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Abstract
Meningiomas are the most common intracranial, extra-axial neoplasms and account for a
significant proportion of all central nervous system (CNS) tumors. Regardless of the grade,
treatment typically involves upfront surgical resection. However, in many instances, especially
in meningiomas arising from the skull base, complete removal is often difficult given the close
proximity to important anatomic structures. In this report, we discuss the use of stimulated
Raman histology as a means to identify tissue boundaries during the resection of an extensive,
recurrent, atypical spheno-orbital meningioma.

We report a 75-year-old male with a history of a prior left frontotemporal craniotomy for a
grade II meningioma three years prior, who presented with worsening left-sided visual loss and
pronounced temporal bossing. Repeat magnetic resonance imaging (MRI) revealed a recurrent
left spheno-orbital tumor suggestive of a meningioma extending into the middle cranial fossa,
the lateral orbit, and the temporalis muscle. He underwent an extended orbito-pterional
craniotomy, and intraoperative stimulated Raman histology aided in the identification of tumor
margins within the orbit and the temporalis muscle in order to better preserve the normal
orbital contents and muscle bulk of the infratemporal fossa.

This case demonstrates the utility of stimulated Raman histology during the resection of
invasive skull base tumors. The immediate intraoperative Raman histologic sections can clearly
identify tissue boundaries and thus help preserve important anatomic structures. Continued
development of this method can potentially improve the accuracy of intraoperative diagnoses
and guide surgeons during tumor resections near eloquent anatomical regions or important
normal structures.
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Keywords: stimulated raman histology, brain tumor, atypical meningioma, tumor margins, oncology,
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Introduction
Meningiomas are the most common adult brain tumor accounting for 36% of all central nervous
system (CNS) neoplasms [1]. World Health Organization (WHO) grade II/III meningiomas are
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not benign and most clinicians agree that gross total resection should be the goal of surgery to
prevent tumor recurrence [2-6]. However, the margins of these neoplasms can be difficult to
identify intraoperatively and there still remains no standardized diagnostic technique to locate
tumor margins during excision [7].

Stimulated Raman histology allows for the fast, high-resolution acquisition of structural
information through spectral image generation [8-9]. This occurs because of a phenomenon
known as the Raman effect in which a scanning laser emits photons onto a sample thus
generating a scattering pattern detected via a two-dimensional microarray. When applied to
biological tissue, this can create a real-time histologic image without the use of flash freezing
necessary in conventional frozen sections thus significantly reducing the time required to
prepare pathology results [7,10-11].

To that end, several preclinical studies have been performed using stimulated Raman histology
on ex vivo meningiomas and have shown exceedingly high sensitivity and specificity when
attempting to discriminate tumors from normal tissue [12-14]. Although in vitro studies have
also demonstrated that stimulated Raman histology is capable of detecting brain tumor
margins, there have been no reports using this technique intraoperatively [15]. Therefore, we
present the first case of a patient with a recurrent WHO grade II spheno-orbital meningioma in
which stimulated Raman histology was used to assist with identifying tumor margins during
surgical excision.

Case Presentation
After institutional review board approval, this patient was prospectively consented for
participation in this study. Patient clinical information, including demographic data, presenting
symptoms, intraoperative findings, and post-surgical clinical status, were obtained from the
electronic medical record.

A 75-year-old male underwent a left frontotemporal craniotomy in 2014 for the resection of a
WHO grade II meningioma. He presented four years later with new left-sided vision loss,
proptosis, diplopia, and temporal bossing. MRI demonstrated a recurrence of the lesion with
invasion into the temporalis muscle and the superolateral orbital wall (see Figures 1-3). 
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FIGURE 1: Preoperative axial MRI demonstrating tumor
involvement of the lateral orbit and temporalis muscle
* = Tumor invasion of the lateral orbit and temporalis muscle

MRI: magnetic resonance imaging
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FIGURE 2: Preoperative coronal MRI demonstrating tumor
involvement of the lateral orbit and temporalis muscle
* = Tumor invasion of the lateral orbit and temporalis muscle

MRI: magnetic resonance imaging
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FIGURE 3: Preoperative sagittal MRI demonstrating tumor
involvement of the lateral orbit and temporalis muscle
* = Tumor invasion of the lateral orbit and temporalis muscle

MRI: magnetic resonance imaging

After induction of general anesthesia and registration of neuronavigation, a large pterional
incision was made and after the dissection of the superficial temporalis fascia, the tumor was
immediately identified within the temporalis muscle. The tumor was followed anteriorly until it
entered the orbit. Then, after performing a superolateral orbitotomy, the tumor was identified
intraorbitally back to the orbital apex and superior orbital fissure. The tumor consistency was
soft, making it challenging to distinguish from the orbital fat and lacrimal gland. Furthermore,
it was adherent to the temporalis muscle, making dissection difficult without removing a
significant portion of the muscle. As a result, multiple samples were taken from the margin of
the tumor within the temporalis/temporal bone and the orbital apex to be analyzed using
stimulated Raman histology (SRH) in an effort to prevent disruption of the lacrimal gland, the
superior and lateral rectus muscles, and the temporalis muscle. These specimens immediately
underwent a one-step squash prep in which the fresh tissue was placed on a standard uncoated
glass slide and flattened using normal saline and a coverslip. This slide was then placed on a
motorized stage and focused using standard transmission light microscopy. Software was then
utilized to provide high-resolution microscopic images requiring no special staining or frozen
preparation. This resulted in readily available images that were subsequently used to
distinguish tumor boundaries from normal lacrimal gland and muscle fibers/bone (Figures 4-6).
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FIGURE 4: Lacrimal gland showing organized glandular tissue
and lipid deposits; no tumor seen

FIGURE 5: Dark streaks showing large acellular collagen
fibers, representing bone fragments, with active tumor cells
around it
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FIGURE 6: Large acellular pink areas are lipid deposits within
the temporalis muscle, again with active tumor surrounding
them

The resection was then continued extradurally via a Dolenc-Hakuba approach to expose the
cavernous sinus and middle fossa floor. With this approach, the remaining tumor was removed
from the middle fossa skull base. V2 was exposed back to the trigeminal ganglion as well as the
infratemporal fossa and pterygopalatine fossa without entering the maxillary or sphenoid
sinuses. The intradural tumor was then resected and all the involved dura accessible with the
microsurgical technique. Afterwards, SRH and the surgical microscope identified no active
tumor in the orbit or temporalis muscle. A small amount of residual tumor was intentionally
left within the cavernous sinus in an attempt to prevent injury to any of its contents. The
surgery, including the intradural component, was uneventful and the patient had no
complications with notably improved vision and diplopia by three days postoperatively. The
orbit was reconstructed with mesh and bone and the dural opening was closed with a dural
substitute in a watertight fashion. Postoperative MRI demonstrated good decompression of the
orbit and removal of the tumor invading the temporalis muscle (Figures 7-9).
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FIGURE 7: Postoperative axial MRI demonstrating resection of
the intraorbital and intramuscular tumor component
* = Areas of prior tumor invasion of the lateral orbit and temporalis muscle

MRI: magnetic resonance imaging
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FIGURE 8: Postoperative coronal MRI demonstrating resection
of the intraorbital and intramuscular tumor component
* = Areas of prior tumor invasion of the lateral orbit and temporalis muscle

MRI: magnetic resonance imaging
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FIGURE 9: Postoperative sagittal MRI demonstrating resection
of the intraorbital and intramuscular tumor component
* = Areas of prior tumor invasion of the lateral orbit and temporalis muscle

MRI: magnetic resonance imaging

Histopathologic examination, finalized at two weeks postoperatively, is shown in Figures 10-14
and confirms the diagnosis of atypical (WHO grade II) meningioma. At discharge, the patient
was at his neurologic baseline and at the two-week follow-up, his diplopia had resolved.
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FIGURE 10: Haemotoxylin and Eosin (H&E) staining of a WHO
grade II meningioma at high-power magnification
WHO: World Health Organization

FIGURE 11: H&E staining of lacrimal gland tissue at high-
power magnification
H&E: Haemotoxylin and Eosin
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FIGURE 12: H&E staining of WHO grade II meningioma at high-
power magnification; necrosis is seen in the center of the
image
H&E: Haemotoxylin and Eosin

WHO: World Health Organization

FIGURE 13: H&E staining of WHO Grade II meningioma at high-
power magnification demonstrating bone invasion
H&E: Haemotoxylin and Eosin

WHO: World Health Organization
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FIGURE 14: H&E staining of WHO grade II meningioma at high-
power magnification demonstrating skeletal muscle invasion
H&E: Haemotoxylin and Eosin

WHO: World Health Organization

Discussion
Spheno-orbital meningiomas (SOM) account for only 4%-9% of all intracranial meningiomas
[16]. Due to the penetrative capabilities of SOMs, they can invade local structures, such as the
orbit or cavernous sinus. Since these types of tumors can typically infiltrate such vital
structures, surgical management can be increasingly difficult. When SOM was first described in
the literature, many papers that were published demonstrated discouraging results, a high rate
of recurrence led to the recommendation of a conservative approach to treatment [17].

Improvements in the management of brain tumors have led to decreased morbidity and
increased survival rates, with the goal being to resect as much tumor as possible without
causing any additional harm. However, even with the many great advances in surgical
technique and imaging, studies show that the number one reason for brain tumor recurrence is
known residual tumor following initial resection leading to increased morbidity and mortality
in these patients [18]. Furthermore, even for brain tumors that were considered acceptable for
100% resection preoperatively, there still remains fragments of tumor leftover in patients
postoperatively in over 75% of cases. These studies show the importance of having newer
surgical methods to more accurately help in total resection of a tumor.

The Raman spectrum of any molecule can be determined by measuring the Raman shifts
interacting with the molecule’s chemical bonds and can be used for chemical identification.
Chemical differences between tumor and normal tissue create distinguishably different Raman
spectra and thus allow for the identification of tissue boundaries [19]. Applications of
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stimulated Raman histology in brain tissue continue to provide promising results by being able
to distinguish normal brain from tumor-cell infiltrated brain with high sensitivity and
specificity [20]. Furthermore, studies have shown a significant reduction in the time to
completion of pathologic preparation when using stimulated Raman histology versus standard
techniques [11].

Three studies published within the last 15 years examined the diagnostic accuracy of stimulated
Raman histology in differentiating meningioma from normal tissue; the sensitivity and
specificity determined in these studies were 0.98 and 1.00, respectively, with high diagnostic
accuracy [12-14]. Koljenovic et al. studied meningioma and normal dura using stimulated
Raman histology and noted that large differences exist between the Raman spectra of
meningioma and dura due to the high lipid content in the tumor and the high collagen content
of the dura. The Raman spectra discriminant analysis yielded an accuracy of 100% in 20
patients, further showing that stimulated Raman histology is a promising intraoperative
neurosurgical tool in differentiating meningioma from normal tissue [13]. In this case,
stimulated Raman histology allowed us to confirm tumor margins and identify the surrounding
normal tissue with a high level of accuracy. When achieving negative margins are needed
during oncologic resection, stimulated Raman histology has the advantage of providing fast and
reliable feedback to help guide the surgeon while additional pathological data is gathered and
processed.

Conclusions
Our case demonstrates the utility of stimulated Raman histology as an effective tool for
differentiating meningioma from normal tissue. Its use as a technique to identify tissue margins
can help ensure complete resection of the tumor while preventing iatrogenic injury to adjacent
normal structures, thus improving overall accuracy in brain tumor surgeries while
circumventing the need for tissue preparation with standard pathology techniques.
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