
TYPE Original Research

PUBLISHED 18 August 2022

DOI 10.3389/fcvm.2022.975478

OPEN ACCESS

EDITED BY

Diederik Wouter Dimitri Kuster,

Amsterdam University Medical

Center, Netherlands

REVIEWED BY

Oscar Campuzano,

University of Girona, Spain

Solena Le Scouarnec,

Université de Nantes, France

*CORRESPONDENCE

Maria Carmo-Fonseca

carmo.fonseca@medicina.ulisboa.pt

Alcides Fonseca

amfonseca@fc.ul.pt

SPECIALTY SECTION

This article was submitted to

Cardiovascular Metabolism,

a section of the journal

Frontiers in Cardiovascular Medicine

RECEIVED 22 June 2022

ACCEPTED 01 August 2022

PUBLISHED 18 August 2022

CITATION

Barbosa P, Ribeiro M,

Carmo-Fonseca M and Fonseca A

(2022) Clinical significance of genetic

variation in hypertrophic

cardiomyopathy: comparison of

computational tools to prioritize

missense variants.

Front. Cardiovasc. Med. 9:975478.

doi: 10.3389/fcvm.2022.975478

COPYRIGHT

© 2022 Barbosa, Ribeiro,

Carmo-Fonseca and Fonseca. This is

an open-access article distributed

under the terms of the Creative

Commons Attribution License (CC BY).

The use, distribution or reproduction

in other forums is permitted, provided

the original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Clinical significance of genetic
variation in hypertrophic
cardiomyopathy: comparison of
computational tools to prioritize
missense variants

Pedro Barbosa1,2, Marta Ribeiro3, Maria Carmo-Fonseca2* and

Alcides Fonseca1,4*

1LASIGE, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal, 2Instituto de Medicina

Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal,
3Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto

Superior Técnico, Universidade de Lisboa, Lisboa, Portugal, 4GenoMed - Diagnósticos de Medicina

Molecular, Lisboa, Portugal

Hypertrophic cardiomyopathy (HCM) is a common heart disease associated

with sudden cardiac death. Early diagnosis is critical to identify patients

who may benefit from implantable cardioverter defibrillator therapy. Although

genetic testing is an integral part of the clinical evaluation and management

of patients with HCM and their families, in many cases the genetic

analysis fails to identify a disease-causing mutation. This is in part due to

di�culties in classifying newly detected rare genetic variants as well as

variants-of-unknown-significance (VUS). Multiple computational algorithms

have been developed to predict the potential pathogenicity of genetic variants,

but their relative performance in HCMhas not been comprehensively assessed.

Here, we compared the performance of 39 currently available prediction tools

in distinguishing between high-confidence HCM-causing missense variants

and benign variants, and we developed an easy-to-use-tool to perform variant

prediction benchmarks based on annotated VCF files (VETA). Our results show

that tool performance increases after HCM-specific calibration of thresholds.

After excluding potential biases due to circularity type I issues, we identified

ClinPred, MISTIC, FATHMM, MPC and MetaLR as the five best performer tools

in discriminating HCM-associated variants. We propose combining these tools

in order to prioritize unknown HCM missense variants that should be closely

followed-up in the clinic.
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Introduction

Familial hypertrophic cardiomyopathy (HCM) is the most

common inherited heart disease and one of the leading

causes of sudden cardiac death in younger people (1) and

athletes (2). The estimated prevalence of HCM is at least

1 in 500 individuals in the general population (3). Access

to more sensitive imaging methods and advanced genetic

testing improved the diagnostic rate and a more recent

study revealed that 1 in 200 people may be affected (4). In

some cases, sudden cardiac death is the first manifestation

of HCM, particularly in younger individuals (5–7). Thus, it
is important to implement prevention strategies that involve

screening, monitoring and counseling HCM patients and their

families (8).
HCM is morphologically characterized by increased

left ventricular wall thickness in the absence of abnormal

loading conditions (9). In the majority of familial HCM

patients, the disease is caused by mutations in any of

the following eight sarcomeric genes, MYBPC3, MYH7,

TNNT2, TPM1, MYL2, MYL3, TNNI3, and ACTC1 (10).

Although advances in high-throughput sequencing led to

an exponential increase in the number of genes proposed

to be associated with HCM, in many cases there is no

robust evidence supporting a causative link between these

additional genes and the disease (10). Nevertheless, screening

of extended gene panels is recommended, including genes

associated with other disorders such as inherited metabolic and

neuromuscular diseases that may mimic the clinical features of

HCM (11).

Genetic testing has become an integral part of the clinical

evaluation and management of patients with HCM (12, 13).

Detection of a mutation known to be causative of the disease

in the index patient is followed by family genetic cascade testing

in order to identify which family members do or do not carry

the mutation. This allows to eliminate disease risk in non-carrier

individuals, and to implement primary prevention strategies in

individuals with pre-symptomatic genetic diagnosis (9). With

contemporary disease management, approximately two thirds

of patients with HCM have a normal life expectancy without

significant morbidity, while a subset requires symptomatic

therapies for heart failure (14).

In some patients, however, no causative mutation is

identified. A recent systematic review and meta-analysis

revealed a mutation detection rate of 33–43% in adult HCM

cohorts and 52–78% in pediatric HCM cohorts (15). The

detection rates for adult cohorts with a positive family history

of HCM were significantly higher compared with apparently

sporadic cases, whereas in pediatric cohorts the detection rate

was similar irrespective of family history (15). Approximately

40% of HCM patients were reported as presenting a non-familial

subtype for which the underlying mechanism remains unknown

(16, 17).

In addition to ambiguous gene associations, difficulties

in classifying variants in “core” HCM genes limits the

impact of genetic testing in clinical practice (4). Determining

which genetic variants detected in HCM-associated genes are

pathogenic relies on a set of functional (molecular) and clinical

criteria that have been defined by the American College

of Medical Genetics and Genomics and the Association for

Molecular Pathology (ACMG/AMP) (18–20). In many cases,

available information is insufficient to classify a variant as

benign/likely benign or pathogenic/likely pathogenic. This

results in a large group of so-called “variants-of-unknown-

significance” (VUS), the interpretation of which is extremely

challenging. The advent of whole-exome and whole-genome

databases revealed that many variants previously associated with

cardiomyopathies were rather likely benign, as their population

frequencies were incompatible with the prevalence of disease

(21, 22). These observations prompted the development of

disease-specific approaches to assist decisions on which variants

should be considered in clinical practice. Rigorous curation

efforts that assess all available lines of evidence for HCM-

association are now available, such as the SHaRe registry (https://

theshareregistry.org/), which comprises genetic data and cardiac

morphofunctional parameters for >9,000 HCM patients.

When a VUS or a previously unseen genetic variant is

identified in an HCM-causing gene, computational approaches

can aid by making a prediction of potential pathogenicity.

Over the last decade, many different algorithms and tools

have been proposed, but their performance is not consistent

across different independent benchmarks (23–31). Additionally,

most of these studies evaluate prediction tools on datasets that

incorporate variants from multiple disease phenotypes, which

may compromise their performance for a specific disease (27,

32, 33).

In this study, we used three distinct datasets comprising

high-confidence HCM-causing missense variants and we

developed a dedicated computational framework (VETA)

to perform a comprehensive analysis of currently available

prediction algorithms. We found that ClinPred, MISTIC,

FATHMM, MPC and MetaLR are the five tools that more

accurately and reliably distinguish between benign and HCM-

causing missense variants.

Methods

Prediction scores

When available, pre-computed prediction scores were

obtained directly from each tool website. Alternatively, dbNSFP

v4.0b1 (34) was used. UCSC genome browser was used to access

conservation scores (35).Because some tools do not provide

scores for the latest genome build, the GRCh37 version was

used to include a more comprehensive number of tools in
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the analysis. Annotation of VCF scores was performed with

Ensembl Variant Effect Predictor (VEP) v105 (36) using custom

plugins or with vcfanno v0.3.3 (37). Reference tool thresholds

were obtained from different sources according to the following

priority. First, we followed a recent computational approach

that calibrates missense variants’ thresholds to different levels of

pathogenicity evidence according to the ACMG/AMP guidelines

(33). Whenever reported in this dataset, we used the least

conservative value in the threshold range with “Supporting”

evidence for Pathogenicity (PP3). Alternatively, we used the

threshold value provided in the original publication, or indicated

by authors elsewhere (e.g., online repository for the tool data).

If not available, we included threshold values indicated in other

studies that use the tool (e.g., benchmark paper).

Datasets

ClinVar HCM

The ClinVar v20220403 database (38) was used. To

select HCM-associated variants, we filtered the dataset

using a combination of three disease ontologies by keeping

variants with any of the following identifiers: MedGen

(39) (C3495498, C0949658); OMIM (40) (192600); Mondo

Disease Ontology (41) (0005045, 0024573). Additionally,

we excluded all variants with zero-star review status,

classified as “Uncertain_significance” or with conflicting

interpretations of pathogenicity. Finally, missense variants

were selected by inspecting the “Consequence” field of VEP

annotations. The resulting HCM ClinVar dataset consisted of

471 missense variants (278 Pathogenic/Likely_pathoenic, 193

Benign/Likely_benign; Supplementary Table S1).

For the variant distribution analysis depicted in Figure 1,

the VCF field GENEINFO was used to assign the gene name.

Genes with <5 variants were grouped as “Other”. Variant

categories were extracted from the VCF MC field. For the cases

where MC was empty, Consequence field from VEP annotations

was used instead. “inframe_deletion” and “inframe_insertion”

ontologies were generalized to “Inframe indel”. Splice site and

“intron_variant” annotations were combined into one single

category “Splice site/Intron”.

SHaRE cohort

Data was directly accessed from (17). Variants with

Pathogenic/Likely pathogenic assignments that were absent

from the ClinVar dataset were selected. Records with allele

mismatch after running Ensembl VEP were excluded. The

majority of remaining variants refer to either missense or splice

region variants. Missense variants were selected as described

above. After this selection, 93HCM-associatedmissense variants

were considered for further analysis (Supplementary Table S2).

Walsh_2017

This dataset was generated from results in (22). In this

study, the following genes showed a significant excess of

rare variation in patients compared to control individuals:

ACTC1, FHL1, GLA, MYBPC, MYH7, MYL2, MYL3, PRKAG2,

TNNI3, TNNT2, TPM1. We selected the variants considered

Pathogenic/Likely_pathogenic, excluding those with conflicting

interpretations between different labs. A final set of 103missense

variants was obtained (Supplementary Table S3).

gnomAD

gnomAD v2.1 (42) was used to identify benign variants for

a balanced evaluation of the SHaRe and Walsh_2017 datasets.

Common variants were selected based on a Minimum Allele

Frequency (MAF) threshold of 0.001 (>0.1%). We restricted

our analysis to variants located in 62 genes associated with

cardiomyopathies (https://www.ncbi.nlm.nih.gov/gtr/tests/

509149/). From a total of 110,762 variants, 709 missense

variants were further selected. Hits in the TTN gene were

discarded to avoid over-representation of missense variants

from a single gene. Finally, we checked that the remaining 356

variants did not overlap with any variant from the other datasets,

as well as with variants from the whole ClinVar database with

any of the following assignments: “Pathogenic”, “Likely

pathogenic”, “Pathogenic/Likely Pathogenic”, “Uncertain

significance”, or “Conflicting interpretations of pathogenicity”.

The final set comprised 220 variants, which were randomly

split in two non-overlapping groups of 100 variants, called

benign_set1 (used to compare with the SHaRe HCM dataset;

Supplementary Table S2) and benign_set2 (used to compare

with the Walsh_2017 HCM dataset; Supplementary Table S3).

Performance metrics

For each tool, a confusion matrix was constructed that

measures the number of True Positives (TP), True Negatives

(TN), False Positives (FP) and False Negatives (FN). TP refers

to the number of pathogenic variants that a tool correctly

predicts to be pathogenic (e.g. above the reference threshold).

TN is the number of benign variants that a tool correctly

predicts to be benign; FP indicates the number of benign

variants that a tool predicts to be pathogenic; FN is the

number of pathogenic variants that a tool predicts to be

benign. Tools were ranked using a small variation of the

Matthews correlation coefficient (MCC= TP∗TN−FP∗FN /√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)). To account for the

magnitude of missing predictions, MCC values were normalized

to range from 0 and 1 (normalizedMCC = (MCC+1)
2 ),

and weighted by the fraction of variants that a tool gives

predictions (tool coverage). Throughout the manuscript we

call this metric weighted normalized MCC, which corresponds
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to weighted norm MCC = coverage∗normalizedMCC.

In addition, tools were ranked based on Receiving

Operating Characteristic (ROC) curves, which, as opposed

to weighted normalized MCC, evaluate performance at

multiple threshold values. ROC curves were created by

plotting the Sensitivity (also known as True Positive

Rate or Recall) against the 1—Specificity (also known

as False Positive Rate) at several different thresholds.

Sensitivity= TP / TP+ FN; Specificity= TN / TN+ FP.

For each tool, scores were transformed based on their rank

so that they ranged between 0 and 1 (in the minority of

tools where the values below a threshold are considered

pathogenic, we inverted the signal accordingly). The

area under the ROC curve (auROC) was used as the

summary statistic.

Automated analysis using VETA

Most of the analysis in the manuscript were performed

with Variant prEdiction Tools evAluation (VETA), a general

tool we developed to benchmark variant predictors. Briefly,

VETA takes annotated VCF files from Ensembl VEP (36) as

input (in this analysis we specifically set –hgvs, –per_gene,

–pick_order ccds, canonical, biotype, rank, –no_intergenic –

gencode_basic) and automatically compares tools performance

at different levels. It allows to evaluate predictions according

to the variant type (e.g., SNVs, indels), variant location

(e.g., exons, introns) and scope of the tool (e.g., separate

analysis for missense and splicing predictors). In addition,

VETA is particularly suited to deal with ClinVar data since

it incorporates methods to filter variants according to review

status and/or phenotype desired. Furthermore, VETA is able

to inspect whether reference thresholds are appropriate, and

allows combination of scores frommultiple tools to create meta-

predictors using standard Machine Learning algorithms. By

default, VETA has native support for more than 50 predictors,

but it also allows users to include custom tools through a

configuration file. Detailed documentation is available at https://

github.com/PedroBarbosa/VETA, where instructions for easy

installation are provided. Of note, VETA depends on cyvcf2 (43)

for VCF parsing, on hgvs (44) for parsing HGVS expressions,

on Scikit-learn for ROC curve analysis (45) and seaborn for

plots generation (46). Importantly, VETA does not run any

prediction tool but rather receives as input VCF files annotated

with prediction scores.

Threshold analysis

To evaluate whether published reference thresholds

were appropriate, we measured the performance of

A B

C
D

FIGURE 1

Distribution of HCM-associated variants (Pathogenic/Likely pathogenic) with a review status of > 1 star in ClinVar (N = 768). (A) Number and

proportion of overall variants per gene. (B) Number and proportion of overall variants per category. (C) Category of variants located in the MYH7

gene. (D) Category of variants located in the MYBPC3 gene.
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each tool using a set of 100 threshold values uniformly

distributed over the observed range of scores. The

best thresholds were obtained based on the F-Beta

formula Fβ =
(

1+ β2
) Precision × Recall

(β2+Precision)+Recall
, where

Precision= TP / TP+ FP. This is similar to the commonly

used F1 score, but allows to weight the balance between

precision and recall using the β parameter (when β =
1, it is equal to the F1 score). In this study, we used β

= 0.5, 1 and 1.5. For each β value, the threshold that

maximized the Fβ function was selected. Higher β values

favor sensitivity over precision, which translate into higher

recall rates at the cost of increasing false positives. Conversely,

lower β values favor precision, at the cost of increasing

false negatives.

We additionally performed a bootstrapping procedure

to evaluate how reliable the adjusted threshold is. For

each tool, we generated 1,000 bootstrap samples of the

same size of the data sample with the same ratio of

pathogenic/benign variants as in the original dataset.

For each bootstrap sample we derived the best threshold

(as described above). Then, we computed the 0.025 and

0.975 quantiles of the distribution of the bootstrap sample

statistic (distribution of best thresholds). We used these

values to interrogate at which threshold range 95% of

the bootstrap sample statistic lies, and how wide/narrow

this interval is in respect to the adjusted threshold

originally obtained.

Results

The majority of HCM-associated variants
annotated in ClinVar are missense

Among algorithms developed to assess the likelihood of

pathogenicity of rare variants, two main categories are generally

considered: those that predict whether a missense change

(i.e., a base change that alters the encoded amino acid) is

damaging to the resultant protein function or structure and

those that predict whether there is an effect on splicing (18).

To determine the relative contribution of missense variation

to HCM, we analyzed all HCM-associated variants annotated

in the ClinVar database that are classified as Pathogenic/Likely

pathogenic with a review status of > 1 star (Figure 1). As

previously described (47), the most frequently mutated genes

are MYBPC3 and MYH7 (Figure 1A). Among all HCM-

associated variants, missense variants are the most frequent

(Figure 1B). However, the prevalence of missense variants

differs depending on the affected gene. Over 90% of annotated

variants in the MYH7 gene are missense (Figure 1C), whereas

in the MYBPC3 gene missense variants are less than 20%

(Figure 1D).

TABLE 1 Prediction tools analyzed in this study.

Category Tool Threshold

Protein predictors SIFT (48) <0.01 (33)

MutPred (49) >0.5*

PolyPhen-2 HDIV (50) >0.978 (33)

PolyPhen-2 HVAR (50) >0.978 (33)

Mutation Assessor (51) >1.935 (52)

Condel (53) >0.98 (53)

VEST4 (54) >0.764 (33)

MutationTaster2 (55) >0.5 (52)

FATHMM (56) <-4.14 (33)

PROVEAN (57) <-2.5 (52)

MetaSVM (25) >0.5 (25)

MetaLR (25) >0.5 (25)

M-CAP (58) >0.025 (58)

REVEL (59) >0.644 (33)

MPC (60) >1.360 (33)

MTR (61) <0.5*

PrimateAI (62) >0.790 (33)

ClinPred (63) >0.5 (63)

MISTIC (64) >0.5 (63)

cVEP (65) >0.5**

MVP (66) >0.7 (63)

VARITY (67) >0.75 (67)

MutFormer (68) >0.5*

EVE (69) >0.5***

MutScore (70) >0.5*

Conservation scores phastCons (71) >0.99 (28)

phyloP (72) >7.367 (33)

SiPhy (73) >12.7 (25)

GERP (74) >4.4 (25)

CDTS (75) <10 (75)

Consequence-agnostic predictors GWAVA (76) >0.4 (77)

FATHMM-MKL (78) >0.5 (52)

DANN (79) >0.9 (80)

Eigen (81) >1 (58)

ReMM (82) >0.984 (83)

CAPICE (84) >0.02 (84)

CADD (85) >25.3 (33)

Disease-specific predictors CardioVAI (86) >2 (86)

CardioBoost (32) >0.9 (32)

*If a reference threshold was not found, decision boundary was set to 0.5 for tools with a

score range between 0 and 1.
**cVEP outputs categorical labels (e.g. Pathogenic, Likely_benign). We transformed

categories into numerical predictions to allow doing the benchmark as following: Benign:

0; Likely_benign: 0.25; Likely_pathogenic: 0.75; Pathogenic: 1. VUS classifications were

treated as NaN. Since these transformations represent artificial numeric predictions,

this tool was just used in the first comparison, where tools are evaluated according to

reference cut-offs. Downstream analysis (e.g. best threshold analysis, ROC curves) did

not include cVEP.
***For EVE, we tested doing the benchmarks using the categorical classifications at three

different uncertainty thresholds (20, 82, 87). We transformed categorical classifications

as we did for cVEP. At the end, we observed that none of these annotations improved

classifications compared with using the raw EVE numeric score. For initial performance

assessment, we set EVE threshold to 0.5, as defined in** .
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Comprehensive review of computational
tools to predict clinical significance of
missense variants

Having shown that missense variants are a frequent

cause of HCM, we next performed a comprehensive

review of computational tools that predict the clinical

significance of this type of genetic change (Table 1). A subset

of existing computational tools relies on features such as

amino acid or nucleotide conservation, the location and

context within the protein sequence, and the biochemical

consequence of the amino acid substitution (see references

in Table 1, “protein predictors”). Other methods estimate

the probability that a particular nucleotide belongs to

a conserved element irrespective of its location in the

genome, and therefore are not restricted to variation

in exons of protein coding genes (see references in

Table 1, “conservation scores”). Another class consists

of tools that integrate genome-wide features to predict

variant effects irrespective of the variant category (Table 1,

“Consequence-agnostic predictors”). Tools specifically

designed for cardiac diseases were also included (Table 1,

“disease-specific predictors”).

Threshold optimization for
HCM-associated variants

To compare the performance of the different tools in

classifying pathogenic and benign missense variants, we

used three distinct high-confidence HCM test datasets that

are mostly based on expert-reviewed clinical and functional

evidence (Figure 2). We first assessed performance on the

three datasets using the threshold recommended by each

tool (Figure 3). The results show that ClinPred, CAPICE,

cVEP, MISTIC, MetaLR, REVEL and MutScore consistently

ranked among the best tools with weighted normalized MCC

values >0.80 (Figures 3A–C). These tools scored with high

sensitivity and specificity (approximately 80% or higher) and

provided predictions for the vast majority (>90%) of the

variants analyzed. Other tools, such as VEST4, ranked worse

despite scoring with relatively high sensitivity and specificity

because they failed to provide predictions for many of the

variants analyzed. A subset of tools, including cardiac-specific

methods, failed to predict predominantly benign variants

(Supplementary Figure S1).

In contrast, ROC curves (calculated only from scored

variants) revealed overall excellent performance, with several

tools with auROC scores above 0.9 (Figures 4A–C). This

analysis highlights how much results can change depending

on the selected metric. For example, CardioVAI, which

was ranked in an intermediate position using MCC-based

FIGURE 2

Workflow of the study. Number of variants on each dataset are

presented.

values for the recommended thresholds (see Figure 3),

appears as one of the best in the ROC curve analysis

(auROC ≥ 0.95). An overall comparison of auROC (from

multi-threshold analysis) and MCC (from fixed threshold

analysis) scores reveals performance differences within each

tool clearly favoring auROC, which indicates that reference

thresholds of several methods may be suboptimal for HCM

(Figure 4D).

This observation prompted us to carry out a threshold

analysis to find values that best discriminate the high-

quality pathogenic HCM variants. We merged the three

datasets, leading to 867 variants (474 pathogenic, 393 benign).

Using the F-Beta (β) score at different values of β, we

derived new thresholds that prioritize differently precision

and recall (Table 2). Next, we evaluated tools performance

using the adjusted thresholds on each dataset independently

(Figure 5). The results confirm improved performance. Yet,

no major change was observed for the top ranked tools.

Notably, the performance of top tools remained similar when

different weights to precision/recall were given. Although

different types of errors were introduced using different

thresholds, these results suggest that the top tools are

similarly sensitive to type I (more false positives at β

of 1.5) and type II errors (more false negatives at β

of 0.5).

Contrasting with the top tools, an improvement of

overall predictions was observed for the middle-ranked

tools after threshold optimization (Figure 5). For example,

VARITY, FATHMM and MTR had a >10% increase of

the weighted normalized MCC values for almost all the

dataset/threshold combinations. For the lowest performing

tools, threshold optimization has no significant effect (e.g.

GWAVA,MetaSVM, GERP; Figures 4, 5). In addition, tools with

a large fraction of missing predictions rank poorly, regardless of

the threshold optimization (e.g. Mutpred, VEST4, CardioBoost;

Figures 3, 5).
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A B C

FIGURE 3

Performance of prediction tools in classifying HCM missense variants using fixed thresholds for ClinVar (A), SHaRe (B) and Walsh_2017 (C)

datasets. For each dataset, the numbers of pathogenic/likely pathogenic (N pos) and benign/likely benign (N neg) variants are indicated. Tools

were ranked according to the weighted normalized MCC (weighted_norm_mcc).

Addressing circularity

Circularity is a critical issue to be considered when assessing

performance metrics (88). In this regard, we interrogated

whether some of the variants present in our evaluation datasets

had been previously used for tool training (Type I circularity).

We restricted circularity analysis to the best performing tools.

The rank of each tool across all datasets was averaged,

and the 10 tools with the lower average rank value with

adjusted thresholds at β = 1 were selected. These included

ClinPred, MISTIC, CAPICE, REVEL, MetaLR, MPC, MutScore,

PrimateAI, FATHMM and CADD (Figure 5).

For some tools, circularity could not be properly addressed

because the training datasets were not explicitly available. This

was the case for the pathogenic sets of REVEL, FATHMM

and MISTIC (in this case, partially), which used HGMD

(89) variants undisclosed for licensing reasons. For other

unavailable sets (such as the benign variants of FATHHM

and MPC, and both benign and pathogenic datasets of

ClinPred), we tried to replicate the data generation process

following the methods of each publication, but we cannot

ensure that the original sets were accurately reproduced. All

VCF files generated (except for CADD that was downloaded

directly from the website) are available at https://github.com/

PedroBarbosa/paper_HCM_benchmark. Finally, we generated

a new test dataset termed “excluded_training_top_tools set”,

where variants present in the training of top-performant

tools were excluded (Supplementary Table S4). As expected,

performance decreased after correcting for type I circularity,

with no tool achieving a weighted normalized MCC of 0.9

(Figure 6A). Nevertheless, four tools display metric values above

0.85 (ClinPred, MISTIC, MPC, FATHMM). Notably, these tools

still perform better than most of the others, including those that

were not controlled for circularity (Figure 6A).

As an alternative approach to address circularity,

we analyzed specifically ClinVar variants that were

reported after the tools under assessment were developed

(“ClinVar_recent set”, Supplementary Table S5). Despite the

very low number of variants and the partial overlap with

the “excluded_training_top_tools” set, this dataset has the

advantage of better controlling for bias favoring any tool for

which no training data is available. The results show weighted

normalized MCC values above 0.90 for FATHMM and MISTIC,

and values above 0.80 for MetaLR, REVEL, CADD, ClinPred,

and MPC (Figure 6B). Additional tools with evaluation scores

above 0.80 include M-CAP, MVP and MutFormer, which

partially use HGMD variants in their training datasets and

therefore could not be controlled for potential biases.

Having addressed type I circularity issues, we next

identified the five best-performing tools by measuring the

average of the tools’ ranks in Figures 6A,B, considering

each dataset size (i.e., more weight was given to the

“excluded_training_top_tools” set). The resulting list includes

ClinPred, MISTIC, FATHMM, MPC and MetaLR. We further

observed a high correlation between the predictions of these

best-performing tools (Supplementary Figure S2).

We next asked how the best tools in discriminating

between HCM-associated and benign missense variants

perform in classifying missense variants irrespectively of

the disease context. We selected missense variants in the

whole ClinVar database and we excluded variants that were

used in the training of the tools for which we addressed

circularity. The resulting dataset consists of 25,971 missense

variants (9,651 Pathogenic/Likely_pathogenic, and 16,320
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A B

C D

FIGURE 4

Performance of prediction tools in classifying HCM missense variants using ROC curve analysis for ClinVar (A), SHaRe (B) and Walsh_2017 (C)

datasets. For each dataset, the numbers of pathogenic/likely pathogenic (N pos) and benign/likely benign (N neg) variants are indicated. Tools

were ranked according to the area under the ROC curve (auROC). The number (n) of variants predicted by each tool is indicated. Tools with

more than 50% of missing predictions were not included. (D) Di�erences in the metrics when evaluating with auROC and weighted normalized

MCC. For comparison, auROC values were weighted by the fraction of variants predicted by each tool.

Benign/Likely_benign, Supplementary Table S6). The analysis

was performed with the previously recommended thresholds

(as indicated in Table 1). Overall, the MCC scores are lower

compared to the HCM datasets (pval = 0.036, one-sided

Wilcoxon signed-rank test), highlighting the value of disease-

specific analysis. Notably, a subset of the best tools selected for

HCM (namely, ClinPred and MISTIC) still scored with MCC

values > 0.80 (Figure 6C).

High-confidence prioritization of
HCM-associated VUS

Finally, we used the five best-performing tools (ClinPred,

MISTIC, FATHMM, MPC and MetaLR) to inspect a non-

redundant set of HCM-associated variants classified as VUS

in the SHaRe (N = 103) and Walsh_2017 (N = 14) datasets

(Supplementary Table S7). For those variants annotated in

ClinVar, we confirmed they remain classified as VUS (as of

April 2022). The results show that the majority (81%) of the

variants are predicted to be pathogenic by more than 50% of the

tools. Particularly, 63 variants were predicted to be pathogenic

by all the tools, most of them located in the MYH7 gene

(Figure 7). We additionally inspected predictions on MYH7

VUS made by CardioVAI, which considers the ClinGen Expert

Panel adaptation of ACMG/AMP guidelines for MYH7 variants

(87). The results are consistent with the pathogenic predictions

of the top 5 tools, except for two variants predicted as benign

by CardioVAI (c.3701A>C and c.3551A>T). Given the high-

agreement level of classifications, we propose that variants

highlighted in Figure 7 should be prioritized for further clinical

and functional studies.
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TABLE 2 Adjusted thresholds that maximize performance for HCM variants at di�erent levels of importance given to precision and recall.

Tool* Reference threshold Threshold_beta_0.5** Threshold_beta_1** Threshold_beta_1.5**

ClinPred 0.5 0.52 (0.366, 0.832) 0.41 (0.242, 0.533) 0.37 (0.123, 0.476)

CAPICE 0.02 0.61 (0.116, 0.619) 0.06 (0.016, 0.078) 0.02 (0.009, 0.058)

MISTIC 0.5 0.67 (0.6, 0.781) 0.543 (0.499, 0.611) 0.514 (0.395, 0.544)

REVEL 0.644 0.596 (0.533, 0.679) 0.441 (0.407, 0.565) 0.353 (0.323, 0.473)

MPC 1.36 1.047 (0.808, 1.281) 0.717 (0.672, 0.878) 0.675 (0.572, 0.774)

MetaLR 0.5 0.629 (0.547, 0.658) 0.509 (0.346, 0.606) 0.26 (0.212, 0.491)

MutScore 0.5 0.75 (0.714, 0.818) 0.741 (0.512, 0.757) 0.501 (0.38, 0.582)

FATHMM −4.14 –2.119 (–2.156, –1.062) –1.078 (–1.185, –0.759) –0.947 (–1.137, –0.209)

PrimateAI 0.79 0.693 (0.641, 0.733) 0.577 (0.552, 0.645) 0.524 (0.504, 0.583)

CADD 25.3 24.12 (22.915, 24.742) 23.04 (22.055, 23.348) 22.32 (21.336, 23.066)

VARITY 0.75 0.427 (0.375, 0.597) 0.348 (0.243, 0.428) 0.23 (0.169, 0.299)

Provean −2.5 −2.582 (−2.932,−2.182) –2.268 (–2.423, –1.507) –1.484 (–2.215, –0.946)

MutFormer 0.5 0.99 (0.96, 0.998) 0.98 (0.954, 0.993) 0.98 (0.664, 0.988)

Condel 0.468 0.79 (0.624, 0.866) 0.59 (0.484, 0.671) 0.47 (0.463, 0.561)

MTR 0.5 0.783 (0.746, 0.817) 0.883 (0.815, 0.917) 0.916 (0.883, 0.931)

CardioVAI 2 2.53 (2.502, 2.852) 2.53 (2.502, 2.852) 2.53 (1.515, 2.837)

DANN 0.9 0.991 (0.964, 0.997) 0.991 (0.956, 0.994) 0.959 (0.903, 0.99)

MVP 0.7 0.891 (0.873, 0.924) 0.862 (0.818, 0.893) 0.793 (0.778, 0.861)

Sift 0.001 0.0 (0.001, 0.038) 0.05 (0.003, 0.096) 0.13 (0.043, 0.196)

Eigen 1 4.282 (2.973, 5.641) 2.531 (2.275, 3.155) 2.337 (1.384, 2.777)

SiPhy 12.17 11.823 (10.859, 13.018) 10.398 (9.507, 11.931) 7.264 (6.245, 10.729)

phyloP 7.367 7.012 (4.39, 7.122) 3.558 (0.76, 4.512) 0.105 (0.022, 1.068)

Polyphen2HVAR 0.978 0.65 (0.359, 0.861) 0.24 (0.156, 0.463) 0.02 (0.012, 0.265)

FATHMM-MKL 0.5 0.978 (0.948, 0.986) 0.959 (0.58, 0.964) 0.464 (0.436, 0.881)

ReMM 0.984 0.98 (0.943, 0.989) 0.88 (0.84, 0.95) 0.341 (0.313, 0.886)

Polyphen2HDIV 0.978 0.94 (0.511, 0.957) 0.5 (0.021, 0.565) 0.02 (0.0, 0.064)

GERP 4.4 3.401 (2.602, 3.601) 2.583 (2.203, 3.388) 2.232 (0.057, 2.679)

MutationAssessor 1.935 2.462 (2.429, 2.828) 1.106 (0.915, 2.258) 0.905 (0.085, 1.122)

M-CAP 0.025 0.181 (0.127, 0.332) 0.131 (0.074, 0.162) 0.131 (0.051, 0.142)

CDTS 10 26.756 (6.601, 37.161) 62.386 (37.155, 85.472) 86.139 (62.899, 94.343)

phastCons 0.99 0.7 (0.532, 1.0) 0.54 (0.256, 0.809) 0.001 (0.001, 0.692)

MetaSVM 0.5 0.106 (0.015, 0.363) 0.011 (0.012, 0.135) 0.011 (0.012, 0.109)

EVE 0.5 0.291 (0.264, 0.515) 0.252 (0.146, 0.295) 0.127 (0.062, 0.2)

VEST4 0.764 0.662 (0.484, 0.733) 0.504 (0.385, 0.59) 0.445 (0.369, 0.522)

GWAVA 0.5 0.294 (0.239, 0.475) 0.07 (0.071, 0.296) 0.07 (0.07, 0.215)

MutationTaster2 0.5 0.99 (0.742, 0.999) 0.99 (0.228, 0.992) 0.23 (0.033, 0.987)

95% percentile values of the bootstrap distribution are also displayed. Mutpred and CardioBoost were not included since they did not predict the minimum number of variants (N = 50)

in the minority class required by VETA for threshold analysis.
*Tool names in bold represent those that display minimally useful predictive power (> 0.70 weighted normalized MCC) across the different datasets (Figure 5).
**Numbers in bold represent cases for which the reference threshold lies outside the 95% percentile values of the bootstrap distribution of adjusted thresholds.

Discussion

The accurate identification of genetic changes associated

with increased risk for HCM remains challenging. According

to the ACMG/AMP guidelines, computational predictions are

included as one line of evidence to assess the clinical significance

of genetic variation (18–20). Although many computational

tools are currently available, it is unclear which should be

selected for clinical genome interpretation. To date, multiple

independent variant prediction benchmarking studies have

been published (23–31). However, the results are usually not

consistent, and one reason for this discrepancy may relate to the

different benchmark datasets used (27, 32). In addition, these

studies do not evaluate prediction tools on a disease-specific
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FIGURE 5

Performance of prediction tools using adjusted thresholds on each dataset (ClinVar, SHaRe, and Walsh_2017). Optimized thresholds at Beta =
0.5 minimize the false positives (variants predicted as pathogenic that are benign). Optimized thresholds at Beta = 1 give the same importance

to false positives and false negatives. Optimized thresholds at Beta = 1.5 minimize the false negatives (variants predicted as benign that are

pathogenic). Tools highlighted in blue were selected as the best by averaging the ranks between the three datasets.

A B C

FIGURE 6

Performance of prediction tools after addressing circularity issues. Tools were ranked using the weighted normalized MCC on two new test

datasets (A–C). (A) Variants identified as present in the training sets of the tools highlighted in blue were removed from the merged ClinVar,

SHaRe, and Walsh_2017 datasets. (B) HCM ClinVar variants submitted after the tools highlighted in blue were developed. (C) Variants in the

whole ClinVar irrespective of disease context. The tools selected as best-performers for HCM are highlighted in red (bold).

manner [except for (27)]. It is also common that performance

is evaluated using the receiver operating characteristic (ROC)

curve, which does not reflect the fixed thresholds used inmedical

genetic testing (32). Moreover, the frequently used dbNSFP

resource lacks more recently developed approaches (68, 69).

In this study, we developed a computational framework

(VETA) to compare the performance of 39 algorithms in

predicting missense variants known to be implicated in the

pathogenesis of a specific disease, HCM. We focused on

missense variants because HCM is frequently caused by

this type of genetic variation (Figure 1B). HCM-associated

missense variants may disrupt normal sarcomeric assembly and

function by changing an amino acid in a highly-conserved

protein residue, altering important kinase domains that affect

ligand interaction, or changing surface-exposed residues that

affect protein-protein interaction (47). Missense variants can

also cause protein misfolding and accelerated degradation,

thus leading to haploinsufficiency (47). As “ground-truth” for

prediction assessment, we used datasets of HCM-associated

missense variants classified with high-confidence based on

expert-reviewed clinical and functional evidence.

We included the fraction of missing scores in performance

metrics, and this clearly influenced the ranking (Figure 3). In

particular, cardiac-specific methods such as CardioVAI and

CardioBoost, were designed to predict variants in “core” disease-

linked genes such as MYH7. Many of the genes included in

Frontiers inCardiovascularMedicine 10 frontiersin.org

https://doi.org/10.3389/fcvm.2022.975478
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Barbosa et al. 10.3389/fcvm.2022.975478

FIGURE 7

High-confidence prioritization of HCM-associated VUS based

on predictions of the 5 top-performant tools (ClinPred, MISTIC,

FATHMM, MPC and MetaLR). On the left, 63 variants for which

100% of the tools predict pathogenicity. On the right, variants

predicted to be benign by more than 50% of the tools.

our benign dataset differ from those used by CardioVAI and

CardioBoost and this is probably the reason why these tools

failed to score multiple “ground-truth” benign variants in our

analysis (Supplementary Figure S1).

Another contribution of our study is the calculation of

new thresholds specifically calibrated for HCM. We found all

tools with predictive power above 0.7 (regarded as minimally

useful) to have a recommended threshold that falls outside of the

bootstrap estimate interval of the tuned thresholds (Table 2, bold

tools and values). This reveals that previously reported reference

thresholds are not ideal for application to HCM-related variants.

To enable flexibility in the choice of new thresholds, we derived

adjusted values where importance given to recall of precision

varies. If the goal is to maximize the identification of pathogenic

variants, one must use the threshold obtained using a Beta value

of 1.5. However, for missense HCM variants, we observed that

most errors come at the cost of lower specificity (benign variant

predicted as harmful. Figures 6A,B), thus it might be preferable

to use thresholds obtained at a Beta value of 0.5, especially when

looking at rare missense variants.

After tackling potential biases related to circularity issues,

we identified ClinPred, MISTIC, FATHMM, MPC and MetaLR

as the five best performers. ClinPred (63) incorporates two

machine learning algorithms that use existing conservation,

pathogenicity scores and population allele frequency from the

gnomAD database as input features. MISTIC (64) combines

two complementary machine learning algorithms using a

soft voting system that integrates 113 missense features,

ranging from allele frequencies from the Exome Aggregation

Consortium (ExAC) and conservation/pathogenicity scores, to

physiochemical and biochemical properties of amino acids.

FATHMM (56) builds Hidden Markov models from multiple

sequence alignments along with pathogenicity weights to predict

the functional, molecular, and phenotypic consequences of

amino acid substitutions. MPC (60) is a deleteriousness metric

that incorporates depletion of missense variation across genes by

leveraging the sequencing data from ExAC (60,706 individuals).

Finally, MetaLR (25) is a Logistic Regression model that

integrates multiple scoring methods. Thus, most of these top-

ranked tools integrate several previous models as features

in their algorithms, and their predictions tend to be highly

correlated (Supplementary Figure S2). These results are in line

with previous observations indicating that meta-predictors tend

to perform better than individual counterparts (31, 90).

While some experts argue that VUS reporting may lead to

confusion and cause more harm than benefit to the patient

and family (91), others highlight the importance of appropriate

clinical follow-up as it may contribute to clarify the variant’s

impact and eventually lead to its reclassification (92). We

propose combining the best performing tools identified in this

study to provide clinicians with a high-confidence prioritization

of VUS and newly detected variants identified by genetic testing

in HCM patients. Testing family members for a prioritized

variant may reveal its presence in multiple affected individuals

and absence in healthy individuals, indicating that the variant

should be considered pathogenic.

Several lines of evidence indicate that a disease-specific

approach improves variant interpretation, namely in inherited

cardiac disorders (32). Indeed, detailed knowledge about the

penetrance and age at onset of phenotypes associated with

each disease, and the percentage of clinical cases accounted

for by pathogenic variants in known genes are essential

prerequisites for interpreting variants effectively (93). However,

the majority of genetic diseases are so rare that it is difficult

to compile specific “ground truth” datasets for tool assessment.

This prompted us to investigate how the best tools for HCM

perform in a disease-agnostic context (Figure 6C). Despite a

clear reduction in performance metrics, ClinPred and MISTIC

ranked among the five top tools being able to discriminate

between pathogenic and benign missense variants with high

sensitivity and specificity (>85%).

In conclusion, this study provides an objective
framework for selecting the best-performing computational
predictors to assist clinical interpretation of unknown

missense variants. The results reported here may lay

the foundation for a more consistent, reproducible and
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transparent approach to variant prediction across clinical

diagnostic centers.

Limitations of the study

The robustness of the analysis described in this study is

highly dependent of the number and gene distribution of

variants in the test datasets. In the pathogenic datasets used

here, there is an over-representation of pathogenic variants in

the MYH7 gene because the vast majority of missense variation

in HCM occurs in this gene. In contrast, variants in the benign

datasets are more uniformly distributed throughout different

genes. As the performance metrics combines the scores for both

pathogenic and benign variants, the potential bias related to

MYH7 over-representation is in part counterbalanced. We did

not evaluate prediction tools with high-throughput functional

assays such as deep mutational scanning (30, 94) due to lack

of HCM-specific data. Finally, our circularity-resilient analysis

was limited to those tools for which the training datasets

were available.
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SUPPLEMENTARY FIGURE S1

Fraction of missing predictions per variant class in all variants evaluated

(Clinvar HCM, SHaRe and Walsh_2017 datasets combined).

Cardiac-specific methods are highlighted.

SUPPLEMENTARY FIGURE S2

Pearson correlation values between predictions of top-performant tools

on all variants evaluated (Clinvar HCM, SHaRe and Walsh_2017 datasets

combined).

SUPPLEMENTARY TABLE S1

Clinvar HCM-associated missense variants used in the study.

SUPPLEMENTARY TABLE S2

Variants used in the evaluation of SHaRe dataset. Pathogenic variants

were selected from the SHaRe registry. Benign variants were selected

from gnomAD v2.1.

SUPPLEMENTARY TABLE S3

Variants used in the evaluation of Walsh_2017 dataset. Pathogenic

variants were selected from the Walch et al., 2017 paper. Benign variants

were selected from gnomAD v2.1.

SUPPLEMENTARY TABLE S4

Variants obtained after tackling type 1 circularity issues of top-10

performing tools in Figure 5. Referred in the manuscript as

“excluded_training_top_tools set”.

SUPPLEMENTARY TABLE S5

ClinVar variants reported after the development of all the top-10

performing tools in Figure 5. Referred in the manuscript as

“ClinVar_recent set”.

SUPPLEMENTARY TABLE S6

Whole ClinVar missense variants after addressing type-1 circularity

issues of all the top-10 performing tools in Figure 5. Dataset used to

evaluate prediction tools irrespective of disease context (Figure 6C).

SUPPLEMENTARY TABLE S7

HCM-associated VUS used in the study.
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