract
(2 g/L), L-tryptophan (2 g/L), L-phenylalanine (2 g/L), L-methionine (2 g/L), L-threonine
(2 g/L), sea salt (25 g/L), and H2O (1 L), and was adjusted to pH 7.5. Fungal mycelia were
cut uniformly and transferred aseptically to 1 L Erlenmeyer flasks with each containing
600 mL liquid medium sterilized at 120 ◦C for 30 min. The flasks were incubated at 28 ◦C
for 60 days.

4.3. Extraction and Isolation

Two hundred liters of culture broth were filtered through the cheesecloth. The culture
broth was extracted three times using EtOAc and then concentrated under reduced pressure
to afford an EtOAc extract (31.68 g).

The EtOAc extract was chromatographed on a silica gel column (diameter: 80 mm,
length: 610 mm, silica gel: 400 g) with a gradient of petroleum ether–EtOAc (10:0–0:10,
v/v) followed by EtOAc–MeOH (10:0–0:10, v/v) to afford 10 fractions (coded Fr.1–Fr.10).
Compound 8 (320 mg) was crystallized from Fr.6 severally. Fr.7 (1.2 g) was subjected to a
silica gel column (7 g) eluted with petroleum ether-EtOAc (100:0−0:100) (total volume 2 L)
with increasing polarity to obtain ten subfractions (Fr.7-1−Fr.7-10) after pooling the similar
fractions as monitored by TLC (petroleum ether−EtOAc = 4:1). Compound 6 (4.2 mg)
was obtained from Fr.7-4 directly. Fraction 8 (143 mg) was chromatographed on Sephadex
LH-20 (10 g) and eluted with MeOH (total volume 500 mL) to give five subfractions (Fr.8-
1−Fr.8-5). Fr.8-4 was further fractionated by preparative HPLC (MeOH–H2O, 55:45, v/v,
column I) to yield compound 1 (2.1 mg, TR = 22 min), compound 7 (3.0 mg, TR = 16.5 min),
and compound 4 (4.2 mg, TR = 25 min). Compound 2 was filtered from Fr.10 directly.
The rest of Fr.10 was separated by silica gel column using a step gradient elution with
petroleum ether–EtOAc (10:0–0:10) to get 5 subfractions (Fr.10-1–Fr.10-5). Compound 5
(RT = 40.2 min, 3 mg), compound 3 (RT = 23 min, 8 mg), and compound 9 (RT = 36 min,
6 mg) were obtained from Fr.10-2 by preparative HPLC (MeOH–H2O, 80:20, v/v, column I).
Compound 10 (RT = 15 min, 2 mg) was isolated by preparative HPLC (MeOH–H2O, 80:20,
v/v, column I).

Exophilone (1). UV (MeOH) λmax (logε) 307 (1.20), 233 (1.29), 206 (2.02). ECD (0.3 mM,
MeOH) λmax (∆ε) 211 (+3.05) nm. IR υmax 3287, 2922, 2852, 1716, 1651, 1456, 1374, 1330,
1237, 1152, 1097, 1070, 1044, 998, 920, 744, 554 cm−1. 1H and 13C NMR data, shown in
Table 1; HR-ESI-MS m/z 232.0967 [M + H]+ (calcd. for C13H13NO3, 232.0968).

4.4. Cell Culture and Cytotoxicity Assay

The human fetal lung fibroblasts (HFL1) were purchased from Procell Life Science &
Technology Co., Ltd. (Cat. No.: CL-0106 Wuhan, China). Cells were cultured in Ham’s
F-12K medium (PM150910, Procell Life Science & Technology, Wuhan, China) supple-
mented with 10% fetal bovine serum (FBS) (#10270-106, GIBCO, Invitrogen, Carlsbad,
CA, USA) and 1% penicillin-streptomycin in an incubator at 37 ◦C with 5% CO2. The
cell viability was assayed using the Cell Counting Kit-8 (CCK8) according to the manu-
facturer’s protocol. The cells were treated with 10 µM compounds 1-10, or pirfenidone
(TargetMol, Wellesley Hills, MA, USA) for 48 h. The absorbance of the solution was
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then measured at 450 nm using a microplate reader (Thermo Fisher, Waltham, MA, USA).
Survival rate = (Administration A value − Blank A value)/(Control A value − Blank A
value) × 100%. All assays were repeated in triplicate.

4.5. Collagen Accumulation Inhibition In Vitro

The anti-fibrosis activities of the compounds were tested in HFL1 cells. The cells were
treated with medium containing TGF-β1 (5 ng/mL) and 10 µM compounds 1-10, and pir-
fenidone for 48 h. Subsequently, the supernatant was removed, and 4% paraformaldehyde
was added to fix for 30 min at room temperature. Next, the cells were washed with PBS
twice and then were added the 0.1% Sirius red dye with saturated picric acid. After 4 h
of staining protected from light, the collagenous fiber was dyed red. Then, the cells were
washed three times with 0.1% acetic acid and visualized under a cell imaging system (EVOS
FL Auto, Life Technologies, Carlsbad, CA, USA). For the quantitative determinations of the
accumulated collagen, the stained cells were destained with 0.1 M NaOH (100 µL/well) for
10 min. Then, the absorbance was measured at 540 nm with a spectrophotometer. Total
collagen accumulation inhibition = 1 − (Administration A value − control A value)/(model
A value − control A value) × 100%. All assays were repeated in triplicate.

4.6. Molecular Docking

Protein structure was obtained from the Protein Data Bank (https://www.pdbus.org/,
accessed on 29 May 2022). The X-ray crystal structure of TGF-β1 (PDB ID: 1LKS) and its
receptor (PDB ID: 3KFD) were chosen for the molecular docking analysis in this study.
Compound 1 was prepared with Avogadro 1.1.1, with a 5000 steps Steepest Descent as
well as 1000 steps Conjugate Gradients geometry optimization using MMFF94 force field.
Docking experiments were performed using AutoDock 1.56 Vina and Pymol 2.4.

4.7. Statistical Analysis

The data are represented as the mean ± SD. Statistical analysis was performed using
the GraphPad Prism 8.0 software (San Diego, CA, USA). The significant differences be-
tween groups were statistically analyzed using the one-way analysis of variance (ANOVA)
followed by a post hoc test (LSD). All differences were considered statistically significant at
p < 0.05.

5. Conclusions

A new tetrahydrocarbazol-1-one analogue, exophilone (1), together with nine known
compounds (2–10), were isolated from a deep-see-derived fungus Exophiala oligosperma.
Among all compounds, exophilone (1) showed the most significant inhibition of collagen
accumulation with low toxicity in HFL1 cells. Further molecular docking experiments
showed that exophilone (1) may act through hydrogen bonding to the stimulation site of
TGF-β1 and its receptor. Given the limitations of the available anti-pulmonary fibrosis
drugs, exophilone (1) and its analogs could be developed as candidates for the treatment of
pulmonary fibrosis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/md20070448/s1. Figures S1–S26: The HR-(+)ESI-MS and NMR spectra of compounds 1–10;
Figures S27–S30: NMR spectra of Compounds 11 and 12.
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