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Abstract

Protein-coding genes evolved codon usage bias due to the combined but uneven effects of adaptive and nonadaptive
influences. Studies in model fungi agree on codon usage bias as an adaptation for fine-tuning gene expression levels;
however, such knowledge is lacking for most other fungi. Our comparative genomics analysis of over 450 species supports
codon usage and transfer RNAs (tRNAs) as coadapted for translation speed and this is most likely a realization of
convergent evolution. Rather than drift, phylogenetic reconstruction inferred adaptive radiation as the best explanation
for the variation of interspecific codon usage bias. Although the phylogenetic signals for individual codon and tRNAs
frequencies are lower than expected by genetic drift, we found remarkable conservation of highly expressed genes being
codon optimized for translation by the most abundant tRNAs, especially by inosine-modified tRNAs. As an application,
we present a sequence-to-expression neural network that uses codons to reliably predict highly expressed transcripts. The
kingdom Fungi, with over a million species, includes many key players in various ecosystems and good targets for
biotechnology. Collectively, our results have implications for better understanding the evolutionary success of fungi,
as well as informing the biosynthetic manipulation of fungal genes.
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Introduction
The billion-year-old kingdom Fungi, comprising at least 1.5
million species, is deeply intertwined with the diversification
and maintenance of terrestrial ecosystems (Berbee et al.
2017). Paleobotanical studies owe the successful colonization
of land by primitive plants—resulting in the greening of the
Earth that facilitated the evolution of more complex animal
forms—to their mutualistic symbioses with soil fungi (Field
et al. 2015). Indeed, 90% of extant plant species still rely on
mycorrhizal fungi for nutrient uptake and resistance to
pathogens and abiotic stressors (Chen et al. 2018). Many fungi
are also pathogens of plants, fungi, and animals, and pose an
emerging medical threat to humans (Janbon et al. 2019). The
diversity of fungal bioproducts is leveraged in biotechnology
to manufacture commercial enzymes, medicines, and even
biofuel (Sepp€al€a et al. 2017). Therefore, a comprehensive un-
derstanding of the evolution of fungal genomes and traits is
valuable to several applications.

Codon usage analysis is an established framework for
studying the evolution of protein-coding genes. Although
the genetic code assigns 61 mRNA codons to 20 amino acids,
most organisms have evolved an unequal representation of
synonymous codons, or codon usage bias. The widely ac-
cepted mutation-selection-drift theory posits that codon

usage bias is generated by evolutionary forces that imprinted
nonadaptive (neutral) and adaptive mutations at the silent
sites within coding sequences (Grantham 1980; Bulmer 1991).
But far from being silent, functional studies in model fungal
systems such as Neurospora crassa and Saccharomyces cere-
visiae (baker’s yeast) demonstrates how the influence of syn-
onymous mutations percolates through all layers of gene
expression, from mRNA transcription (Zhao et al. 2021),
steady-state mRNA levels (Sharp and Li 1987), mRNA stability
(Presnyak et al. 2015), elongation rate of protein synthesis
(Tuller et al. 2010), and cotranslational protein folding
(Pechmann and Frydman 2013).

Because transfer RNAs (tRNAs) universally translate
codons to amino acids during protein synthesis, codon usage
variation within genomes may reflect selection for balancing
codon demand with tRNA supply in order to fine-tune
mRNA translation (Hershberg and Petrov 2008). Ideally, for
each of the 61 sense codons, there should be 61 distinct tRNA
anticodon types. However, species usually lack the full com-
plement of tRNA types because tRNAs often engage in wob-
ble decoding (Marck and Grosjean 2002). Moreover, the
genomic dosage of different tRNAs takes on a dynamic range,
from single copy to even hundreds of identical or near-
identical copies within the same genome. This imbalance in
the supply decoding tRNAs among synonymous codons
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establishes the selective pressure that underlies adaptive co-
don usage bias in several species, including S. cerevisiae
(Ikemura 1982). Indeed, a hallmark of adaptive codon usage
bias is the preference of highly abundant mRNAs for transla-
tionally optimal codons that are decoded by abundant tRNAs
(Sharp et al. 2010; Novoa et al. 2012). Therefore, disentangling
the signals of neutral and adaptive forces on codon usage
offers insight into the evolutionary processes that contribute
to the fitness and biodiversity of species (Novoa et al. 2019).
However, outside of model species, codon usage patterns
across the fungal phylogeny remain largely uncharacterized.

Comparative studies aim to disentangle the trait variation
due to shared ancestry versus adaptation. Because of com-
mon descent, phenotypic traits from closely related species
are likely to violate the identically and independently distrib-
uted requirement of standard regression tests which risks an
increase in type I errors. Phylogenetic comparative methods
(PCMs) are regression algorithms that were developed to
account for phylogenetic signal in comparative trait data
(Felsenstein 1985). Phylogenetic signal is the tendency of
closely related species to exhibit greater similarities in traits
than other species when sampled randomly from the same
phylogenetic tree. The strength and direction of the phylo-
genetic signal are used to infer whether trait variation exhibits
signs of evolution due to genetic drift, stabilizing selection,
divergent, or convergent evolution (Pagel 1999; Blomberg
et al. 2003). PCMs have been applied to interrogate macro-
evolutionary questions, such as the evolution of fungal modes
of nutrition (James 2006), evolution of physiological and be-
havioral traits in primates (Kamilar and Cooper 2013), plant-
pollinator coevolution (Smith 2010), and trait evolution by
adaptive radiation in reptiles and avians (Pincheira-Donoso
et al. 2015; McEntee et al. 2018). However, the application of
PCMs is rather limited in cross-species codon usage studies
(Sharp et al. 2010; LaBella et al. 2019). Recent large-scale se-
quencing projects have advanced our understanding of fun-
gal phylogeny (Grigoriev et al. 2014; Ahrendt et al. 2018),
thereby broadening the scope for comparative studies.

Here, we aimed to detail the evolutionary and functional
underpinnings of codon usage variation in Kingdom Fungi by
analyzing coding sequences and tRNA data from over 450
representative species that are distributed across 18 taxo-
nomic classes and six major phyla (Spatafora et al. 2017).
Principal component analysis (PCA) of codon usage frequen-
cies effectively separated the species into respective subking-
doms, with the rare codons AUAIle and GGGGly driving the
codon-specific variation. Using phylogenetic reconstruction
methods, we inferred the evolutionary processes, including
adaptive mechanisms that explain change in codon usage
and tRNA patterns over time. We also performed genome-
level analyses to examine the relationship between codon
usage, tRNA supply, and gene expression levels.
Phylogenetic signals of codon frequencies and genomic
tRNA abundance were weaker than expected by genetic drift
and phylogenetic relatedness. Yet, most genomes converged
toward translation bias, wherein the most abundant mRNAs
are enriched with codons for major tRNAs, in contrast to the
low abundant mRNAs having greater codon bias for minor

tRNAs. Finally, given the prevalence of adaptive codon usage,
we present a neural network, Codon2Vec, that directly takes
the coding sequences as input to reliably predict expression
(median accuracy of 83.8% 60.05). Altogether, our results
support that natural selection for the efficiency of mRNA
translation is a conserved influence among fungi.

Results

Adaptative Radiation Best Explains the
Macroevolution of Codon Usage Bias
We obtained predicted protein-coding and tRNA genes from
459 species sampled from six out of the eight recognized
fungal phyla (Materials and Methods). Namely, 57 species
belonging to the four early-diverging phyla of
Chytridiomycota, Blastidiomycota, Zoopagomycota,
Mucoromycota, and 402 species from the two dikarya phyla
Basidiomycota and Ascomycota. Dikarya is the more species-
rich subkingdom comprising 98% of all fungi—but 90% of our
data set—and is characterized by a more complex sexual
lifecycle (Stajich et al. 2009).

Codon Usage Bias Is Evolutionarily Correlated with the Usage

of GC-Ending Codons
We measured the degree of codon usage bias by computing
the effective number of codons, ENC, for each species (Wright
1990). ENC ranges from 20 to 61, where 20 represents ex-
treme bias of using only one codon per amino acid, whereas
61 represents uniform synonymous codon usage, that is, no
bias. The mean ENC values ranged from 32.8 (high bias) to
56.9 (weak bias). To visualize the macroevolutionary pattern
of codon usage bias, we applied continuous maximum-likeli-
hood ancestral state reconstruction (Revell 2013) that pro-
jected the species ENC values onto a pruned phylogenetic
tree. The ancestral reconstruction shows that the more biased
genomes accumulate in the early diverging lineages (fig. 1A)
with the most codon-biased genomes occurring in
Neocallimastigomycota, the earliest diverging class of free-
living fungi (Berbee et al. 2017). Also, there is more fluctuation
in codon bias along the upper branches that slows down
upon the divergence of Agaricomycotina, the largest class
(�70%) in Basidiomycota. Similarly, species in Ascomycota
exhibit less variation in their codon bias. Variation in the
GC content at the third codon position (GC3%) is closely
linked to codon usage bias because all degenerate amino acids
allow for silent G or C substitutions. The mean GC3% ranges
from 10.6% to 85.1%, with a median of 57%. Overall, early-
diverging fungi exhibit, on average, lower GC3% but more
variability among individual values (fig. 1A).

Next, we assessed the evolutionary relationship between
codon usage bias and GC3% using phylogenetic independent
contrast (PIC). PIC regression corrects for phylogenetic non-
independence by using the contrasts between nodes instead
of the trait values directly (Garland et al. 1992). For the entire
tree, the PIC model ENC� GC3 yielded a negative coefficient
of �14.1 (adjusted R2 ¼ 11.8%, P value¼ 3.79e�13). Because
PIC is calculated without an intercept term, the R2 coefficient
is the square of the Pearson’s R correlation coefficient.
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Therefore, codon usage bias and GC3% are moderately cor-
related (Pearson’s R¼ 34.4%). Although it may be reasonable
to assume the evolutionary GC3 bias is driven by the usage of
G/C-ending codons, it was found that the usage of certain G/
C-ending codons was negatively correlated with GC3 bias in
some plants and prokaryotes (Palidwor et al. 2010). To eval-
uate the relationship between codon usage and GC3 bias, we
computed the phylogenetic-corrected Pearson’s correlation
between individual codon frequencies (normalized for amino
acid usage), GC3%, and ENC, separately. The usage of all G/C-
ending codons are positively correlated with GC3%, whereas
all A/U-ending codons are anticorrelated with GC3% (fig. 1B).
All G/C-ending codons negatively correlated with ENC, which
means that the increase in usage of G/C-ending codons cor-
relates with an increase in codon bias. Conversely, the usage

of all A/U ending negatively correlates with codon bias.
Interestingly, we obtained different correlation values be-
tween codon bias and the normalized codon frequencies
with and without phylogenetic correction. Without the cor-
rection, some A/U codons positively correlate with codon
bias, and some G/C-ending codons negatively correlate
with codon bias (fig. 1C). This discrepancy suggests that co-
don frequencies also have phylogenetic signal.

Because the relationship between codon bias and GC3%
seems inverted for the early-diverging and dikaryic lineages
(fig. 1), we split the tree into the separate subkingdoms and
re-evaluated the phylogenetic correlation between codon us-
age bias and GC3%. Codon bias and GC3% are evolutionarily
anticorrelated in the early-diverging subtree (coef-
ficient¼ 21.1, R2 ¼ 32.6%, P value¼ 9.02e�06, number of

FIG. 1. Inferring the tempo and mode of the evolution of codon usage bias and GC3% in fungi. (A) Ancestral reconstruction of the codon usage bias,
measured by the mean effective number of codons (ENC), and GC3% projected onto a pruned fungal phylogenetic tree (number of tips ¼ 417
species). Color gradient represents the trait values for species at the tips and estimated trait values for internal nodes. Species with higher codon
usage bias-lower ENC— and low GC3% primarily accumulate in the early diverging lineages. Size of tree obscures tip labels but greater details are
available in supplementary data, Supplementary Material online. Sample species photo credits: https://mycocosm.jgi.doe.gov/mycocosm/. (B)
Cluster heatmap showing phylogenetic corrected Pearson’s R correlation between normalized codon usage, GC3 content (GC3%), and ENC. G/C-
ending codons are all positively correlated with GC3% and codon usage bias, whereas as A/U-ending codons are all negatively correlated with
GC3% and codon usage bias. (C) Scatterplot showing Pearson’s R correlation coefficients between individual codon frequencies and codon usage
bias (ENC) with and without correcting for phylogenetic signal.
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tips¼ 51 species). In contrast, dikarya species are positively
GC3% biased (coefficient ¼ �30.1, R2 ¼50.2%, P val-
ue< 2.16e�16; number of tips¼ 364).

Fitting Macroevolutionary Models to Codon Usage Bias
Phenotypic variation among extant species is a confluence of
shared ancestry and responses to neutral and adaptive pro-
cesses. Interspecies codon usage bias is widely ascribed to neu-
tral drift (Grantham et al. 1980). To determine the pattern of
evolution that best explains codon usage bias, we fitted four
different likelihood models of macroevolution to the ENC and
GC3 values: 1) Brownian motion (BM) (drift/random walk), 2)
Ornstein–Uhlenbeck (fluctuating directional selection), 3) early
burst (exponential decrease in trait variation over time), and 4)
delta (rate-shifted BM) (Pennell et al. 2014). Notably, Brownian
motion is the null hypothesis of genetic drift that models in-
terspecies trait data as a random walk (Felsenstein 1985). Based
on the goodness-of-fit Akaike information criterion (AIC)
scores, the early-burst model, which simulates adaptive radia-
tion, best explained the phylogenetic variation of both codon
bias and GC3% (supplementary table 2, Supplementary
Material online). Macroevolution by adaptive radiation is char-
acterized by higher rates of trait evolution early in a clade’s
history followed by an exponential decline through time
(Simpson 1953).

Codon-Level Macroevolutionary Analysis Reveals
Codon Frequencies as Mostly Deviate from Genetic
Drift
Because variation in the frequencies of synonymous codons
underlies codon usage bias, we examined the macroevolu-
tionary trends of the individual codons. First, we quantified
genome-wide relative synonymous codon usage (RSCU) of
the 59 degenerate codons (Sharp et al. 1986). RSCU¼ 1
means codons are used according to neutral or uniform
expectation. Importantly, RSCU normalizes codon frequen-
cies within their amino acid class, which minimizes amino
acid composition effects. To characterize which codons
fungi generally prefer for making proteins, we quantified
the most (highest RSCU) and least (lowest RSCU) preferred
codons. Overall, C-ending codons consistently had the high-
est transcriptomic representation across the amino acid
types (supplementary fig. S1A and C, Supplementary
Material online).

To summarize variation of interspecies codon usage, we
performed multivariate analysis using PCA on the 59 RSCU�
459 species matrix. The first two principal components
explained 82% of the interspecies variation (fig. 2A). PC1
(78% explained variance) separated species according to dif-
ferences in GC content at the third codon position (GC3%),
wherein loadings of G/C- and A/U-ending codons are equally
but inversely correlated to PC1 (fig. 2B). This finding aligns
with previous work that establishes variation in GþC con-
tent as the major determinant of interspecies differences in
codon usage bias (Chen et al. 2004; Novoa et al. 2019). The
second principal component, PC2, 4.0% explained variance is
driven by differences in individual codon frequencies, with the

strongest signal due to the rare codons GGGGly and AUAIle

(fig. 2B and supplementary fig. S1B, Supplementary Material
online). Notably, PCA separated the species into their sub-
kingdoms (fig. 2A).

The subkingdom clustering by the PCA led us to measure
the extent to which phylogenetic effect (i.e., phylogenetic
relatedness) underlies the choice of codon representation of
the genome. To this end, we computed the Blomberg’s K
statistic (Materials and Methods) of the normalized codon
frequencies. Blomberg’s K measures the strength and direc-
tion of trait evolution relative to that expected under the
BM model that considers the phylogenetic distance as the
only predictor of trait similarity among species (Blomberg
et al. 2003). All codons reported statistically significant phy-
logenetic signals (P values< 0.05). However, the strength
and direction of evolution, even among synonymous
codons, varied (fig. 2C). A total of 37/59 codons exhibited
low phylogenetic signal (K< 1), suggesting variation due to
convergent evolution (Revell et al. 2008; Kamilar and
Cooper 2013). Eight out of the 59 codons followed the
expected Brownian process (K¼ 1) of genetic drift. A total
of 14 out of the 59 codons exhibited high phylogenetic
signal (K> 1) indicative of either stabilizing selection or
low rates of evolution (Blomberg et al. 2003). We also fitted
different models of macroevolution to the individual codon
frequencies. Like genomic codon usage bias, adaptive radia-
tion was the best fitting model for all the 59 degenerate
codons (supplementary data, Supplementary Material on-
line). Taken together, these findings highlight that individual
codons follow different modes of evolution. Importantly, the
frequencies of 51 out of 59 codons are not fully explained by
phylogenetic relatedness that is expected under genetic
drift.

Identification of Phylogenetically Rare tRNAs and
Strong Evolutionary Preference for Inosine34-
Modified tRNAs
Considering that the frequencies of most codons deviated from
genetic drift, the next logical step was to analyze the tRNA gene
sets because codon usage is widely believed to coevolve with
tRNA supply in several species (Sharp et al. 2010). Both the
number of distinct tRNA anticodon types and total tRNA
genes (tRNAome) vary widely across the 459 genomes under
study. The median number of distinct anticodon types is 44,
ranging from a maximum of 58 in Ascobolus immersus and a
minimum of 18 in Sporobolomyces linderae (supplementary fig.
S2A, Supplementary Material online). Like all previously studied
genomes, no species in our data set possessed the full theoret-
ical complement of 61 tRNA anticodon families (Marck and
Grosjean 2002). Interestingly, we identified 11 species possess-
ing less than 30 anticodons, which is the theoretical minimum
for decoding the standard genetic code (Marck and Grosjean
2002). The median tRNAome is 144 genes, with a minimum of
24 and a maximum of 4,547. Caecomyces churrovis, Ascobolus
immersus, and Melampsora allii populina possessed unusually
large tRNAomes of 4547, 3481, and 2216 genes, respectively
(supplementary fig. S2B, Supplementary Material online).
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Next, we measured the phylogenetic signal of the copy
number for tRNAs that are cognate to the 59 degenerate
sense codons. Like most codons, tRNAs also exhibited phy-
logenetic signal that is lower than expected by drift, with K
ranging from 0.02 to 0.70. These weak phylogenetic signals are
consistent with tRNA gene dosage as evolutionarily labile
(Velandia-Huerto et al. 2016). A total of 44 out of 59 sense
tRNAs yielded statistically significant phylogenetic signal
(P< 0.05). The lack of phylogenetic signal (P> 0.05) in the
remaining 15 tRNAs implies that they either evolved
completely independent of phylogeny or are mostly absent
in the fungal genomes because entire tRNA families are
known to be extinct in certain clades (Rak et al. 2018). To
this end, we identified 19 tRNA anticodon types that rarely
occur among the fungal genomes, three of which are non-
sense suppressors (tRNASup [UUA], tRNASup [CUA], tRNASeC

[UCA]) (fig. 3A). In total, 14 out of the 16 rare sense tRNAs
overlapped with the 15 tRNAs that lacked phylogenetic signal
(fig. 3B). Only tRNAIle (UAU) is prevalent yet lacking a phy-
logenetic signal. In other words, close relatives are no similar
in their genomic copies of tRNAIle (UAU) than if they were
randomly placed on the tree. This finding may be explained
by highly accelerated birth–death evolution or anticodon
shifts of tRNAIle (UAU) along the phylogeny (Velandia-
Huerto et al. 2016).

Detection of Selenocysteine-tRNAs in Dikarya Genomes
Here, we would like to report the detection of selenocysteine
tRNA (SeC-tRNA). At the time of this finding, tRNAs corre-
sponding to the 21st amino acid selenocysteine were con-
sidered absent in all fungi (Lobanov et al. 2007) until
Mariotti et al. (2019) uncovered the presence of
tRNASeC (UCA) in nine early-diverging fungi. However,
all three of our Sec-tRNA positive fungi—Rhodocollybia
butyracea, Sugiyamaella americana, and Lollipopaia
minuta—are dikarya from Basidiomycota and Ascomycota
phyla (Supplementary table S3, Supplementary Material
online�). We identified the presence of tRNASeC (UCA) in
these three genomes based on overlapping results from at
least one of the general-purpose tRNA gene finders,
tRNAscanSE2.0 (Chan and Lowe 2016) or aragorn1.2.38
(Laslett and Canback 2004), and the specialized tRNASeC

gene finder Secmarker (Santesmasses et al. 2017). As a neg-
ative control, we repeated the analysis on the well-studied
fungal genomes of S. cerevisiae and N. crassa. Even with the
unrealistically relaxed parameters, tRNASeC (UCA) was not
detected in either genome.

Next, we examined the prevalence of inosine-modified
tRNAs. Adenosine-to-inosine (6-deaminated adenosine) con-
version is the most common post-transcriptional editing in
eukaryotic RNAs (Nishikura 2016). In eukaryotes, A34-to-I34

FIG. 2. Phylogenetic analysis of genome-wide codon usage frequencies. (A) PCA on RSCU matrix separates species into the dikarya and early-
diverging sub-kingdoms, primarily along the axis of the second principal component (PC2). Each dot is a species whose color and shape represent
the sub-kingdom. (B) Loadings plot showing the correlation between codons and the first two principal components. Codons are colored based on
the G/C or A/U composition at the third base. A/U- and G/U-ending codons equally but inversely contribute to the PC1 scores. On the other hand,
PC2 scores are differently influenced by codons, with the most influential being the rare codons, GGGGly and AUAIle (see also supplementary fig.
S1D, Supplementary Material online). (C) Stripplot showing the variation in the phylogenetic signal of the usage of degenerate codons. A total of
51/59 codons reported Blomberg’s K not equal to 1 suggesting they evolved at a rate less than or greater than expected by genetic drift as modeled
by Brownian motion. All P values are statistically significant (<0.05).
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conversion is restricted among the eight tRNA types:
tRNAThr(AGU), tRNAIle(AAU), tRNAPro(AGG), tRNAArg(ACG),
tRNALeu(AAG), tRNAAla (AGC), tRNAVal(AAC), and
tRNASer(AGA). Inosine-34 tRNAs (INN) decode both NNC
and NNU codons in eukaryotes (Rafels-Ybern et al. 2018).
Although both INN and GNN tRNAs decode C-ending codons,
the I: C anticodon–codon bond is known to be less stable
than G:C bond (Hoernes et al; 2018). Yet, we found that for
the amino acids that are recognized by isoacceptor pairs of
GNN and a putatively inosinylated ANN, the GNN iso-
acceptor is mostly absent within the genomes (fig. 3C). For
example, tRNALeu (GAG) is the rarest tRNA being predicted in
only 1/459 species (fig. 3A), yet its Watson–Crick cognate
codon CUC is the commonly most preferred for encoding
leucine (347/459 species; supplementary fig. 2A,
Supplementary Material online). Likewise, the usage of AUC
codon is frequently the most preferred for isoleucine, yet its
cognate tRNAIle (GAU) is rarely present (16/459 species).
According to wobble rules, both Leu-CUC and Ile-AUC
codons are decoded by inosine-modified tRNALeu (AAG)
and tRNAIle (AAU), respectively. In contrast, when the ANN
tRNA is not a target of inosinylation, the GNN iso-acceptor is
far more prevalent (fig. 3D). As previously mentioned,

genomes in our data set are mostly biased for NNC codons
(supplementary fig. S2A, Supplementary Material online) so
this finding suggests that inosine-modified tRNAs are positively
selected for in fungi. To summarize, phylogenetic comparative
analyses revealed that the interspecies variation of codon us-
age bias and individual codon frequencies do not support
genetic drift as the dominant mode of evolution.

Signatures of Neutral and Adaptive Evolution on
Intragenomic Codon Usage Bias
Having analyzed codon usage patterns at the macroevolu-
tionary scale, we next sought to disentangle the signatures of
adaptive and neutral evolution on within-genome codon us-
age bias. At the organismal level, codon usage bias is a com-
posite of drift, neutral, and adaptive mutational bias (dos Reis
and Wernisch 2009). To determine whether codon usage bias
is driven solely by GC-compositional mutational bias in each
species, we compared the empirical ENC of all coding sequen-
ces to their theoretical ENC that is expected under the
neutral-mutational model. The neutral-mutational model is
the null hypothesis that selection pressure does not act on
the synonymous third codon position sites; rather codon bias
is only a function of GC3% (Wright 1990). The ENC of 458 out

FIG. 3. Analysis of tRNA gene composition across the phylogeny. (A) Presence of each tRNA anticodon type across the 459 fungal genomes based
on tRNAscanSE2.0 predictions. Low-quality tRNA and pseudogenes with a covariance score below 50.0 are not included. Rare tRNAs are
highlighted in red. (B) Overlap between tRNAs rarely present in fungal genomes and tRNAs with nonsignificant phylogenetic signal (P value
> 0.05 for Blomberg’s K). tRNAIle (UAU) is the only phylogenetically nonsignificant tRNA that is not rare. This suggests that this tRNA gene’s
evolution is decoupled from phylogeny. (C, D) Evolutionary bias for the inosine-34 modification. For amino acids decoded by both ANN and GNN
tRNAs, when the first anticodon position is a target of A-to-I editing, the INN tRNAs are more prevalent while the GNN isoacceptor is rare. (D)
However, if the ANN tRNA is not a target of A-to-I editing, then the GNN isoacceptor is more prevalent and the ANN is rare.
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of 459 species deviated significantly from neutral expectation
(paired Wilcoxon signed-rank test P values< 0.05; fig. 4A).
Next, we assessed each species’ fit to neutral expectation by
computing the R2 between empirical and theoretical ENC
(LaBella et al. 2019) of all coding sequences within each ge-
nome (fig. 4B). The R2 values ranged from 0.0001 to 0.88. A
total of 70 genomes, mostly dikarya, reported an R2 value of at
least 0.75 (“Very Strong”), which indicates that their codon
usage is largely influenced by neutral mutational bias. Notably,
early-diverging species make up 12% of the data set, but 28%
of the genomes with “Weak” neutral mutational bias.

Fungal genome-wide Codon Usage and tRNA Copy Number

Are Positively Correlated
Another signature of natural selection is the correlation
between codon frequencies and the supply of cognate
tRNAs (Sharp et al. 2010). To explore this, we computed
the Spearman’s rank coefficient between genome-wide
relative codon frequencies (RSCU) and tRNA gene copy
number. Codon frequency and tRNA copy number were
significantly correlated in 312 of the 459 species (P

values< 0.05), all of which yielded positive correlations
(mean Spearman’s q¼ 0.49; fig. 4C). Those species with
nonsignificant correlation generally possessed single-copy
tRNA gene sets. Additionally, the most overrepresented
codons—that is, highest RSCU—are cognates of tRNAs
with a higher copy number (mean tRNA gene copy num-
ber of 5.2) compared with the most underrepresented
codons (mean tRNA gene copy number of 1.4, one-
sided paired Wilcoxon signed ranked test P value ¼
5.50e�53; fig. 4D).

In summary, we showed that variation in the genome-level
codon usage bias is influenced by both neutral (GC3 compo-
sition) and adaptive mutational bias (cognate tRNAs).

Differential Adaptation to the tRNA Abundance
Underlies Expression-Linked Codon Usage Bias
Here, we explored the functional implications of adaptive
codon usage bias by analyzing the contribution of gene ex-
pression to codon preferences. Because we have RNAseq data
for most species in our data set (420/459) we could empiri-
cally investigate expression-linked codon usage bias. To this

FIG. 4. Signatures of mutational bias and natural selection on within-genome codon usage bias. (A) Deviation of genomic ENC values from Wright’s
neutral mutational model. The outer histogram shows the distribution of the mean difference between the empirical ENC and theoretical ENC of
coding sequences that is expected by GC3-compositional bias measured in each of the 459 species. Inset displays the Wilcoxon signed-rank P
values (log base 10) that measures the significance of deviation. A total of 458/459 species reported significant P values (right of red dashed line).
Both y-axes represent the number of species. (B) Variation in the influence of neutral pressures on species’ codon usage . Swarmplot of species’ R2

values (n points ¼ 459 species) that measures the fit between empirical (“ENC_obs”) and theoretical (“ENC_theo”) codon usage bias expected
solely due to GC3-compositional bias, grouped by “Very Strong” (R2� 0.75), “Strong” (0.75> R2� 0.5), “Moderate” (0.5> R2� 0.25), and “Weak”
(R2 < 0.25). (C) Codon frequency correlates with tRNA copy number. Histogram shows the distribution of Spearman q correlation coefficient
between RSCU and cognate tRNA gene copy number. A total of 312/459 species reported statistically significant P values (P< 0.05). The black line
is the mean correlation coefficient of all species. (D) Histogram showing differences in the tRNA copy numbers for the codons with highest and
lowest representation (RSCU) in the genome over all the 459 species Inset: Distribution of the log base 10 copy numbers of tRNAs (y-axis) for the
codons with highest (red) and least (blue) genome-wide RSCU. The most frequently used codons are decoded by tRNAs with higher copy
numbers, whereas the least frequent codons are decoded low copy-number tRNAs.
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end, we selected the top 10% (“high”) and bottom 10%
(“low”) of expressed coding sequences as the working data
set for each species since directional selection tends to act at
the extremes. We observed that for most species, PCA of the
59-dimensional matrix of codon frequencies (RSCU) sepa-
rated the genes according to expression level (fig. 5A). The
trend suggests that gene expression level is also driver of
codon usage patterns.

Not an Artifact: PCA Arch of High Expressed Genes Caused by

Strong Deviation from Neutral Compositional Bias
Intriguingly, the pattern of only the high expressed genes
clustering as an arch in Z. heterogamus also appeared in 26
other species (fig. 5A, left panel; supplementary data,
Supplementary Material online). Guttman or arch effect in
dimensionality reduction techniques, such as PCA or corre-
spondence analysis, is observed when the first two

FIG. 5. Expression-linked codon usage bias correlates with tRNA supply. (A) High and low expressed genes exhibit different codon usage patterns.
Examples of PCA applied to the codon usage 59-dimensional RSCU matrix of the top (“high”) and bottom (“low”) 10% expressed genes. Each dot is
a gene. The right panel is the more common cluster pattern. The left panel depicts a Guttman (“arch”) effect in the high expressed genes of
Z. heterogamus. (B–D) ENC-GC3 plot of Z. heterogamus genes elucidates source of PCA arch effect. The solid red line in scatterplots B and C
represents the expected curve when codon usage bias is only affected by neutral mutation pressure. (B) ENC of high expressed genes deviate
strongly from neutral expectation while becoming more C3-biased whereas (C) low expressed genes better fit expected neutrality. (D) Arch effect
captured the variation in C3% due to neutral and selection pressures. (E and F) Highly expressed genes are generally biased for translationally
optimal codons. (E) Boxplot of the fraction of preferred codons (significantly enriched in the top 10% of expressed genes) that are decoded by
major (most abundant) and minor (least abundant) tRNA isoacceptors, with and without the inclusion of inosine-34 modification across the
species (n ¼ 420 species) . (F) Boxplot of the fraction of nonpreferred codons (significantly enriched in the bottom 10% expressed genes)
recognized by major and minor tRNAs, with and without the inclusion of inosine-34 modification. (G) Distribution of the translation bias scores
across 420 species. Translation bias score is the difference between the fraction of prefererred and nonpreferred codons decoded by major tRNAs
normalized by their sum. The positively skewed distribution indicates that the highest expressed transcripts are generally codon biased for rapid
translation. (H) Akaike-Information-Criterion (AIC) goodness-of-fit test to evaluate various maximum-likelihood macroevolutionary models
fitted to translation bias score (n species tips ¼ 384). “BM”, Brownian motion; “OU”, Orhnstein–Uhlenbeck. The OU model of fluctuation
directional selection yielded the lowest AIC, and therefore the best fit model.
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transformed axes are curvilinear because the structure of the
data is dominated by a single latent variable that gradually
shifts from one extreme to the another, that is, the data
points lie on a gradient (Diaconis et al. 2008; Nguyen and
Holmes 2019). Given that codon usage is influenced by both
directional neutral and selection pressures, we hypothesized
that the latent gradient underlying the high expressed genes
represents the shift in influence of neutral to selection pres-
sures. To explore this in Z. heterogamus, we generated an
ENC-GC3 neutrality plot in which the standard curve repre-
sents the expected relationship between ENC and GC3%
when codon usage is solely explained by neutral composi-
tional bias (Wright 1990). The neutrality plot confirmed our
hypothesis as the genes are more C3 biased with increasing
distance from the neutral curve (fig. 5B). However, the codon
usage of low expressed gene set did not exhibit such marked
deviation from neutral expectation (fig. 5C). Indeed, the latent
gradient responsible for the arch is defined by diametric usage
of C-ending (fig. 5D) and A-ending (supplementary S3A–C,
Supplementary Material online) codons. We identified a sim-
ilar pattern for 18 of the remaining 26 “arch” species in which
their high expressed genes also lie on a C3% gradient when
projected onto the first two principal components (supple-
mentary fig. S3G, Supplementary Material online), and devi-
ating from the expected neutral compositional bias
(supplementary fig. S3H, Supplementary Material online).
This led us to revisit the compositional bias analysis per-
formed in the previous section, where we found that 23
out of these 27 species, including Z. heterogamus, fell in the
“Weak” category (fig. 4B and supplementary fig. S3D,
Supplementary Material online). Additionally, 23/27 of
them are AU3 biased (mean GC3< 50%), and 21 of them
are early-diverging fungi (supplementary fig. S3D,
Supplementary Material online). Together, these results sug-
gest that selection is particularly stronger in the highly
expressed genes of these species.

High Expressed Genes Preferentially Use Codons Decoded by

Major tRNAs but Avoid Codons Decoded by Minor tRNAs
We then asked if the divergent codon preference between the
high and low expressed genes is related to adaptation to
translation efficiency (Duret 2000). To this end, we measured
the fraction of preferred and nonpreferred codons that are
decoded by major and minor tRNAs per species. Preferred
codons are significantly enriched (higher RSCU) in the high
expression gene set, whereas nonpreferred codons are
enriched (higher RSCU) in the low expression set
(Benjamini–Hochberg adjusted P values < 0.05) (Yannai
et al. 2018). We observed that C-ending codons are mostly
preferred by high expressed genes compared with A-ending
codons in low expressed genes (supplementary fig. S3E,
Supplementary Material online). Major and minor tRNAs
have the highest and lowest copy numbers, respectively,
within an amino acid class. Overall, highly expressed genes
preferentially use codons that are decoded by major tRNAs,
which is indicative of selection for rapidly translated codons
(fig. 5E). On average, 43% of preferred codons are recognized

by major tRNAs compared with 24% by minor tRNAs (fig. 5E;
paired Wilcoxon signed-rank test P value ¼ 4.26e�64).
Conversely, nonpreferred codons better matched minor
tRNAs (mean fraction ¼ 34%) than major tRNAs (fig. 5F;
mean fraction ¼ 18%; Wilcoxon P value¼ 1.53 e�62).

Because we identified the widespread preference of
inosine-modified tRNAs, we extended our analysis to account
for inosine-34 wobble decoding. This resulted in a marked
increase in the mean fraction of preferred decoded by major
tRNAs from 43% to 65% (Wilcoxon P value ¼ 7.47e�68), but
the mean fraction of preferred codons matching minor
tRNAs remained the same. For example, the match rate in
Z. heterogamus rose from 56% to 81%. In 84% of the species,
at least 50% of their preferred codons are cognates of major
tRNAs when inosine-34 decoding is considered (fig. 5E).
However, the inclusion of I34 modification did not substan-
tially alter the fraction of nonpreferred codons decoded by
minor tRNAs or major tRNAs (18%; Wilcoxon P value ¼
4.34e�60) (fig. 5F). Therefore, the codon bias in high expressed
genes can be partially explained by selective usage of inosine-
34 decoded codons. These results align with experiments in
mammalian and bacterial systems that demonstrated im-
proved agreement between codon usage and tRNA abun-
dance when I34 modification is accounted for and that
transcripts with codon compositions that matched I34
tRNAs were more efficiently translated (Novoa et al. 2012).

Prevalence of Codon Optimization for Translation in High

Expressed Genes Shows Signs of Convergent Evolution
To quantify the association between expression-linked codon
bias and adaptation to the tRNA supply in a genome, we
derived the translation bias score (Materials and Methods).
Formally, translation bias score is the difference between the
fractions of preferred codons and nonpreferred codons for
major tRNAs normalized by their sum. A translation bias
score ofþ1 indicates that the codon bias of highly expressed
genes confers them exclusive access to the most abundant
tRNAs in the cellular pool compared with the lowest
expressed genes; whereas a translation bias score of 0 means
that there is no competition for major tRNAs between the
high and lowest expressed gene sets. Among the 420 species
analyzed, the mean translation bias score is þ0.39 when re-
stricted to Watson–Crick pairing, and a mean ofþ0.53 when
I34 wobble is considered (fig. 5G). That is, on average, 53%
more of the major tRNAs are decoding high expressed genes
than the low expressed genes, which we interpret as selection
for translation speed. However, there are a few species that
possess negative translation bias score meaning their low
expressed genes are more codon biased for major tRNAs.

We wondered if the positive skewness of the translation
bias score was mainly a consequence of phylogenetic relat-
edness is, because species richness is unevenly distributed
along our fungal tree. To measure the strength of phyloge-
netic effect of the TBS values, we computed Blomberg’s K
statistic which yielded K¼ 0.12 for Watson–Crick pairing and
K¼ 0.18 for inosine-34 wobble decoding (both P values ¼
0.01). These low K values indicate that distantly related
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species have more similar TBSs than expected by phyloge-
netic distance, a pattern often attributed to convergent evo-
lution (Revell et al. 2008). As a complementary approach,
testing of different macroevolutionary models supports the
Ornstein–Uhlenbeck process of fluctuating directional selec-
tion as the best fit for translation bias (fig. 5H). Additionally,
the ancestral state reconstruction shows that similarly high
translation bias is distributed across multiple and distant
lineages (supplementary fig. S3F, Supplementary Material on-
line). Therefore, both phylogenetic methods agree on adap-
tive codon usage—at least in the context of gene
expression—as a realization of convergent evolution.
Altogether, the concordance between tRNA supply and
expression-linked codon preferences supports natural selec-
tion on fungal protein-coding genes for translation accuracy
and speed.

Codon2Vec Neural Network for Predicting the
Expression of Coding Sequences
Building predictive models for gene expression remains a per-
tinent challenge in genomics. Inspired by distributed repre-
sentation models for natural language processing (Zhong et
al. 2016), we implemented a three-layer neural network—
Codon2Vec—that predicts expression class (“high” or “low”)
directly from input coding sequences (fig. 6A; Materials and
Methods). A neural network is a supervised algorithm that
can model complex nonlinear patterns that underlie the data.
The first layer of Codon2Vec performs featurization of input
sequences by mapping each codon type to a real-valued vec-
tor or “embeddings” in Euclidean space. The codon embed-
dings are adjusted during model training to minimize the
error between the predicted and ground truth labels.

To achieve a balanced data set, we trained Codon2Vec on
the coding sequences from the top and bottom 10% expres-
sion. The training data were split into 70:20:10 for training:
validation: test sets. Model selection was determined based
on the training and validation sets. Final predictive perfor-
mance was reported on the hold-out test set using the fol-
lowing metrics: misclassification error, area-under-the-
receiver-operator-characteristic curve (AUC-ROC), sensitivity,
and specificity (Materials and Methods). An AUC-ROC of 0.5
indicates that a model failed at learning and instead makes
random predictions. When applied separately to 300 different
species, Codon2Vec achieved a high median AUC-ROC score
of 83.8% (fig. 6C). Randomizing the association between the
input and class labels ablated Codon2Vec’s discriminative
power and drove the AUC-ROC to 0.5 or random predictions
(fig. 6C and supplementary fig. S4D, Supplementary Material
online).

We hypothesized that the model’s decision boundary is
the differential codon bias that exists between the sequences
in the high expression and low expression classes. To this end,
we computed the difference between the mean ENC of the
expression classes (DOM-ENC) and measured the Spearman’s
rank correlation between the species-specific AUC-ROC
scores and the DOM-ENCs, but there was no significant cor-
relation (R¼ 0.1, P value ¼ 0.074). Because codons are the
features, we repeated the procedure using the frequency of

optimal codon (Ikemura 1982) (DOM-FOP). This resulted in a
significant and positive correlation (Spearman’s rank coeffi-
cient R¼ 0.45, P value¼ 1.05e�16) (fig. 6D). We interpret this
as the model performing better on genomes that have a
wider margin of optimal codon content between the high
and low expressed genes. As a sanity check to see if the length
of coding sequences was a confounding variable, we found no
significant correlation (R¼ 0.1, P value¼ 0.0755).
Remarkably, Codon2Vec learned the intrinsic differences in
optimal codon content between high and low expressed
genes even though we did not explicitly provide this sequence
property.

Discussion
Much of our understanding of codon usage bias is based on
collating findings from single-species studies. To better detail
the evolutionary mechanisms that have shaped codon usage
patterns through time in Kingdom Fungi, we employed a
phylogenetic comparative approach to analyze hundreds of
representative species that span the six major phyla. We
showed how neglecting phylogenetic effect can lead to dif-
ferent conclusions about the influence of individual codons
on the degree of codon bias (fig. 1C). Our macroevolutionary
analyses support, contrary to the widely held neutral-drift
hypothesis, adaptive mechanisms as the driver of interspecies
codon usage patterns in fungi. Fitting of different likelihood
models of trait evolution to our 452-taxa phylogenetic tree
showed that variation in codon usage bias and GC3% best fit
the pattern generated by adaptive radiation. Additionally, the
phylogenetic effect of most codon frequencies was found to
be stronger or weaker than expected by random drift, a sign
that is usually interpreted as stabilizing selection or conver-
gent evolution, respectively (Revell et al. 2008; Losos 2011a).
Adaptive codon usage was also evident at the genome-level
analyses. Gene expression level and codon usage were broadly
correlated as PCA on RSCU values separated out the highest
and lowest expressed genes. In some fungi, primarily early-
diverging, the deviation of high expressed genes from neutral
compositional bias was strong enough to dominate the signal
captured by both principal components resulting in a
Guttman effect. Because differential codon bias could arise
by a neutral mechanism such as GC-biased gene conversion
(Marais 2003), we demonstrated how this prevalent trend of
expression-linked codon bias is associated with differences in
the adaptation to tRNA copy number abudance, a proxy for
translation efficiency. Broadly, the high expressed genes pref-
erentially used codons matching the most abundant tRNAs;
whereas the low expressed genes were more biased for
codons read by the least abundant tRNAs. Moreover, the
widespread trend of codon optimization of high expressed
genes for translation efficiency, which we quantified using our
translation bias scores, suggests convergent evolution as the
phylogenetic effect was significantly weaker than expected by
Brownian motion trait evolution. Altogether, these findings
are consistent with the influence of natural selection on co-
don usage to promote translation efficiency. Our results on
the prevalence of adaptive codon usage bias in fungi are
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consistent with the recent subphylum wide codon usage
analysis of Sacchoromycotina budding yeasts (LaBella
et al.2019).

Macroevolutionary Analyses of Codon Usage Reveal
the Influence of Adaptive Mechanisms
Although claims about codon usage are usually based on
single-species analyses, we believed that inferences about
the mode and tempo of the macroevolution of codon usage
bias would further elucidate its adaptive nature . Principally,
we found that the tempo of codon usage bias, and the evo-
lutionarily correlated GC3%, in our 452-taxa tree best follow
the pattern of adaptive radiation. Other fungal phylogenomic
studies, primarily in mushroom-forming (Agaricomycetes) lin-
eages, have also reported evidence of adaptative radiation for
certain morphological traits (Nagy et al. 2012; Gaya et al. 2015;
Varga et al. 2019). Various hypotheses exist for the intrinsic
and ecological drivers of fungal radiations, including the evo-
lution of complex fruiting bodies (Varga et al. 2019), transition
to mutualism (S�anchez-Garc�ı and Matheny 2017), and de-
fense mechanisms (Nagy et al. 2012; Gaya et al. 2015).
Previous studies have linked codon usage bias to ecological
specialization (Botzman and Margalit 2011; Roller et al. 2013).
Badet et al. (2017) uncovered that generalist parasitic fungi
are more codon biased than nonparasitic fungi. Our finding
raises the question of what are the ecological opportunities

that underlie the macroevolution of codon usage bias. Visual
inspection of our ancestral reconstruction shows that the
decreased in the variability of codon usage bias coincides
with the divergence within Basidiomycota. Basidiomycota
(club fungi) comprises about one-third of all fungi (Stajich
et al. 2009). Saprophytic Agaricomycotina accounts for two-
thirds of basidiomycetic fungi, whereas Puccinomycotina and
Ustilaginomycotina are mostly plant parasites (Mao and
Wang 2019). Relatedly, ancestral reconstruction of fungal nu-
tritional modes showed that parasitism is nonrandomly dis-
tributed along the tree and more prevalent in earlier-diverged
lineages (James et al. 2006). Taken together, the evolution of
codon usage bias in fungi may be connected to lifestyle ad-
aptation. We believe that a deeper study of the macroevolu-
tionary relationship between codon preferences and the
various ecological specialization in fungi is needed.

Selection for Translation Efficiency May Explain Convergent

Codon Usage in Fungi
Macroevolutionary analyses revealed that variation in synon-
ymous codons is mostly convergent. The normalized frequen-
cies of 37/59 codons yielded significantly low Blomberg’s K
values, indicating distantly related lineages are more similar in
their codon choices than expected by phylogenetic related-
ness, that is, a sign of convergence (Kamilar and Cooper
2013). Causes of convergent evolution are generally attributed

FIG. 6. Neural network uses codons as features to predict gene expression. (A) Schema of Codon2Vec. Codon2vec is a fully connected multilayer
neural network that uses an embedding layer to transform codons in the input coding sequences to a real-valued vector. The final output of the
model is a vector of probabilities for each gene expression class (i.e., “high” or “low”). Detailed description in Materials and Methods. (B)
Codon2Vec’s performance on a single species. Model performance is evaluated on the hold-out test sets based on the AUC-ROC. An AUC score
of 0.5 (dashed line) represents random predictions. (C) Model generalizability: Codon2Vec achieves high predictive performance on 300 different
species. However, shuffling of ground truth labels independent of input sequences ablated Codon2Vec’s ability to learn meaningful associations.
(D) Codon2Vec’s prediction accuracy (AUC-ROC) positively and significantly correlates with differential usage of optimal codons between high
and low expressed genes. The frequency of optimal codons (FOP) is another standard metric for codon usage bias (Ikemura 1982; Materials and
Methods).
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to either shared constraints (molecular/genetic/physiologi-
cal/ecological, etc.) that limit or bias the production of phe-
notypic variation, or, to a lesser extent, random chance
(Losos 2011a). Here, we reason that the macroevolutionary
convergence of codon usage frequencies reflects the shared
constraints imposed by neutral—for example, GC-
compositional bias—and adaptive pressures, for example, se-
lection for balancing codon representation with tRNA supply
(figs. 4B and C and 5E). Moreover, the maximum likelihood
best fits the translation bias scores to the Ornstein–
Uhlenbeck process of optima-directed trait evolution
(Butler and King 2004), lends further evidence that adaptative
mechanisms have influenced codon usage patterns over time.
That is, the convergence of matching codon usage with tRNA
supply, especially in highly expressed genes, suggests that ef-
ficient protein synthesis is one of the selective optima that has
constrained the evolution of fungal protein-coding genes.
This assertion is consistent with genome-engineering experi-
ments that first demonstrated how codon optimization in
highly expressed genes exerts global effects on cellular fitness
by promoting rapid turnover of free ribosomes enabling
translation initiation on other transcripts (Frumkin et al.
2018).

Selection for translation efficiency is expected to favor
those codons with better anticodon–codon pairing kinetics
(Higgs and Ran 2008). Possibly, the weaker I: C anticodon–
codon bond (Hoernes et al. 2018) promotes faster dissocia-
tion of the discharged tRNA from the ribosomal E-site,
leading to less ribosome pausing and more available free
ribosomes. This model may explain the conserved preference
for inosine-modified tRNAs (INN) over GNN isoacceptors
(fig. 3C), especially the general bias for tRNAINN-decoded
codons—primarily C-ending—observed in high expressed
genes (fig. 5E). In light of this, a component of the general
GC3 bias among fungi is likely a C3 bias due to selection for
decoding by inosine-modified tRNAs.

Here, we highlight the limitations of our study and poten-
tial areas for improvement. We assumed that tRNA concen-
tration scale with tRNA copy number which is the general
case in unicellular organisms, for example, chromatin profiling
in S. cerevisiae revealed all tRNA genes as transcriptionally
active (Harismendy et al. 2003). Like all statistical models,
inference from PCM is constrained by assumptions and un-
certainty. The main assumptions of PCMs are: 1) the phylo-
genetic tree is accurate, 2) all the extant taxa are represented,
and 3) there is measurement error in the trait data. Our 452-
taxa tree does not preclude biased inference due to uneven
taxon sampling because we used a limited number of repre-
sentative species per clade. Although we used the best avail-
able molecular tree, given the vastness of the kingdom Fungi
and ongoing sequencing campaigns, we foresee updates in
the fungal phylogeny (Ahrendt et al. 2018). Lastly, various
evolutionary processes may give rise to the same phylogenetic
pattern and current macroevolutionary models may be lim-
ited in their capability to capture more complex patterns of
trait evolution (Losos 2011b).

In a minority of species, the low expressed genes were
more codon biased for the major tRNAs (fig. 5G). This rather

counterintuitive finding joins two previous works that chal-
lenge the default view that selection is reserved for codon
usage of highly expressed genes (Zhou et al. 2009; Yannai et al.
2018). Codon usage in low expressed CDS may be influenced
by selection for mRNA structure, mRNA stability to support
sufficient protein production, or cotranslational protein fold-
ing of structural sites that are sensitive to translation speed or
accuracy (Zouridis and Hatzimanikatis 2008; Zhou et al.
2009). Other than translation efficiency, the covariation be-
tween CUB and gene expression levels may reflect selection
for mRNA stability as certain codons mitigate ribosomal stall-
ing, as observed in S. cerevisiae (Presnyak et al. 2015), or linked
to transcriptional efficiency as seen in N. crassa (Zhou et al.
2016, 2021).

We also identified fungi possessing less than the theoretical
minimum of 30 tRNA anticodons required for standard
mRNA translation (Marck and Grosjean 2002). Interestingly,
7 out of these 11 species are mutualistic symbionts—
Sporobolomyces linderae, Cenococcum geophilum,
Meliniomyces bicolor, Neocallimastix californiae—or patho-
gens/parasites—Teratosphaeria nubilosa, Mixia osmundae,
Elsinoe ampelina. Perhaps their reduced tRNA gene set reflect
lifestyle adaptations such as selection for rapid DNA replica-
tion, or importing necessary tRNA molecules from the host—
a rare mechanism for eukaryotes that was first observed in
plasmodium parasites (Bour et al. 2016). This mechanism
may specifically explain how Mixia osmundae maintains sur-
vival as a biotrophic intracellular parasite in plants (Toome
et al. 2014). Also, these minimalist fungi may also employ
promiscuous super-wobbling decoding, as observed in plas-
tomes of vascular plants (Rogalski et al. 2008). Therefore,
these minimalist symbionts would make ideal candidates
for studying nonstandard translation of the genetic
code and the coevolution of decoding strategies within a
eukaryotic host–symbiont pair.

Codon2Vec: Addition of a Sequence-to-Expression Model to

the Functional Codon Usage Toolkit
We believe the value of Codon2Vec is two-fold. Because the
model is trained on whole coding sequences, it learns a more
biologically meaningful representation of the codon usage
patterns. Codon order, such as codon-pair bias, has been
shown to also contribute to protein yield of highly expressed
genes (Cannarozzi et al. 2010; Gamble et al. 2016). But stan-
dard codon-based approaches are limited in capturing effects
due to codon frequency. Because the model algorithm rep-
resents codons as vectors (“embeddings”) in Euclidean space,
in principle, contextually related codons are projected close
together embedding space (Mikolov et al. 2013). Second, un-
like standard approaches, Codon2Vec is not restricted to a
pre-defined reference set of genes. Moreover, Codon2Vec
bypasses the need for artisanal feature engineering because
it extracts information directly from the coding sequences
and expression data, and the function that maps codons to
real-valued vectors is also learned during training. Although
neural networks are regarded as decision “black boxes,” we
showed that the model is at least learning to classify coding
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sequences based on differences in codon optimality.
However, neural networks can learn complex functions there
may be other sequence/codon usage properties that it may
have learned. Embedding neural networks have also been
used for other biological applications, such as predicting
chemical physicochemical properties from protein sequences
(Yang et al. 2018). Once trained on the host’s gene expression
data, Codon2Vec can then serve as an oracle to guide the
codon optimization of exogenous genes. A nice follow up
would be to experimentally validate Codon2Vec’s predictions
in optimizing heterologous gene expression system.

In conclusion, by combining genomics and macroevolu-
tionary analyses, we characterized the significance of and
prevalence of adaptive processes in shaping fungal protein-
coding genes. In the age of “big genomics data,” it would be
interesting to see if similar macroevolutionary modes and
mechanisms explain interspecific codon usage variation in
other clades.

Materials and Methods

Genomic Data Acquisition
Genomic and gene expression data of all 459 fungi were
downloaded from the US DOE Joint Genome Institute’s
MycoCosm database (https://mycocosm.jgi.doe.gov; last
accessed December 2021; Grigoriev et al. 2014). Only coding
sequences (CDS) longer than 150 bp with annotated start and
stop codons were retained for downstream analysis.

RNA sequencing
Most transcriptomes were sequenced using Illumina from
RNA samples collected across multiple conditions and pooled
together. From these samples, libraries were prepared using
tube- or plate-based RNA sample processing protocols. Plate-
based RNA sample preparation was performed on the
PerkinElmer Sciclone NGS robotic liquid handling system us-
ing Illumina’s TruSeq Stranded mRNA HT Sample Prep Kit
utilizing poly-A selection of mRNA following the manufac-
turer’s guide starting with 1 lg total RNA per sample and 8–
10 PCR cycles were used for library amplification. For the
tube-based method, stranded cDNA libraries were generated
using the Illumina Truseq Stranded mRNA Library Prep Kit,
for which mRNA was purified from 1 lg (200 ng for low input
RNA) of total RNA using magnetic beads containing poly-T
oligos, fragmented, and reverse transcribed using random
hexamers and SSII (Invitrogen) followed by second-strand
synthesis. The fragmented cDNA was treated with end pair,
A-tailing, adapter ligation, and eight cycles (ten cycles for low
input RNA) of PCR. The prepared libraries were quantified
using the Next-generation Sequencing Library qPCR Kit
(KAPA Biosystems) and run on a Roche LightCycler 480
real-time PCR instrument. Sequencing of the flow cells was
performed on the Illumina HiSeq or NovaSeq, following a
2� 150 indexed run recipe. Additional details may be avail-
able from the corresponding genome publications listed on
MycoCosm (https://mycocosm.jgi.doe.gov/fungi/fungi.info.
html; last accessed December 2021).

tRNA gene prediction
tRNA genes were predicted with tRNA-scanSE2.0 (Chan and
Lowe 2016) with eukaryotic-specific parameters. For quality
control, only high-confidence tRNA genes with a covariance
score of at least 50 were retained for analyses. tRNA gene copy
number was used as the proxy for tRNA abundance.

Seleno-Cysteine tRNA Identification
High-confidence tRNA genes are assigned a tRNA-scanSE
score of 50 and over. After applying the cut-off covariance
score of 50, six genomes still retained high-scoring Sec-tRNA
genes. To independently validate these tRNAscanSE predic-
tions, these genomes were reanalyzed with another highly
accurate but more conservative general-purpose tRNA gene
finder aragorn1.2.38 (Laslett and Canback 2004) using
eukaryotic-specific parameters and a SeC-tRNA-specific
gene finder Secmarker (2015 Guigo). The final SeC-positive
species were taken as an overlap of any of these general gene
finders with the specialized Secmarker program.

Codon Usage Metrics
The ENC, which measures the degree of synonymous codon
bias of gene or genome, was computed from coding sequen-
ces using CodonW 1.4.4 (Wright 1990; Peden 1999).

The theoretical ENC is the expected value estimated solely
based on GC3% due to neutral mutational bias. The theoret-
ical ENC of a gene g that is only influenced by GC3-
compositional bias was computed according to Wright
(1990) using custom python3 code.

ENCtheo ¼ 2þ GC3g þ
�

29=ðGC3g
2 þ ð1� GC3gÞ2Þ

�

G C composition at 3rd codon position (GC3 content)
GC3%was computed using CodonW 1.4.4 (Peden 1999).

RSCU is the ratio of observed usage to the expected uni-
form usage within its amino acid class. RSCU is invariant to
sequence length or amino acid composition. The RSCU of the
59 degenerate codons was computed using custom python3
scripts according to Sharp et al. (1986). Six-fold amino acids
(Leucine, Serine, and Arginine) were split into 2- and 4-fold
codon groups.

Preferred and nonpreferred codons were selected in
each species based on the top and bottom 10% of expressed
coding sequences. A codon is considered preferred if its RSCU
value was significantly higher in the highly expressed CDS set
(Mann–Whitney U test, Benjamini–Hochberg adjusted P
value <0.05). Conversely, a nonpreferred codon reported a
significantly higher RSCU in the low expressed CDS set. With
this definition, more than one synonymous codon of an
amino acid may be preferred or nonpreferred.

Frequency of optimal codons (Fop)
Fop was computed according to Ikemura (1982) using cus-
tom python3 scripts based on optimal codons derived from a
reference set of top 30 highly expressed ribosomal genes.
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Translation bias score We introduce our translation bias
score to measure the extent to which the codon usage of
an organism’s gene expression reflects adaptation for the cel-
lular tRNA supply based on the equation:�
ðfraction of preferred codons decoded by major tRNAsÞ

–ðfraction of nonpreferred codons decoded by major tRNAsÞ
�

=ðsum of the fractionsÞ

Major tRNAs are the most abundant tRNA isoacceptor
within an amino acid class, either based on gene copy number
or tRNA concentration. In this article, we used gene copy
number as a proxy for cellular tRNA concentrations.

Comparative Phylogenetic Calculations
We downloaded the fungal phylogenetic tree from
MycoCosm (https://mycocosm.jgi.doe.gov; last accessed
February 2020). The phylogenetic tree was then pruned using
Dendropy package (v4.40) in python3.7. Taxonomic ranks
were obtained from National Center for Biotechnology
Information (NCBI).

PICs model the trait covariation according to the formula
Y¼b Xþ e, where Y and X are traits and b is the evolution-
ary correlation coefficient that quantifies the degree of coevo-
lution between traits X and Y. PIC was computed with the
picante package (Kembel et al. 2010) in R v3.6.0 (R Core
Team 2019).

Maximum-likelihood continuous ancestral trait recon-
struction was performed using contMap (model¼Brownian
motion) function from the package phytools (Revell 2012).
Blomberg’s K statistic were computed using the phylosig()
function in phytools library (Revell 2012) implementation
in R which P values are calculated based on 100 permutations.

Fitting and evaluation of maximum-likelihood macroevo-
lutionary models for continuous character evolution were
performed using the geiger library (v2.0.6.3; Pennell et al.
2014) in R.

Correlation, Hypothesis, and Multivariate Analyses
All correlation and significance tests were performed using
the scipy (v1.3.1) and statsmodels(0.10.1) libraries in py-
thon3.7. PCA was performed using the scikit learn (v0.21.3;
Pedregosa et al. 2011) in python3.7.

Supervised Neural Network Codon2Vec
Codon2Vec is an ANN that learns the species-specific depen-
dency between the codon composition (features) of a coding
sequence (CDS) and expression level. A neural network is a
class of machine learning algorithms that uses layers of inter-
connected computation nodes to learn complex patterns
that underlie the data. We implemented and trained
Codon2Vec using the keras (v2.2.4) (Chollet 2015) with ten-
sorflow v1.8 backend, and scikit-learn libraries in Python3.7.

Available as a command-line tool for download at this
github repository https://github.com/rhondene/Codon2Vec.

Data Set Collection and Preprocessing
We selected CDS from the top and bottom 10% of expression
distribution relative to the mean expression. Each CDS was
represented as a vector of codons in sequence. Then each
unique codon is assigned a unique integer (tokenization) such
that each CDS becomes recoded as a vector of integers.
Finally, the lengths of the CDS were set to a fixed size of
2,000, either by trimming longer sequences or padding with
zeroes. The input and output data were shuffled and parti-
tioned into 70% training set, 20% validation set, and 10% test
set. The training set is used to learn the model weights,
whereas the validation set is used to fine-tune the model’s
generalizability by evaluating whether the model is over- or
under-fitting on data it was not trained on. The final evalu-
ation is performed on the test set.

Model Training
Codon2Vec is a feedforward ANN with three fully connected
computation layers—embedding layer, rectified linear unit
(ReLu) activation layer, and sigmoid output layer. We also
incorporated “drop-out” regularization to reduce overfitting.
Each layer is described in more detail in the subsequent
paragraphs.

Learning Optimized Model Weights
A node is the fundamental computation unit of an ANN. In a
fully connected ANN, all nodes of a layer receive the weighted
output of each node from the previous layer. The weights (W)
represent the relative importance of a node to the model
performance. During the forward pass of training, the input
(X) undergoes a series of matrix multiplications and nonlinear
transformations (U) as it flows sequentially between nodes in
each layer until the predicted output is generated in the final
layer.

Generating prediction:

bY ¼ UðWT XÞ; where X and W are matrices:

Model weights (W) were randomly initialized based on the
Glorot uniform distribution. We chose the binary cross-
entropy loss as the optimization objective that computes
the error between the predicted output (bY) and ground truth
(Y).

LossðY; bYÞ ¼ �ðY � logðbYÞ þ ð1� YÞ � logð1� bYÞÞ
where (bYÞ 2 f0; 1g and Y is binary encoded as 0 or 1.

In the backward pass of training, the contribution of the
current set of weights (W) to the model error is computed by
taking the partial derivative of the loss function with respect
to each layer’s weights (W). The weights are then updated by
their gradients in the direction that minimizes the loss func-
tion. Weights were tuned via backpropagation using the
Adam optimization, a variant of stochastic gradient descent
based on adaptive learning.
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Model Architecture
The first layer serves as feature extraction by learning the
weights that map each of the 64 unique codon features to
a meaningful dense real-valued four-dimensional vector
(embeddings) in Euclidean space. The number 4 is a hyper-
parameter. The advantages of embedding representation are:
1) the features that maximize model performance are learned
directly from the CDS, 2) the numerical transformation of
codons makes modeling amenable to neural networks, and
3) it is more computationally efficient than the alternative
one-hot representation as each codon would have been
assigned a 1� 64 dimensional sparse vector of mostly zeroes
compared with Codon2Vec’s 1 � 4 dimensional dense
vector.

The second layer applies the ReLu activation function to
the weighted sum of outputs from the embedding layer. The
ReLu function is a widely preferred nonlinear transformation
for the inner (hidden) layers of neural networks because it
speeds up convergence, and is robust to vanishing gradients.

ReLuðxÞ ¼ maxð0; xÞ

Finally, the output layer applies the sigmoid function that
maps the continuous values to a real value between 0 and 1,
such that the final output is a two-dimensional vector of the
prediction probabilities for each expression class.

Model Evaluation
We evaluated Codon2Vec’s predictive performance using
misclassification error, sensitivity, specificity, and precision
on the test set. Let TP, TN, FP, FN denote true positives,
true negatives, false positives, and false negatives, respectively:

Misclassification error ¼ 1� ðTPþ TNÞ

=ðTPþ TNþ FPþ FNÞ

Sensitivity ¼ TP=ðTPþ FNÞ

Specificity ¼ TN=ðTNþ FPÞ

Precision ¼ TP=ðTPþ FPÞ

Furthermore, we plotted the receiver-operating character-
istic curves and calculated the area under the ROC curve
(AUC-ROC).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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