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Abstract: Background: Asbestos exposure is a recognized risk factor for ovarian cancer and malignant
mesothelioma. There are reports in the literature of geographical ecological associations between
the occurrence of these two diseases. Our aim was to further explore this association by applying
advanced Bayesian techniques to a large population (10 million people). Methods: We specified
a series of Bayesian hierarchical shared models to the bivariate spatial distribution of ovarian and
pleural cancer mortality by municipality in the Lombardy Region (Italy) in 2000–2018. Results: Pleural
cancer showed a strongly clustered spatial distribution, while ovarian cancer showed a less structured
spatial pattern. The most supported Bayesian models by predictive accuracy (widely applicable or
Watanabe–Akaike information criterion, WAIC) provided evidence of a shared component between
the two diseases. Among five municipalities with significant high standardized mortality ratios
of ovarian cancer, three also had high pleural cancer rates. Wide uncertainty was present when
addressing the risk of ovarian cancer associated with pleural cancer in areas at low background risk
of ovarian cancer. Conclusions: We found evidence of a shared risk factor between ovarian and
pleural cancer at the small geographical level. The impact of the shared risk factor can be relevant
and can go unnoticed when the prevalence of other risk factors for ovarian cancer is low. Bayesian
modelling provides useful information to tailor epidemiological surveillance.

Keywords: asbestos-related diseases; ovarian cancer; pleural cancer; Bayesian shared spatial models;
mortality; surveillance; epidemiology

1. Introduction

Ovarian cancer is one of the most common cancers among women, ranking sev-
enth in 2018 according to Globocan. It is also important because of its high mortality
rate—ovarian cancer is three times more lethal than breast cancer. Worldwide, the inci-
dence was around 300,000 cases and the mortality slightly less than 200,000 deaths in
2018. Approximately 30% of ovarian cancer cases occur in European countries [1]. In Italy,
we recorded about 5000 cases and around 3000 deaths per year, and the prevalence was
estimated in 50,000 cases in 2020 [2].

The most important risk factors in terms of attributable fraction in developed coun-
tries are related to reproductive life, obesity, lifestyles, and genetics (among them BRCA
mutations). In 2009, the International Agency for Research on Cancer (IARC) concluded
that there is sufficient evidence for a causal association between asbestos exposure and
ovarian cancer [3]. Apart from the well-known occupational and environmental exposure
to asbestos, it is worth mentioning that asbestos was recognized as a contaminant of talc
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powders. The relative risk of ovarian cancer associated with talc powders was modest
(below 1.3) either in case–control [4] or cohort studies [5]. In Italy, consistently with the
IARC statement, high standardized mortality ratios (SMR) were reported in a cohort of
workers exposed to asbestos, including asbestos-cement plant workers (SMR 1.5) [6] and
asbestos textile workers (SMR 3.0) [7]. Ovarian cancer associated with household asbestos
exposures is also documented in Italy, particularly in selected areas where environmental
pollution from industrial sources was present (SMR 1.42) [8]. These results raised concerns
and motivated claims for surveillance programs [9].

Recently, Henley et al. found a positive correlation between malignant mesothelioma
(MM) incidence (an indicator of asbestos exposure) and ovarian cancer incidence in the
United States [10]. This contribution opens the question of how large the contribution of
asbestos exposure to ovarian cancer is at the population level. However, this study did not
address the spatial structure of the problem and the uncertainty related to the surrogate
use of MM occurrence as a proxy for asbestos exposure.

In previous studies, we analyzed the geographical pattern of incidence of MM by
gender in the Lombardy region in 2000–2012 [11]. This study documented high MM
occurrence in both genders, attributable to extensive asbestos exposure in the past. In a
more recent paper, shared Bayesian models were used to analyze the geographical pattern
of MM incidence in men and women in order to disentangle the spatial distribution of MM
risk in two components (occupational and environmental) [12].

In the present paper, we aimed to evaluate the presence and extent of the risk of ovarian
cancer associated with asbestos exposure in a large population (10 million people) by
applying a series of Bayesian hierarchical shared models to the bivariate spatial distribution
of ovarian and pleural cancer mortality by municipality in the Lombardy Region (Italy) in
2000–2018. Shared Bayesian models were originally developed to study the joint spatial
distribution of the risk of different diseases and to evaluate the presence and extent of
shared risk factors [13]. In particular, we herein applied Bayesian shared models to try to
disentangle environmental and lifestyle determinants of ovarian cancer. This modelling
approach is quite general and can be used whenever the inferential goal is the correlation
between diseases and shared risk factors.

2. Materials and Methods
2.1. Mortality and Population Data

We analyzed deaths from ovarian cancer (ICD-9: 183.0, ICD-10: C56) and pleural cancer
in females (including pleural cancer, ICD-9: 163 and ICD-10: C38.4 and pleural mesothelioma
ICD-10: C45.0) at the municipal level for Lombardy Region (Italy) in the years 2000–2018. Death
records were extracted by the Statistical Service of the Italian National Institute of Health (ISS)
from the cause-specific mortality database of the Italian National Institute of Statistic (ISTAT).
Since ICD-9 codes were still used in Italy during the years 2000–2002, we converted the codes as
reported above. Population denominators came from the same sources of mortality data (ISTAT).
Death counts and corresponding population denominators for each of the 1546 municipality
were categorized into 18 age classes (0–4, . . . , 85 and more). The annual expected numbers
of ovarian and pleural cancer deaths for each municipality were calculated under internal
indirect standardization, i.e., by multiplying year- and age-specific reference regional rates to
municipality person-years [14]. We then collapsed observed and expected deaths over the whole
period to calculate SMRs for each municipality.

2.2. Bayesian Models

To study the spatial co-occurrence of the two diseases, we specified a series of Bayesian
models. The simple correlation between two diseases at the geographical level is a misleading
measure [15] because of the spatially structured random noise always present in geographical or
spatial phenomena. Therefore, our analysis strategy was to specify Bayesian models for spatially
structured random variables. In this section, we first introduce the popular Besag–York–Mollié
model to describe the spatial structure for the two diseases separately, and then we introduce
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more complex models aimed at assessing the presence and extent of shared risk factors. A
section on Bayesian model comparison and model choice completes the methods section.

2.2.1. Spatial Pattern of Diseases

We describe the spatial pattern of mortality risk for ovarian cancer and pleural cancer
in females in the Lombardy Region for 2000–2018 at the municipality level using hierarchi-
cal Bayesian models with structured and unstructured random effects (BYM model) [16].
Let us assume the number of observed cases Oik in the i-th municipality (I = 1, . . . , 1546)
and k-th disease (k = “O” Ovarian, “P” Pleural) follow a Poisson distribution with mean
Eik × θik, where Eik indicates the expected number of cases under internal indirect stan-
dardization [17] and θik is the relative risk taking the regional average as reference.

A random effects model is specified for the logarithm of the relative risk:

log(θik ) = αk + uik + vik (1)

where αk represents a disease-specific intercept, uik is a spatially structured (clustering) term by
area and disease, and vik is a spatially unstructured (heterogeneity) term by area and disease.

Priors for αk are assumed independent and uninformative (improper flat). Gaussian
(0, λvk) distributions were specified as prior distributions for the vik random terms. For the
spatially structured random terms uik, conditionally autoregressive priors were adopted.
That is, conditionally on ul~i,k (~ i indicates areas adjacent to i-th ones, l = 1, . . . , 1546), we
assumed Gaussian(ūik, λuk ni) distributions, where ūik= ∑l∼i

ūlk
ni

and ni is the number of
the adjacent areas to the i-th one.

The hyperprior distributions for the precision parameters λvk and λuk are assumed to
be diffuse uninformative Gamma(0.5, 0.0005) [18].

Let us define this model as model 1 (M1): no shared components are present, but only
disease-specific clustering and disease-specific heterogeneity random effects are introduced.
Let us indicate disease-specific clustering terms as Uk and disease-specific heterogeneity
terms as Vk. With this notation, the described model is denoted as M1: Uk Vk.

2.2.2. Shared Bayesian Models

We used several alternative models based on various shared and disease-specific
components combinations. In the following, we indicate with U a shared clustering
component and with V a shared heterogeneity component.

Starting from model 1 (M1), we specify eight more models: disease-specific and shared
clustering, disease-specific heterogeneity (M2: Uk U Vk); disease-specific, shared clustering,
and shared heterogeneity (M3: Uk U V); shared clustering, disease-specific, and shared
heterogeneity (M4: U Vk V); disease-specific clustering, disease-specific heterogeneity, and
shared heterogeneity (M5: Uk Vk V); shared clustering and shared heterogeneity (M6: U V);
disease-specific clustering and shared clustering, disease-specific heterogeneity and shared
heterogeneity (M7: Uk U Vk V); shared clustering and disease-specific heterogeneity
(M8: U Vk); disease-specific clustering and shared heterogeneity (M9: Uk V).

Let us describe M7, the most complex model (with both specific and shared clustering
and heterogeneity terms). Let OiP and OiO denote the observed number of cases in the
i-th municipality for pleural and ovarian cancer, respectively. As in the BYM model the
likelihoods are Poisson(EiPθiP) and Poisson(EiOθiO), and we specified a log-linear model
for the relative risks θiP and θiO:

log(θiP) = αp + ui × δ + uiP + vi ×ω + viP (2)

log(θiO) = αO + ui/δ + µiO + vi/ω + viO (3)

The terms vi and ui represent the shared heterogeneity and clustering components
(i.e., latent components not different by diseases), and viP, viO, uiP, and uiO, the unshared
ones (i.e., the unique disease-specific random terms).
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The unknown parameters δ and ω are scaling parameters that allow for a different impact
of the shared components on each disease. In particular, the effect of a latent shared risk
factor—i.e., asbestos exposure, in our example—is allowed to be different on the two diseases.
We expect a larger effect on pleural than ovarian cancer, then the tuning parameter should be
larger than one—algebraically δ = βP/βO, where βP, βO are the regression coefficients of
the latent shared factor, analogously for ω [19]. They are assumed to be a priori lognormal
distributed with zero mean and low precision; in detail, we assigned a N (0, σ2) with σ2 = 0.17.
The priors and hyperpriors for the other model terms are the same specified in the BYM model.

2.3. Model Comparison

We evaluated models on two axes: model support (or model fitting) and model
robustness (or model influence). Model support is addressed under a Bayesian approach,
in terms of predictive accuracy. In brief, we aimed to see how close the predicted number
of events are to the observed ones penalized for model complexity. Model robustness is
approached by evaluating to which extent the inferences based on a given model differ
from those based on the best fitting one. We also aimed to focus on a parsimonious model
with easily interpretable model parameters.

We compared the fitting of the different models using the WAIC criterion [20]. WAIC is
a measure of predictive accuracy for the set of data points taken one at a time, approximating
the expected log pointwise predictive density.

In detail,
WAIC = −2lppd + 2pWAIC (4)

where

lppd = ∑i log
{∫

p(yi|θ)p(θ|y)dθ

}
(5)

is the log pointwise predictive density and

pWAIC = ∑i VAR[log(p(yi)|ϑ)] (6)

is the variance of log predictive density.
Using posterior draws from the MCMC chains, we computed WAIC as

WAIC = −2
n
∑

i = 1
log
(

1
K

K
∑

k = 1
p
(

yi

∣∣∣θk
))

+2 1
K−1

K
∑

k = 1

[
log p

(
yi

∣∣∣θk
)
− 1

K

K
∑

k = 1
log
(

p
(

yi

∣∣∣θk
))]2 (7)

We assessed model robustness via a local influence measure. We used the calibrated
Kullback–Leibler divergence (KL) [21], which assesses how different our inferences would
be under plausible alternative models.

This discrepancy can be expressed as the difference in expected utilities between unper-
turbed and perturbed posteriors (predefining the model for the actual belief). The loss in utility
due to the approximation of the predefined model, say M0, with model M* is expressed by
the Kullback–Leibler divergence (KL), where the parameter of interest is the logarithm of the
relative risk. We derived a Kullback–Leibler measure separately for each i-th observation, then

KLi =
∫

log
p(θi|Y, M0 )

p(θi|Y, M∗ )
p(θi|Y, M0 ) dθi (8)

where p(θi|Y, M0 ) is the posterior marginal distribution of the logarithm of relative risk given
data and the model. The posterior distributions of θi under M0 and M* can be well approximated
by normal distributions with mean m0 and m* and variances s2

0 and s2
∗ (the i suffix has been

dropped for simplicity). The Kullback–Leibler divergence can then be approximated by
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KL ≈ 1
2

[
(m∗ −m0)

2

s2
∗1

− 1 +
s2

0
s2
∗1
− log

(
s2

0
s2∗

)]
(9)

McCulloch (1989) [21] suggested calibrating Kullback–Leibler divergences setting
KL = c and finding that value p(c) such that

KL[B(0.5), B(p(c))] = c (10)

where B(p) is the Bernoulli distribution with parameter p, and the value p(c) is the calibrated
Kullback–Leibler divergence. Since we had one calibrated KL for each observation, we
summarized the information of model influence by the median calibrated KL.

In this work, we traded off models using WAIC vs. median calibrated KL, taking as
reference the most supported model, in our case, model 7 (M7) [22–24].

2.4. Computational Details

For all the models described, the marginal posterior distributions of the parameters of
interest were approximated by Monte Carlo Markov chain (MCMC) methods. We used
WinBUGS software [25] to perform the MCMC analyses. For each model, we ran two
independent chains; checks for achieved convergence of the algorithm were performed
following Gelman and Rubin (1992) [26].

3. Results

The number of deaths for pleural cancer among women in the period 2000–2018 in
Lombardy Region (Italy) was 2070, with the following distribution of ICD codes: ICD9:
163 (malignant neoplasm of the pleura)—262 deaths (2000–2002); ICD10: C38.4 (malignant
neoplasm of the pleura)—271 deaths; ICD10: C45.0 (mesothelioma of the pleura)—1537
deaths. Across municipalities, SMRs ranged from 0 to 22.14. The expected number of deaths
was highly variable, ranging from less than 0.01 to 333.20, reflecting the large variability in
population size (maximum: Milan, the regional capital, 1,351,562 inhabitants; minimum:
Morterone, 29 inhabitants). The municipality of Broni, in the province of Pavia, showed the
second highest SMR equal to 18.3 (observed 51 cases; expected: 2.79). The highest SMR
was observed in a very small municipality with 0.05 expected cases.

Regarding ovarian cancer, we retrieved 10,462 deaths, with SMRs ranging from 0 to 19.15.
Most of the high SMRs were very unstable, being based on less than five expected cases.

Figure 1A shows the histogram of SMRs of the two diseases, and Figure 1B shows the
funnel plot of SMRs vs. expected number of cases with one-sided confidence bands [27].

Figure 1. (A) Histogram of standardized mortality ratios (SMR) by municipality (pleural cancer
(light-blue) and ovarian cancer (pink)). Lombardy Region, 2000–2018. (B) Funnel plot of SMR for
pleural cancer (grey) and ovarian cancer (pink) by municipality vs. expected number of cases (log
scale). One-sided confidence bands 0.99 (dotted line); 0.999 (dashed line); 0.9999 (solid line).



Int. J. Environ. Res. Public Health 2022, 19, 3467 6 of 15

The five municipalities with one-sided p-values < 0.001 and SMR > 1 for ovarian cancer
are listed in Table 1. Notably, three of them also had high SMR of pleural cancer.

Table 1. Observed and expected deaths, and standardized mortality ratios (SMR) for ovarian cancer
and pleural cancer. Municipalities with SMR for ovarian cancer above the regional average (p < 0.001).
Lombardy Region, 2000–2018.

Municipality Ovarian Cancer Pleural Cancer

Observed Expected
SMR

Observed Expected
SMR

Deaths Deaths Deaths Deaths

Rosate 13 4.96 2.62 0 0.94 0
Bovegno 9 2.51 3.58 <3 0.50 3.97

Capriate SG 19 8.37 2.27 <3 1.66 1.2
Pedrengo 13 4.35 2.99 3 0.79 3.81

Calcio 14 4.87 2.87 8 0.94 8.52

3.1. Spatial Pattern of the Two Diseases

In Figure 2, we report the spatial distribution of SMRs (upper panels) and smoothed
RRs (lower panels) from the BYM model for pleural cancer (left panels) and ovarian cancer
(right panels). The shrinkage effect of Bayesian RRs from the BYM model was evident
compared with SMRs. The geographical pattern for pleural cancer was very strong. In
addition, well-known asbestos-polluted industrial areas were clearly identified [11,12].

Figure 2. Spatial choropleth map of raw (SMR pleural cancer (A); RR ovarian cancer (B)) and Bayesian
smoothed (RR pleural cancer (C); RR ovarian cancer (D)) standardized mortality ratios of pleural
cancer and ovarian cancer. Lombardy Region, 2000–2018. Absolute scale.
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The spatial pattern for ovarian cancer was more smoothed, although some overlapping
areas with high pleural cancer risks can be identified, as shown in the smoothed RR map
on a relative scale (Figure S1).

Table 2 reports the mean of the posterior distribution of the heterogeneity and cluster-
ing hyperparameters (expressed as standard deviations (SD) of uik and vik).

Table 2. Mean of the posterior distribution of the heterogeneity and clustering hyperparameters and
the heterogeneity/clustering ratio.

Disease Clustering SD Heterogeneity SD Odds
Heterogeneity: Clustering

Pleural cancer 0.6267 0.1207 1:5.2
Ovarian cancer 0.08213 0.0567 1:1.4

The heterogeneity/clustering odds illustrates that pleural cancer spatial pattern was,
as expected, strongly spatially structured; conversely, ovarian cancer showed a more
complex pattern with both random components almost equally represented. Note that there
were examples of diseases with only heterogeneity component and almost no clustering
component; instead, interestingly, ovarian cancer showed a non-negligible clustering
term. [28]. This observation motivated the following analysis, in which we explored
how much the pleural cancer clustering component was shared with the ovarian cancer
clustering component.

3.2. Shared Bayesian Models and Model Comparison

The BYM model is based on a prior belief that the two diseases do not share common
risk factors and show their own specific spatial pattern. Therefore, we labelled this model
as model 1 (M1).

We considered as an alternative a model with both specific and shared random com-
ponents, model 7 (M7).

We can specify several other models between these two, dropping shared or specific
heterogeneity or clustering components. Each model had its own interpretation. To
illustrate this on models M1 and M7, we report in Figure 3 the log-log scatter plot of SMRs
and Bayesian RRs for ovarian and pleural cancer, for M1 and M7. Under M1 (panel (A)),
no association—even a negative one—was evident between ovarian and pleural cancers.
Under M7 (panel (B)), a positive association was evident, as highlighted by the regression
lines of the Bayesian RRs of ovarian cancer on the Bayesian RRs of pleural cancer.

Figure 3. Log–log scatter plot of raw (red dots) and Bayesian smoothed standardized mortality ratios
(SMR) (khaki dots) for ovarian cancer (y-axis) and pleural cancer (x-axis). (A) Estimates from M1; (B)
estimates from M7 (see text). Linear regression lines fitted on Bayesian smoothed rates. Lombardy
Region, 2000–2018. Absolute scale.
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However, as shown in Figure 3, SMRs were extremely dispersed. Therefore, it is not
easy to find a pattern or to judge model adequacy on a visual inspection of the raw data,
and we must rely on more complex model comparison.

Table 3 reports the details of each model, assuming different association structures
between ovarian and pleural cancer, and the estimates of WAIC and median calibrated KL,
respectively. Figure 4 reports the graph of WAIC vs. median calibrated KL. Remember that
M7 (the more complex and best supported model) is taken as reference.

Table 3. WAIC and median calibrated Kullback–Leibler divergence (Calibrated KL) for all the
fitted models.

Model Description WAIC Calibrated KL

M7 Uk U Vk V 5116.985 0.500
M5 Uk Vk V 5122.904 0.531
M2 Uk U Vk 5129.669 0.548
M3 Uk U V 5146.176 0.564
M4 U Vk V 5143.311 0.571
M9 Uk V 5152.181 0.669
M1 Uk Vk 5167.727 0.680
M6 U V 5186.008 0.739
M8 U Vk 5197.524 0.772

Figure 4. Scatter plot of median calibrated Kullback–Leibler divergence (calibrated KL) vs. predictive
accuracy measured by the widely applicable or Watanabe–Akaike information criterion (WAIC) for
each fitted Bayesian model. Calibrated KL was calculated with regard to model 7—the more complex
and best-supported model. Ovarian cancer and pleural cancer mortality by municipality. Lombardy
Region, 2000–2018.

There is no best model in a Bayesian perspective: alternative perspectives must be
explored [29]. The most supported model was, as expected, M7. However, M4 appeared
to be a good parsimonious alternative with the advantage of better interpretability of the
shared spatial pattern between pleural and ovarian cancer mortality.

Under model 4, the shared clustering component U (Figure 5 left panel) highlighted
areas with a common risk factor for the two diseases. These areas are well-known areas
where asbestos exposure was present [12].
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Figure 5. Maps of shared clustering terms (U) between pleural cancer and ovarian cancer from model
4 (M4) (A) and Posterior Probability of Direction of Effect—Prob (U > 0) (B). Lombardy Region,
2000–2018.

In Figure 6, we report the joint posterior distributions of the shared clustering com-
ponent 1

δ ×U and the specific heterogeneity term Vo for three selected municipalities that
were very different in terms of risk for pleural and ovarian cancer. To explain the figure, let
us start recalling the linear predictor of ovarian cancer of the more complex model M7:

log(θiO) = αO + u / δ + uiO + vi / ω + viO (11)

Now, model 4 is simpler because it dropped the clustering specific term: uiO {
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}. To
show the relative contribution of shared and specific components to the relative risk, we
report in Figure 6 the specific heterogeneity term of ovarian cancer viO—related to specific
risk factors—and the shared components ui / δ + vi / ω—related to shared risk factors
with pleural cancer. Moreover, note that the posterior median and credibility intervals
of the tuning parameter δwere 0.265; 95%CrI 0.197–0.342, and forωwere 0.659; 95%CrI
0.432–1.036. This means that the relative risk of pleural cancer for asbestos exposure
was four times (or 1.5 times) the relative risk of ovarian cancer for the shared clustering
component (shared heterogeneity component). Let us consider the green points in Figure 6,
which refer to the municipality of Broni, which had a high risk for pleural cancer but
not for ovarian cancer. Consistently, the shared clustering component had, on average,
positive values. In contrast, on average, the specific heterogeneity term was negative (the
values were on the log RR scale, and thus positive values of means RR above the null and
negative values RR below the regional mean). The municipality of Calcio (in orange) was
characterized by positive values of both components, consistently with a higher relative
risk for pleural and ovarian cancers. The shared clustering component of the municipality
of Rosate (in blue) was centered around values below zero—consistent with the lower risk
of pleural cancer.

Lastly, we checked for residuals by municipality. As expected, Bayesian RRs were
shrunk toward the null value, and therefore we found large positive residuals for relatively
small municipalities with higher SMRs (Figure 7, points with Pearson’s residuals greater
than 2). The municipality of Broni, at the highest risk for pleural cancer, was not an outlier
for ovarian cancer, even if the Bayesian RR was 1.23 and the SMR was 0.97—observed cases
13 and 16.5 predicted cases. When fitting models with spatially structured random terms,
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the posterior estimates were also shrunk toward the local mean, and it was not unexpected
that the posterior RRs went in the opposite direction of SMRs.

Figure 6. Scatter plot of the specific heterogeneity terms vs. shared components ( 1
δ ×U + 1

ω ×V) of
ovarian cancer from model 4 (M4) in four municipalities. Lombardy Region, 2000–2018. Blue: Rosate;
orange: Calcio; green: Broni. Fifty thousand draws from the joint posterior distribution.

Figure 7. Scatter plot of Pearson’s residuals vs. population size (expressed as expected number of
cases based on internal indirect standardization) by the municipality. Ovarian cancer. Lombardy
Region, 2000–2018. Broni municipality shown in red.

4. Discussion

Studying the spatial distribution of asbestos-related diseases (ARD) is important to
define surveillance programs at the regional or national level [30]. Ovarian cancer is
considered one of the diseases related to asbestos exposure since the IARC assessment [3],
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and it is a matter of debate if it has to be included in epidemiological surveillance of
asbestos exposed populations.

Given the high etiological fraction attributable to asbestos exposure, mortality from
malignant mesothelioma and asbestosis is commonly used to estimate the health impact of
asbestos at the national and global levels [30,31]. Accordingly, the geographical distribution
of malignant mesothelioma (MM) can be used as a proxy of past asbestos exposure [32–34].

Some recent papers in the literature investigated the spatial co-occurrence of ovarian
cancer and MM [10]. There is some dispute about potential misclassification between
peritoneal mesotheliomas and ovarian cancer [35]. We think that this problem is a minor
one in the case of ovarian cancer. In particular, since ovarian cancer is about 100 times
more frequent than peritoneal mesothelioma (in the present study, 10,480 and 100 cases,
respectively), a misdiagnosis of even a small fraction of ovarian cancers could spuriously
increase the frequency of peritoneal cancers. Conversely, even a misclassification of a large
fraction of peritoneal mesothelioma would have a negligible impact on ovarian cancer
rate. In any case, we preferred to avoid this problem by analyzing pleural cancer and
not all mesotheliomas. The Supplementary Materials report the analysis on MM (all sites,
2439 deaths) and ovarian cancer. Results were quite similar. The potential misclassification
of ovarian cancer as peritoneal MM might explain to the slightly higher correlation between
the two diseases.

However, mortality from all pleural cancers can still be subject to misclassification,
and, when the purpose is the estimation of the etiologic fraction, the number of cases
attributable to asbestos exposure may be overestimated [36].

The Bayesian models we specified can be considered bivariate (two-disease) models,
the main objective being to evaluate the presence of shared factors in the occurrence of the
two diseases. We interpreted the shared factors as proxies of the prevalence of asbestos
exposure. This approach can also be viewed as a regression model with an explanatory
variable measured with error (in our case, pleural cancer as a proxy of asbestos exposure).
For a detailed discussion of the interpretation of shared components, see Knorr-Held Best
(2000) [19].

The correlation between two risk maps is difficult to assess, and the use of the cor-
relation coefficient can be misleading [15]. Spatially structured underlying factors may
produce spurious correlations. Moreover, the ecological fallacy is inherent in any analysis of
aggregate data. Our approach made a step forward because we based the analysis on small
geographical units, and we specified spatially structured and unstructured random terms
to adjust for hidden confounders. Conditional on these disease-specific random terms, we
specified shared random terms, which are interpretable as shared risk factors between the
two diseases. Several models can be specified, and model comparison is important in our
paper. According to the recent Bayesian literature, model adequacy is evaluated using a
measure of predictive accuracy. The idea is to evaluate how well a model predicts future
data, and we used the WAIC statistics for this purpose—penalizing for model complexity.
WAIC has been widely used in disease mapping [37–39].

In our application, the empirical data are noisy and difficult to summarize: as exem-
plified in Figure 3, two different models provided contrasting results on the correlation
between the two diseases. The observed data did not help prima vista. Filtering random
noise and isolating systematic patterns is not trivial, and it is not easy to decide which
model should be preferred and how to report uncertainty. We chose to address model
uncertainty evaluating how different would be our inferences under plausible alternative
models. We used the Kullback–Leibler (KL) divergence between each alternative model
and the best fitting one (the more complex model 7). If our results were not robust, then
we would have found some alternative models with close goodness of fit (WAIC) but large
KL divergence, representing almost equally supported alternative views. As shown in
Figure 3, model M1 yielded negative associations between ovarian and pleural cancer,
while positive associations were found under model M7. There was a large discrepancy
between results from these two models, as measured by the KL divergence. If in case of
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similar goodness of fit, our inference would not be robust and the course of action would
be clear but dull—i.e., it would be necessary to report the two different points of view.
Luckily, model M1 showed substantially worse support than model M7. As shown in
Figure 4, there was evidence of model robustness, and some plausible alternative models
with similar WAIC to model 7 provided the same picture with small KL divergence. Indeed,
to simplify the interpretation of the results, we focused on the more parsimonious model
4 [22]. The interpretation here was simpler because model 4 included only one clustering
term, the shared component between the two diseases. These shared components can be
easily interpreted as the underlying prevalence of asbestos exposure corresponding to the
spatial pattern of pleural cancer (see Figure 5).

A further justification for a parsimonious model is that it is difficult to disentangle
the contribution of each random term in a Bayesian spatial random effect model. For
example, regarding the M1 BYM model, it is not recommended to report the contribution
of the clustering and heterogeneity components separately [18]. In general, there is an
identifiability issue and Bayesian models are overparametrized [40]. As an example of such
difficulties, we can show for the municipality of Milan, the capital city, that there was a
strong collinearity between the specific and shared heterogeneity terms in model 4, and
that therefore it is impossible to separate the contribution of these two terms. The shared
clustering term for Milan was consistently estimated with value close to zero—the SMR for
ovarian cancer and pleural cancer were, respectively, 1.01 and 0.96, as shown in Figure 8.
The shared clustering model M4 provide stable estimates of the shared clustering terms
due to the information from the two diseases (see Figure 5).

Figure 8. Scatter plot of the shared clustering and specific heterogeneity terms vs. shared hetero-
geneity term of ovarian cancer from model 4 (M4) for the municipality of Milan. Lombardy Region,
2000–2018 (light blue: shared clustering; khaki: specific heterogeneity). Fifty thousand draws from
the joint posterior distribution.

However, beyond identifiability, there is also model uncertainty to be discussed. A
map of calibrated KL by municipalities for model 4 (Supplementary Material) showed
lower robustness in the Broni area. The behavior of the different models was clearly shown
when looking at the three different municipalities of Calcio, Rosate, and Broni, two with
strong documented asbestos exposure (Calcio and Broni) and two with high background
risk of ovarian cancer (Calcio and Rosate).

For the municipalities of Calcio and Rosate, the shared and specific terms were clearly
identified and showed the different contributions of risk factors, without inconsistencies
among different models (Figure 6).
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For the municipality of Broni, the SMR for pleural cancer was the second highest,
while for ovarian cancer was 0.97, slightly below the regional average (13 observed cases,
13.37 expected). Model 4 predicted a risk of ovarian cancer above the regional average (RR
1.23, 95% CrI 1.01; 1.49). The predicted observed cases by model M4 were 16.52 with a
Pearson’s residual that was not extreme (i.e., between −2 and 2) (Figure 7). Conversely, the
estimates were 0.93 (95% CrI 0.80; 1.06) under the less supported model 1 and 1.06 (95% CrI
0.80; 1.37) under the best supported model 7. Credibility intervals of model M4 and model
M7 were almost two times wider than of model M1. For pleural cancer in Broni, we did not
find any difference among the different models because of pleural cancer’s strong spatially
structured pattern. In this case, the reader should be cautious in making an inference on
the risk of ovarian cancer in Broni, and look carefully at sensitivity analysis.

In summary, analyses suggest that the ovarian cancer risk in Broni is a combination of
low prevalence of risk factors for ovarian cancer and high prevalence of asbestos exposure.

5. Conclusions

We found evidence of a shared risk factor between ovarian and pleural cancer mortality
at small geographical level. The impact of the shared risk factors on of ovarian cancer
rates at the population level can be relevant. In areas where the prevalence of other risk
factors for ovarian cancer is low, the risk of ovarian cancer tends to be low, even if there is a
substantial asbestos exposure. The reason is that asbestos attributable fraction for ovarian
cancer is low and population prevalence of asbestos exposure among women is not high.

This is true on average, but it can be very different in specific areas where the preva-
lence of asbestos exposure was very high. Therefore, the burden of ovarian cancer due
to asbestos exposure can go unnoticed in small areas at low background risk of ovarian
cancer. The well-documented high MM rate in Broni (among the highest in Italy) provides
an example of such difficulties. Bayesian modelling provides useful information to tailor
epidemiological surveillance. Bayesian modelling is sensitive, allows incorporation of pre-
vious knowledge, and provides adequate treatment of uncertainty and model robustness.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/ijerph19063467/s1, Table S1: Mean of the posterior distribution of the heterogeneity and clustering
hyperparameters and the heterogeneity/clustering ratio; Table S2: WAIC and median calibrated
Kullback–Leibler divergence (calibrated KL) for all the fitted models. Figure S1. Spatial choropleth
map of Bayesian smoothed standardized mortality ratios (SMR) for ovarian cancer. Lombardy Region,
2000–2018. Relative scale (sextiles). Figure S2: Maps of calibrated KL by municipalities for model 4
for pleural cancer (left panel) and ovarian cancer (right panel). Figure S3. Spatial choropleth map of
raw (upper panels) and Bayesian smoothed (lower panels) standardized mortality rates of malignant
mesothelioma (left panels) and ovarian cancer (right panels). Lombardy Region, 2000–2018. Absolute
scale. Figure S4. Scatter plot of Calibrated Kullback–Leibler divergence (KL) vs. predictive accuracy
measured by the widely applicable or Watanabe–Akaike information criterion (WAIC) for each fitted
Bayesian model. Calibrated KL was calculated with regard to model 7—the more complex and
best-fitting model. Ovarian cancer and MM by municipality. Lombardy Region, 2000–2018. Figure
S5. Maps of shared clustering terms (U) between MM and ovarian cancer from model 4 (M4) (left
panel) and Posterior Probability of Direction of Effect—Prob (U > 0) (right panel). Lombardy Region,
2000–2018.
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