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The cholesterol concentrations of low-density lipoprotein (LDL) and high-density
lipoprotein (HDL) have traditionally served as risk factors for cardiovascular disease.
As such, novel therapeutic interventions aiming to raise HDL cholesterol have been
tested in the clinical setting. However, most trials led to a significant increase in HDL
cholesterol with no improvement in cardiovascular events. The complexity of the HDL
particle, which exerts multiple physiological functions and is comprised of a number
of subclasses, has raised the question as to whether there should be more focus on
HDL subclass and function rather than cholesterol quantity. We review current data
regarding HDL subclasses and subclass-specific functionality and highlight how current
lipid modifying drugs such as statins, cholesteryl ester transfer protein inhibitors, fibrates
and niacin often increase cholesterol concentrations of specific HDL subclasses. In
addition this review sets out arguments suggesting that the HDL3 subclass may provide
better protective effects than HDL2.

Keywords: HDL, pharmaceutical intervention, HDL functionality, HDL subclass, cardiovascular disease

INTRODUCTION

Cardiovascular disease (CVD) are the leading cause of death globally (GBD 2013 Mortality
and Causes of Death Collaborators, 2015). It is predicted that the number of deaths from
CVD will increase to 23.3 million by 2030 (Mathers and Loncar, 2006). Blood lipids have
traditionally served as accurate risk factors for cardiovascular events. Increases in low-density
lipoprotein (LDL) cholesterol and decreases in high-density lipoprotein (HDL) cholesterol
rise cardiovascular risk (Gordon et al., 1977; Barter and Rye, 1996; Jeppesen et al., 2000;
Kontush et al., 2003). The protective effect of HDL has been primarily attributed to reverse
cholesterol transport (RCT). This process removes cholesterol from macrophages and other
cells residing in the blood vessel wall and exports it to the liver, thus reducing LDL
contribution to the development of atherosclerotic plaques and therefore reducing the risk of an

Abbreviations: ABCA1 and ABCG1, ATP binding cassette A1 and G1; ApoAI, apolipoprotein AI; CAD, coronary artery
disease; CETP, cholesterylester transfer protein; COX-2, cyclooxygenase-2; CVD, cardiovascular disease; HbA1c, glycated
hemoglobin; HDL-C, HDL cholesterol; HMG CoA, 3-hydroxyl-3-methyl-glutaryl-coenzyme A; ICAM, intercellular cell
adhesion molecule; LCAT, lecithin-cholesterol acyltransferase; LDL-C, LDL cholesterol; PAF, platelet activating factor; PAF-
AH, platelet activating factor acetylhydrolase; PGI2, prostacyclin; PON1, paraoxonase; RCT, reverse cholesterol transport;
rHDL, reconstituted HDL; S1P, sphingosine-1-phosphate; SAA, serum amyloid A; VCAM, vascular cell adhesion molecule.
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ischemic event (Barter and Rye, 1996; Yu X.H. et al., 2013).
HDL had long been considered as a primary therapeutic target
for lowering the risk of atherosclerotic disease. Despite the
development of effective HDL-raising drugs, large-scale clinical
trials showed disappointing results with no significant reduction
of clinical cardiovascular events (Boden et al., 2011; Schwartz
et al., 2012). Whilst this may indicate that targeting an increase
in HDL cholesterol (HDL-C) should be reconsidered we argue
that this, in fact, underlines not only the complexity of HDL
particle metabolism but also the complexity of HDL structure,
composition and function. It also suggests that focusing on
improving HDL quality rather than just increasing HDL quantity
may be the next target for future therapies. Historically, HDL
particles have been subdivided in several subclasses according
to their density, but these subdivisions also reflect differences in
their functional properties as defined by the different proteins and
lipids associated with the subclasses.

The aim of this review is to consider the different
HDL subclasses as one possible target for more efficient
cardiac protection. The different HDL subclasses will be
described and evidence regarding the superiority of particular
HDL subclasses, undoubtedly reflecting their composition for
improved cardioprotection will be discussed. Finally, this review
will attempt to explain the failures observed in past and current
HDL therapies for CVD.

HDL: STRUCTURE, COMPOSITION, AND
FUNCTION

There are presently two major, interlinked objectives of research
into HDL. One is to understand the mechanisms by which HDL
protects against CVD (functionality), and how these mechanisms
are compromised in different pathological states. The second
objective is clinical and aims to identify HDL parameters
that more accurately estimate cardiovascular risk as well as
providing diagnostic tools applicable in the clinical laboratory.
The following section will review various characteristics of HDL
with these two objectives in mind.

DEFINITION

Of the major lipoprotein classes, HDL are defined by their
high protein:lipid ratio and the predominant presence of
apolipoprotein (apo) AI, which accounts for approximately 70%
of the total protein content of the lipoprotein and 30–40%
of total protein–lipid content (Gillard et al., 2009). ApoAII is
the other major HDL apolipoprotein, accounting for 10–15%
of total protein content. HDL are the most heterogeneous of
the lipoproteins, varying in buoyant density, electrophoretic
mobility, size, protein and lipid composition (Figure 1). More
than 80 proteins and 150 lipids have been shown to be
associated with HDL particle. Thus, it is highly unlikely that
each lipoprotein particle carries the same complement of
protein or lipid components. Reflecting, in part, metabolic
processing within the plasma compartment. Lipid poor apoAI

FIGURE 1 | Schematic representation of HDL heterogeneity. PON,
paraoxonase; LCAT, lecithin-cholesterol acyltransferase; PLA2, phospholipase
A2; PAF-AH, platelet activating factor acetylhydrolase; CETP, cholesterol ester
transfer protein; PLTP, phospholipid transfer protein; HRP, haptoglobin related
protein; SAA, serum amyloid AI and AII; PLs, phospholipids; TG, triglyceride;
SLs, sphingolipids; FA, fatty acid; S1P, sphingosine-1-phosphate.

(of hepatic or intestinal origin) acquires increasing quantities
of phospholipids and cholesterol, maturing through nascent
discoidal HDL (preβ-1 HDL) to form spherical HDL (Figure 1)
(Rye and Barter, 2014). The latter arises from esterification
of acquired cholesterol by lecithin-cholesterol acyltransferase
(LCAT), and absorption of triglycerides that create a hydrophobic
core, which must be shielded from the aqueous environment by
amphipathic phospholipids and proteins. In contrast to other
plasma lipoproteins, where the whole particle is eliminated, the
cholesterol component alone of spherical HDL is transferred to
the hepatocyte. The residual, lipid poor apoAI becomes available
to recycle through the maturation process, before eventual renal
excretion (Rye and Barter, 2014). These factors add several levels
of complexity to attempts either to correlate serum HDL with
cardiovascular risk, or define the functions of the lipoprotein.

In terms of clinical relevance, it is presently the cholesterol
component of HDL that is of primary importance. A wide
range of retrospective and prospective epidemiological studies
have consistently demonstrated its inverse correlation with
the incidence of atherosclerotic disease (Gordon et al., 1977;
Assmann et al., 1996; Barter and Rye, 1996; Goldbourt et al.,
1997). It is thus still incorporated in clinical guidelines as one of
the primary parameters for assessing cardiovascular risk (Piepoli
et al., 2016). Perhaps surprisingly, cholesterol is a relatively minor
component of HDL. It represents 15% by weight. Unfortunately,
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recent clinical trials that attempted to reduce cardiovascular risk
by pharmacologically increasing the cholesterol content of HDL
have been unsuccessful (Kühnast et al., 2015). This has provoked
a re-think of the mechanisms by which HDL may protect the
vascular system, and given greater weight to the heterogeneity
of HDL subtypes as a factor in the multiple functions of the
lipoprotein.

HDL FRACTIONATION AND ISOLATION

Several of the properties of HDL outlined above have been
exploited to fractionate HDL subclasses. These include HDL
electrophoretic mobility which utilizes non-denaturing, two-
dimensional gel electrophoresis to fractionate of HDL revealing
the presence of the subclasses (Asztalos et al., 2011). These can
be visualized and quantified by appropriate staining techniques.
However, the procedure does not lend itself to isolation of HDL
subclasses.

HDL buoyant density techniques exploit the protein/lipid
ratio of lipoproteins to allow sequential lipoprotein flotation
by ultracentrifugation in a high salt medium (Lindgren et al.,
1972). The major lipoprotein classes can be separated due
to their differing protein:lipid ratios and types of lipid.
Ultracentrifugation is the principal procedure used to isolate
HDL subfractions, predominantly HDL2 and HDL3. These
can be further divided by more sophisticated centrifugation
procedures into subclasses HDL2a and b and HDL3a, b, c, as
illustrated in Figure 1 (Rosenson et al., 2011).

Whilst numerous proteins are associated with HDL, their
concentrations are minor compared to that of apoAI. Alaupovic
(2003) suggested that such protein heterogeneity could be
exploited to define discrete HDL subclasses. As the proteins
define HDL function, isolation via these components could
give rise to subtypes of greater functional homogeneity. The
procedure requires monospecific antibodies that can be used to
prepare affinity absorption columns. One major drawback is that
the acidic elution conditions can adversely affect the function of
the isolated subclasses.

HDL SUBCLASS STRUCTURE AND
FUNCTION

Preβ-1 HDL
These are structurally the simplest form of HDL. They consist of
1–2 molecules of apoAI with a layer of phospholipid molecules
and trace amounts of cholesterol. Preβ-1 HDL accounts for only
5–6% of plasma HDL, in part because their high capacity to
absorb phospholipids and cholesterol rapidly converts them to
other HDL species. Preβ-1 HDL are hypothesized to be the
first link in the chain of events preventing the development
of atherosclerotic plaque, because of their function is to avidly
remove cholesterol (the non-esterified form) and phospholipids
from cells via binding to the cell surface, ATP binding cassette
A1 and G1 (ABCA1 and ABCG1) transporter protein. Studies
supporting this function have established that the plasma content

of preβ-1 is a major determinant of the rates of cholesterol efflux
from macrophages (de la Llera-Moya et al., 2010).

HDL Subclasses 2 and 3
Spherical HDL is a spectrum of lipoprotein particles that
covers the density range d 1.063–1.21 g/ml. HDL3 occupies the
density range d 1.125–1.21 g/ml. It is protein enriched (mean
protein:lipid ratio 55:45 by weight), with a mean particle diameter
of 75 Å and a mean molecular weight of 175 kDa. HDL2 occupies
the lower density range of the spectrum (d 1.063–1.125 g/ml),
reflecting lipid enrichment (protein:lipid ratio 40:60) compared
to HDL3. Its mean diameter and molecular weight (100 Å and
350 kDa, respectively) are correspondingly greater than HDL3
(Chapman, 1986) (Figure 1). HDL3 is the predominant HDL
subclass. Women have significantly higher concentrations of
HDL, both for HDL3 (∼25%) and notably for HDL2 (two to
threefold higher). ApoAI and AII are major structural peptides of
both subclasses. However, HDL3 is enriched in apoAII compared
to HDL2 (a fivefold lower apoAI:AII concentration ratio than in
HDL3).

With respect to the major lipid components of the subclasses
(esterified and free cholesterol, phospholipids, triglycerides)
there is no marked difference in concentrations between
HDL2 and HDL3. Nevertheless, the relative concentrations
(% total mass) of esterified cholesterol and phospholipids are
greater in the HDL2 subclass, reflecting increased lipid content.
However, increased HDL3 concentration implies that with
respect to serum concentrations, HDL-associated cholesterol
is present in greater concentrations in HDL3, notably for
men.

HDL Subclass Definition According to
Protein Content
Proteomics has allowed for identification of differences in the
protein profiles of HDL2 and HDL3 (Davidson et al., 2009).
As noted above, apoAII is more present in HDL3 compared
to HDL2. A second feature, which may impact on function,
is the enrichment of minor proteins in the HDL3 subclass
compared to HDL2 (Table 1). Such studies are also revealing
clusters of proteins within HDL that have common functions

TABLE 1 | Relative distribution of peptides between HDL2 and HDL3.

Preferentially in HDL3 Preferentially in HDL2

Paraoxonase-1 (PON1) Apolipoprotein CI

Paraoxonase-3 (PON3) Apolipoprotein CII

Apolipoprotein F Apolipoprotein CIII

Apolipoprotein L-I Apolipoprotein E

Apolipoprotein J (clusterin)

Apolipoprotein M

Apolipoprotein D

Apolipoprotein A-IV

PAF-acetylhydrolase

Serum amyloid AI and AII

Haptoglobin related protein
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linked to particular activities, including complement activation,
the innate immune response, oxidative stress and regulation
of proteinase activity, through which a number of pathological
processes could be influenced (Vaisar et al., 2007; Davidson et al.,
2009). For example, paraoxonase (PON)-associated HDL are
associated with the anti-coagulant protein S (Moren et al., 2016)
and transthyretin (TTR) or prealbumin can be differentially
associated in HDL in patients with differing risk of CVD (Cubedo
et al., 2012).

HDL and Lipid Content
In a recent study, Serna et al. (2015) identified more
than 150 different lipids in HDL particles. Quantitatively,
phospholipids (phosphatidylcholine and sphingomyelin) are the
main constituents of the HDL lipidome (40–60%), followed
by esterified cholesterol (30–40%), triglycerides (5–12%), and
free cholesterol (5–10%) (Wiesner et al., 2009). Changes in
lipid composition can occur and may alter the atheroprotective
capacities of HDL (Salazar et al., 2015). Little work has been
undertaken on the distribution of the minor lipid components
between the subclasses. It has been reported that in general
sphingolipids are less enriched in HDL3, which, together with
a lower free cholesterol content (also present in the outer lipid
layer of lipoproteins) may impact on surface lipid fluidity and
thus lipoprotein function (Kontush et al., 2013). In contrast,
sphingosine-1-phosphate (S1P), a particularly bioactive lipid, is
preferentially associated with HDL3 (Kontush et al., 2007; Serban
et al., 2014). S1P is generated intracellularly from sphingomyelin
and is transported to extracellular environment where it binds to
HDL (Mitra et al., 2006). The diverse atheroprotective functions
of HDL and the mechanisms by which these effects are achieved
have been in many cases linked to the S1P content of HDL.
These include, preventing ischemic injury (Theilmeier et al.,
2006; Frias et al., 2012); reducing cytotoxicity (Kimura et al.,
2001; Kontush et al., 2007); inducing prostacyclin release (Liu
et al., 2012) and preventing LDL oxidation (Kontush et al.,
2007; Rodríguez et al., 2009). In patients with coronary artery
disease (CAD), the content of S1P in HDL particle was lower,
and could be raised using in vitro S1P loading (Sattler et al.,
2010, 2015). This observation was recently extended to patients
with coronary in stent restenosis (Jing et al., 2015) and in
type 2 diabetic patients (Brinck et al., 2016). In this very
recent paper we showed that the content of S1P is inversely
correlated with glycated hemoglobin (HbA1c) in type 2 diabetic
patients and the concentration of S1P is directly correlated
with its cardiac specific anti-apoptotic capacity (Brinck et al.,
2016).

Research is now centered on understanding the different
activities associated with HDL, how they impact on
cardiovascular physiology and pathophysiology beyond
lipid transport and how they may contribute to the global
cardioprotective effect of lipoprotein. The highly heterogeneous
nature of HDL, reflecting the complex metabolic process to
which it is subjected in serum, whilst complicating attempts
to characterize the lipoprotein, may also provide a framework
for compartmentalization of HDL functions. This is one of the
intriguing questions that present studies are addressing.

HDL FUNCTIONALITY

As mentioned above, HDL-C measurement does not reflect
its functionality. The complex composition leads to several
HDL functions which can be measured by bioassay. Here, are
some examples of analysis that could be considered for the
measurement of HDL functionality.

HDL and Reverse Cholesterol Transport
(RCT)
The original pathway delineated by Glomset (1968) involves the
physiological removal of cholesterol from peripheral tissues and
cells and transportation by HDL to the liver for excretion in the
bile and feces. RCT prevents the onset of atherosclerotic plaques
and lesions which would result from exaggerated uptake by
activated macrophages (Yu J. et al., 2013). Macrophage-specific
RCT to apoAI is the critical step for RCT and is routinely
described as being the main conduit for the atheroprotective
actions of HDL (Rader et al., 2009). In addition, recent evidence
also suggests that the biogenesis of HDL, mediated by ABCA1,
also facilitates the release of microparticles, contributing up to
30% of apoAI-driven cholesterol efflux (Hafiane and Genest,
2017).

Cholesterol efflux capacity exhibits a robust, inverse
relationship with prevalent coronary and peripheral
atherosclerosis across human studies (Yvan-Charvet et al.,
2007; Out et al., 2008; Tall et al., 2008; Khera et al., 2011;
Ishikawa et al., 2015), as well as with incident atherosclerotic
cardiovascular events (Rohatgi et al., 2014; Saleheen et al., 2015).
Crucially, the findings of Rohatgi et al. (2014) demonstrate
how cholesterol efflux capacity was an independent predictor of
incident cardiovascular events, and was maintained following
adjustment for HDL-C concentrations (Rohatgi et al., 2014).
Measurement of cholesterol efflux capacity is currently the most
promising assay to define one aspect of HDL functionality. The
impact of lipid lowering drugs on cholesterol efflux capacity was
recently summarized by Brownell and Rohatgi (2016).

HDL and Antioxidant Function
High-density lipoprotein prevents accumulation of oxidized LDL
which would reduce the structural integrity and function of the
endothelium. HDL inhibits metal ion induced oxidation of LDL
and lipid peroxidation (Hessler et al., 1979; Parthasarathy et al.,
1990; Navab et al., 2000). A key structural component of HDL
associated with its antioxidant activity is PON1 which diminishes
lipid peroxide formation (Mackness et al., 1991, 1993). PON1
activity is associated with a decrease in the risk of cardiovascular
event (Ayub et al., 1999; Ansell et al., 2003; Mackness et al., 2003).
In hypertensive patients, however, a recent study concluded that
increased hypertensive risk was independently associated with
HDL-C and not with PON1 activity (Kunutsor et al., 2017).
However, epidemiological studies continue to demonstrate that
polymorphisms influence PON1 activity, the most significant
being R192Q genotype. HDL from individuals with 192QQ
homozygote are the most effective to inhibit LDL oxidation
(Durrington et al., 2001; Wheeler et al., 2004). Measuring
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PON1 activity in serum is an attractive means to monitor the
antioxidant capacity of HDL.

HDL Anti-inflammatory Function
In addition to a number of antioxidant effects, HDL also serves
as a powerful mediator of the cellular inflammatory and anti-
thrombotic responses. Activated monocytes release inflammatory
factors that can induce endothelial dysfunction, characterized by
an increase of adhesion molecules expression, such as vascular
cell adhesion molecule (VCAM), intercellular cell adhesion
molecule (ICAM), and E-selectin (Calabresi et al., 2002; Barter
et al., 2004). The ability of HDL to down-regulate the expression
of these adhesion molecules has served to evaluate its anti-
inflammatory capacity (Cockerill et al., 1995; Calabresi et al.,
2002; Gomaraschi et al., 2008; Woudberg et al., 2016).

HDL Anti-thrombotic Function
Platelet activating factor (PAF) is a potent activator of
platelets, monocytes, and leukocytes (Stafforini et al., 1987). The
metabolism of PAF in the blood is almost completely regulated by
the enzyme PAF acethyldrolase (PAF-AH), which is a structural
component of both LDL and HDL. The measurement of PAF-
AH activity associated with HDL may reflect its potential anti-
thrombotic activity (Stafforini et al., 1987).

Another primary anti-thrombotic action of HDL is activation
of prostacyclin (PGI2) release. PGI2 is an arachidonic acid-
derived lipid mediator and is a powerful inhibitor of platelet
activation. PGI2 promotes smooth muscle relaxation and reduces
the release of growth factors that promote smooth muscle cell
proliferation (Viñals et al., 1999). HDL increases PGI2 release
by endothelial cells via at least two mechanisms. These involve
HDL cholesteryl esters serving as arachidonic acid donors for
PGI2 production by the cyclooxygenase-2 (COX-2) enzyme and
by increases in COX-2 expression (Fleisher et al., 1982; Vinals
et al., 1997; Cockerill et al., 1999; Escudero et al., 2003; Martínez-
González et al., 2004). Regarding the mechanism of action,
moreover, S1P increases the production of cyclic adenosine
monophosphate (cAMP) in smooth muscle cells, which induces
PGI2 production by increasing COX-2 expression (Damirin et al.,
2005).

In addition, HDL limits vasorelaxation through modulation
of endothelial nitric oxide synthase (eNOS). Modulation of
eNOS activity by HDL has been demonstrated in both
cultured endothelial cell and animal models (Besler et al.,
2011). Mechanistically, HDL stimulates eNOS activity through
scavenger receptor B1 (SRB1) and S1P receptors 1 and 3
(Yuhanna et al., 2001; Nofer et al., 2004; Igarashi et al., 2007).
HDL induces Akt phosphorylation, extracellular signal-regulated
kinase (erk)1/2 and intracellular calcium ion release, which play
roles in a sequence of activation steps leading to phosphorylation
of eNOS at Ser-1177 (Mineo and Shaul, 2003; Nofer et al., 2004).

In summary, several assays on HDL functionality may
improve the prognosis of future cardiovascular events (O’Neill
et al., 2015a). Although HDL functionality measurement may
be an approach to evaluate risk of cardiovascular event, most
are bioassays. A wide variety in protocols used for similar
assays reduces the reproducibility and their assessment is

time-consuming, thus making their present use for obtaining
rapid diagnostic value limited. Therefore, the use of subclass
determination or the enzyme activity may be more practical and
faster to use in diagnostic circumstances.

Altered HDL Functionality
The concept of dysfunctional HDL relates to a total loss of
HDL function where the normal anti-atherogenic lipoprotein
starts displaying pro-atherogenic properties, often as a result
of structural changes (Kontush et al., 2013; Serban et al.,
2014; O’Neill et al., 2015b; Rosenson et al., 2016), reviewed by
Lüscher et al. (2014). Dysfunctional HDL was first demonstrated
during acute phase response in patients following cardiac surgery
(Van Lenten et al., 1995) where HDL had a loss in PON1
and PAF-AH activities, combined with a loss in the apoAI
content, rendering it pro-inflammatory (Van Lenten et al.,
1995). Similarly, during acute phase response, serum amyloid
A (SAA), a pro-inflammatory protein, replaces apoAI in HDL
structure (Cabana et al., 1996). Binding of SAA to proteoglycans
can immobilize HDL in the arterial wall, preventing it from
performing anti-atherogenic and anti-inflammatory functions
(Lewis et al., 2004; Han et al., 2016). It has been recently shown
that increased SAA content in HDL results in increased CVD risk
with SAA modifying vascular properties of HDL (Zewinger et al.,
2015). Triglyceride enrichment in the HDL core, in patients with
CVD and during acute phase response can also cause inhibition
of HDL function (Cabana et al., 1996; Brites et al., 2000).
Triglyceride content may alter apoAI conformation, limiting
access of the central and C-terminal regions to the surface,
causing inhibition of apoAI and consequently, HDL functions
(Curtiss et al., 2000).

Subsequent to findings from acute phase response, a number
of other pathologies and conditions have elucidated the
phenomenon of dysfunctional HDL. Dysfunctional HDL
is characteristic in patients with CAD, presenting pro-
inflammatory HDL phenotype when compared to controls
(Ansell et al., 2003; Besler et al., 2011; Holy et al., 2014; Sattler
et al., 2015). In chronic renal disease, the HDL functions
are impaired and capacity to promote cholesterol efflux, the
antioxidant and anti-inflammatory effects are diminished
compared to HDL from control subject (Vaziri, 2015). Recent
data suggested the role of carbamylation in this process (Sun
et al., 2016). We and others have demonstrated that HDL can
become dysfunctional in patients with diabetes mellitus as a
result of structural changes including HDL glycation (Nobécourt
et al., 2010; Brinck et al., 2016) and a truncated form of apoAI
(Cubedo et al., 2015; Estruch et al., 2017). This has also been
shown in patients with insulin resistance whilst smoking has
been linked with producing dysfunctional HDL subclasses with
increased susceptibility to glycation (McMillen et al., 2005;
Song et al., 2015). Additionally platelets can modify native
HDL, resulting in a dysfunctional and pro-thrombotic form
(Blache et al., 2012). Patients with familiar hypercholesterolemia
display reduced concentrations of apoAIV and LCAT and a
truncated form of apoLI (Cubedo et al., 2016; Badimon et al.,
2017). Experimental studies showed that much of the structural
modifications and impairment in HDL function are as a result
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of increased LDL cholesterol (LDL-C) concentrations (Vilahur
et al., 2015; Padró et al., 2017). HDL dysfunction is a new
aspect of HDL metabolism reflecting its complexity and requires
further investigation to analyze the effects of disease on HDL
function.

WHICH HDL SUBCLASS TO IMPROVE
PROTECTIVE CAPACITY?

Allocating activities to discrete HDL particles appears as an
attractive means of compartmentalizing the functional diversity
of HDL. It may also refine our understanding of the association
of HDL with cardiovascular risk if one considers that particle
specific changes, rather than global changes in HDL, are linked
to risk. In order to address this point, we will compare
below the functional effectiveness and risk prediction capacity
of the cholesterol content and relative levels of HDL2 and
HDL3.

HDL2 AND HDL3 SUBCLASSES

Early epidemiological studies describe HDL2 as more accurate
risk indicator for CVD. Indeed, myocardial infarction survivors
had significant decreases in HDL2 (Brugger et al., 1986), and
HDL2 was inversely correlated with coronary heart disease
risk (Johansson et al., 1991). A large study of 4594 healthy
patients demonstrated that a decrease in HDL2 was associated
with increased CVD risk (Musunuru et al., 2009) and patients
with acute coronary syndrome displayed decreased levels of
HDL2 and increased levels of HDL3 (Tian et al., 2014).
These modern studies continue to argue for HDL2 as a
risk factor, although discrepancies continue to confound the
argument.

In contrast, post hoc analysis of two prospective studies,
the IDEAL (Incremental Decrease in End Points through
Aggressive Lipid Lowering) trial and the EPIC (European
Prospective Investigation into Cancer and Nutrition)-Norfolk
case-control study, showed a very high concentration of HDL2
particles, when not accompanied by a correspondingly high
level of apoAI containing HDL (i.e., over-enrichment of HDL
in cholesterol), may be associated with increased rather than
decreased cardiovascular risk (van der Steeg et al., 2008).
Kavo et al. (2012) studied HDL from patients who survived
a myocardial infarction (MI) at a young age (≤35 years)
and healthy control subjects and showed that MI patients
had reduced preβ-1 and HDL3 and elevated HDL2 (Kavo
et al., 2012). Martin et al. (2014) analyzed the data from two
cohorts, the Translational Research Investigating Underlying
disparities in acute Myocardial infarction Patient’s Health
Status (TRIUMPH) and Intermountain Heart Collaborative
Study (IHCS), which indicated that HDL3, rather than HDL2
and total cholesterol, was an improved negative predictor
of mortality in myocardial infarction patients (Martin et al.,
2014). These data are confirmed by the recent results of the
secondary analysis of the AIM-HIGH Study which indicate

that the levels of HDL3 and no other lipoprotein fractions
are predictive of cardiovascular events (Albers et al., 2016).
Further, Ditah et al. (2016), showed that smaller HDL
particles, quantified by nuclear magnetic resonance, are inversely
independently associated with coronary artery calcification
and represents a protective subpopulation (Ditah et al.,
2016).

It is clear that controversies exist between preclinical and
clinical data regarding the beneficial influences of HDL2 and
HDL3. However, when considering the biochemical basis for
improved protection, it becomes clear that HDL3 may be the
better candidate.

The majority of preclinical studies demonstrate stronger
beneficial effects of HDL3 compared to HDL2. Early animal
studies indicated that in vivo administration of smaller HDL
subclasses inhibited the development of atherosclerotic lesions
in cholesterol-fed rabbits (Badimon et al., 1989, 1990). Further,
an in vitro study, HDL3 inhibited LDL oxidation better than
HDL2 (Kontush et al., 2003). Shuhei et al. (2010), evaluated
in vitro the kinetics of copper sulfate-induced oxidation of
HDL subclasses in human subjects. HDL3 subclass was less
prone to oxidation than HDL2. This may be explained by a
higher PON1 activity observed in HDL3 (Shuhei et al., 2010).
HDL3 also inhibited tumor necrosis factor alpha (TNF-α)
– induced inflammation more effectively than HDL2 (Ashby
et al., 1998). HDL3 was functionally superior to HDL2 in
all functionality assays including cholesterol efflux capacity,
antioxidant, anti-thrombotic, and anti-apoptotic properties
(Camont et al., 2013). The results of this study provide the
strongest evidence for HDL3 being the functionally superior
HDL subclass.

An explanation of the more beneficial effects of HDL3
can be found in its composition (see Table 1). Among
the components of HDL3, PON1, apoJ, and S1P that
have been shown to be protective, while HDL2 contains
apoCIII which has been associated with a higher risk of
cardiovascular events (Riwanto et al., 2013). In the next
section, we will review evidence that raising-HDL drugs should
focus more on increasing HDL3 subpopulation than total
HDL-cholesterol.

SELECTIVE HDL SUBCLASS MAY
EXPLAIN DISCREPANCIES IN
THERAPIES TARGETING AN INCREASE
IN HDL

Statins
Statins inhibit the hepatic synthesis of cholesterol through
inhibition of 3-hydroxyl-3-methyl-glutaryl-coenzyme A (HMG
CoA) reductase (Istvan and Deisenhofer, 2001). Statins have
the most widespread application of the different lipid lowering
agents owing to an active reduction in LDL-C levels (Gotto
and Opie, 2005). While the major beneficial effect of statins
is attributed to its strong capacity to decrease LDL-C levels, a
secondary action shows a small increase (approximately 5–10%)
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in HDL-C levels, however, in patients with low HDL-C levels
statins treatment did not seem to improve CVD risk (Jafri et al.,
2010). Indeed, in patients treated with statins, non-HDL-C,
and apoB concentrations were improved predictors of future
major cardiovascular events (Boekholdt et al., 2012). In addition,
minor increases in HDL-C in statins-treated patients seems to
specifically relate to an increase in HDL2 rather than HDL3. The
results of these studies on HDL plasma levels are summarized in
Table 2.

Cholesterylester Transfer Protein (CETP)
Inhibitors
Some of the most promising HDL-raising drugs are the
CETP inhibitors. CETP is a hydrophobic glycoprotein mainly
secreted from the liver and circulating in plasma mainly
bound to HDL. CETP reduce circulating HDL-C levels by
transferring cholesteryl ester from HDL to larger lipoproteins,
such as chylomicrons, very low density lipoprotein (VLDL) and
LDL, in exchange for triglyceride. Four CETP inhibitors have
reached late-stage clinical development: torcetrapib, dalcetrapib,
anacetrapib and evacetrapib, mostly with disappointing results.
Indeed meta-analysis concluded that current CETP inhibitors
did not reduce cardiovascular mortality (Verdoia et al., 2015).
Most recently, the Randomized Evaluation of the Effects
of Anacetrapib through Lipid Modification (REVEAL) trial
provided promising results (HPS3/TIMI55–Reveal Collaborative
Group Bowman et al., 2017). The REVEAL trial found that
the primary outcome (first major coronary event) occurred
significantly less frequently in patients with atherosclerotic
vascular disease treated with anacetrapib after 4.1 years of
follow up (HPS3/TIMI55–Reveal Collaborative Group Bowman
et al., 2017). This study showed a 104% increase in HDL-C
and a reduction of 17 mg/dl of non-HDL-C in the anacetrapib
group compared to the placebo group. In the conclusion, the
authors argued that the reduction in non-HDL-C would be
anticipated due to relative reduction in the risk of coronary

death or myocardial infarction which was observed. This result
reduces the likelihood that other actions of anacetrapib played
a major role in modifying the risk of coronary events. In
particular, the higher mean level of HDL-C in the anacetrapib
group does not appear to have had as large an effect on
coronary events (HPS3/TIMI55–Reveal Collaborative Group
Bowman et al., 2017). Despite this, the REVEAL trial along
with the majority of CETP inhibitor studies did not examine
the effects of CETP inhibitors on HDL subclass. Those trials
that did so are summarized in Table 2. All indicate that HDL2
is preferentially raised. In addition to this HDL2 increase,
evacetrapib monotherapy also increases preβ-1 HDL but to a
lesser extent (Nicholls et al., 2015). In a recent study in mice,
anacetrapib and evacetrapib were analyzed for their influence
on HDL function, HDL subclass distribution and endothelial
function. Expectantly, treatment with both drugs raised HDL-C
levels while only evacetrapib increased PON1 activity and RCT
(Simic et al., 2017). Similarly to human studies, treatment with
both drugs showed increases in large HDL subclasses quantified
by nuclear magnetic resonance spectroscopy (Simic et al., 2017).
The results of the REVEAL trial are certainly promising, although
future studies which examine HDL subclass-specific effects of
the treatment will be required to further validate these findings
in relation to HDL biochemistry. However, at the time of this
review, the manufacturer has made the decision to not pursue its
development.

Niacin
Niacin is the most efficient HDL-C raising drug and mechanisms
of action include non-competitive inhibition of hepatocyte
microsomal diacylglycerol acyltransferase-2 (DGAT2), an
enzyme which catalyzes the final reaction involved in triglyceride
synthesis (Ganji et al., 2002) as well as selective inhibition of
apoAI uptake without influencing de novo synthesis, which
raises HDL-C levels (Jin et al., 1997). Widespread application
of niacin treatment has been limited by adverse side-effects

TABLE 2 | Impact of statin and CETP inhibitor therapy on patient lipid profile.

Drug Disease LDL-C (%) HDL-C (%) HDL2/large
HDL (%)

HDL3/small
HDL (%)

Reference

Simvastatin None −40 Null +18 Null Berthold et al., 2014

Hypercholesterolemia −49 +6 +28 −12 Neuman et al., 1991

Hypercholesterolemia −39 Null +61 Null Gaw et al., 1993

Hypercholesterolemia −31 +7 +30 +12 Johansson et al., 1991

High risk CVD −38 +6 Null Null Franceschini et al., 2007

Familiar Hyperlipoproteinemia −33 (LDL1)/−23 (LDL2) +6 +10 Null Homma et al., 1995

Atorvastatin Type 2 diabetic patients with
ischemic heart disease

−47 +16 +39 −10 Soedamah-Muthu et al., 2003

Pravastatin Familiar hyperlipidemia −32 +6 +73 −8 Franceschini et al., 1994

Familiar hyperlipidemia −36 Null Increase in HDL2:HDL3 ratio Guérin et al., 1995

Hypercholesterolemia −18 Null −10 +6 Cheung et al., 1993

Torcetrapib Familiar hypercholesterolemia −14 +54 +157 +46 Kastelein et al., 2007

Anacetrapib None −26 +82 +373 (HDL2b) +15 Krauss et al., 2012

Statins and CETP inhibitors therapies used to treat cardiovascular disease are summarized regarding their effects on LDL-C and HDL-C as well as HDL subclass specific
changes.
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TABLE 3 | Impact of niacin and fibrate therapy on patient lipid profile.

Drug Disease LDL-C (%) HDL-C (%) HDL2/large
HDL (%)

HDL3/small
HDL (%)

Reference

Niacin with statin and
ezetimbe

CVD −13 +11 Null Null Boden et al., 2011

Niacin and laropiprant
with simvastatin

Primary
hypercholesterolemia or
mixed hyperlipidemia

−45 +20 +38 +14 Ballantyne et al., 2012

Niacin Dyslipidemia −35 +15 +82 −4 McKenney et al., 2001

Primary
hypercholesterolemia

−16 +23 +84 Null Morgan et al., 2003

Hyperlipidemia – – +102 −2 Toth et al., 2012

Niacin and gemfibrozil Hyperlipidemia −20 +32 +90 Null Superko et al., 2009

Bezafibrate Coronary artery disease
and dyslipoproteinemia

Null Null Null +7 Ruotolo et al., 1998

Ciprofibrate Hyperlipoproteinemia −17 +13 Null +22 Guérin et al., 2003

Fenofibrate No diabetic patients Null +22 −2.3 +1.9 Franceschini et al., 2007

Niacin and fibrate therapies used to treat cardiovascular disease are summarized regarding their effects on LDL-C and HDL-C as well as HDL subclass specific changes.

including flushing in patients. It seems that niacin therapy
both on its own and in combination with statins preferentially
raise HDL2 whilst simultaneously raising HDL-C and lowering
triglyceride, LDL and VLDL cholesterol levels (Carlson, 2005),
Table 3. It is important to distinguish these outcomes from
statin-related effects, as the propensity of niacin to raise
HDL2 was shown to be superior to atorvastatin (Toth et al.,
2012).

Fibrates
Fibrates do not reduce LDL-C to the same extent as statins,
however, they are still widely prescribed, in many cases as
a secondary treatment in combination with statins (Gotto
and Opie, 2005; Moutzouri et al., 2010; Katsiki et al., 2013).
The mechanism of the multiple actions of fibrate activity
can be summarized as: induction of lipoprotein lipolysis;
induction of hepatic fatty acid uptake; increased removal of
LDL particles; inhibition of cholesterol and triglyceride exchange
between HDL and VLDL; stimulation of HDL production via
induction of hepatic synthesis of apoAI and apoAII and reduced
production of VLDL due to reduction of free fatty acid to
the liver (Vu-Dac et al., 1995; Berthou et al., 1996; Staels
et al., 1998). Conversely to the aforementioned drugs, fibrate
treatment may promote increases in HDL3. Unfortunately, these
increases in HDL3 are relatively low and may be insufficient
to reduce the risk of cardiovascular event. The effect of fibrate
treatment on HDL subclass distribution is summarized in
Table 3.

In summary, traditional lipid-lowering drugs have varied
influences on HDL subclass distribution. Whilst it is well-
understood that statins, CETP inhibitors, fibrates and niacin
raise HDL-C whilst decreasing LDL-C, each cause selective
increases in HDL2 or HDL3. Statins, CETP inhibitors and niacin
raise HDL2 whilst only the fibrates, in a limited number of
studies and to a limited extent, have been shown to increase
HDL3. These differences may potentially explain why the
clinical trials aimed at attenuating low HDL-C levels have

been met with such disappointing results. In most cases, the
functionally beneficial HDL3 is not raised in combination with
total HDL-C.

As reviewed recently by Muthuramu et al. (2017), none
of the aforementioned trials have hard clinical outcomes
specifically related to HDL-C. This implies that much of the
current pharmaceutical-based therapies have causal effects on
HDL-C and are not HDL-targeted. This is in agreement with
our argument which postulates that current pharmaceutical
interventions are not sufficiently specific to HDL, in particular to
raising HDL3 and improving HDL function. In this regard, there
is a risk of false negative conclusions about the clinical efficiency
of surrogate endpoints and biomarkers which do not sufficiently
mimic clinically meaningful endpoints (Muthuramu et al., 2017).
Of the current available therapies, we propose how reconstituted
HDL (rHDL) therapy serves as a potential novel therapy which
can target specific HDL subclasses, thereby improving function
and reducing risk. Trials examining rHDL therapies are more
specific and have better defined clinical endpoints.

HDL RAISING THERAPIES AND
HUMORAL AUTOIMMUNITY AGAINST
apoAI, AN UNEXPLORED LINK?

A growing body of evidence indicates that IgG autoantibodies
against apoAI (anti-apoAI IgG) exist in a substantial proportion
of the general population (up to 20%) where they represent
an independent CVD risk factor (Antiochos et al., 2016)
associated with a decreased survival (Antiochos et al., 2017). In
different high CVD risk populations associated with or without
autoimmune diseases, high levels of anti-apoAI IgG were shown
to be independent predictors of major cardiovascular events
(Vuilleumier et al., 2010a,b, 2013; Keller et al., 2012; El-Lebedy
et al., 2016).

In this context mechanistic studies demonstrated that these
antibodies could act as mediators of inflammation, atherogenesis,
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FIGURE 2 | Summary of our current findings. Previous approaches which aimed to improve CVD risk focussed on pharmaceutical increases of HDL-C
concentrations. These approaches have largely been met with failure due in part to the inherent complexity of the HDL particle which displays diverse function and
heterogeneity. We propose that future approaches should focus on targeted increases in HDL3, which we suggest as the functionally superior HDL subclass; using
reconstituted HDL, containing increased concentrations of protective apoAI and S1P; and overall a focus on improvement of HDL function without necessarily raising
HDL-C.

heart rate dysregulation, and myocardial necrosis through toll-
like receptor-2 and CD14 complex signaling (Montecucco et al.,
2011, 2015; Pagano et al., 2012, 2016; Mannic et al., 2015),
indicating that these antibodies could represent a new CVD
therapeutic target amenable to apoAI mimetic peptide-based
immunomodulation (Pagano et al., 2015). However, the reason
why these autoantibodies could appear in non-autoimmune
conditions remained unclear until the publication of a genome-
wide association study that highlighted a Fc receptor like
(FCRL) 3 single nucleotide polymorphism as a key genetic
determinant underlying the existence of anti-apoAI IgG in the
general population (Antiochos et al., 2017). FCRL3 being a
major autoimmune susceptibility gene in human, this study
provided the first biological rational to explain the existence of
these antibodies in humans. Concomitantly, a small-sized phase-
two randomized-controlled trial (EXLPORE) set the proof of
principle that HDL-raising therapies (niacin in this case), could
induce the production of a sustained and specific anti-apoAI
IgG response associated with a loss of the antioxidant function
of HDL (Batuca et al., 2017). Given the fact that most, if not
all, HDL-raising therapies induce important conformational/size
changes of HDL, humoral autoimmune response to apoAI may
well-represent a generic effect of most HDL-raising therapies.
Interestingly, the EXPLORE trial showed that niacin did not
affect anti-HDL antibodies suggesting that the structural changes
of the major protective fraction of HDL (apoAI) may drive
this autoimmune response, rather than a change in HDL
size.

Given the strength of associations reported between
anti-apoAI IgG, CVD, and HDL dysfunction, it is tempting
to speculate that in genetically prone individuals the humoral
autoimmune response induced by HDL-raising therapies could
jeopardize the efficacy of such therapeutic modality. Addressing
this point in a systematic manner in future HDL-related studies
would certainly be welcome given the current paucity of data on
this under-explored topic.

NOVEL THERAPY TO TARGET
PROTECTIVE HDL SUBCLASS

Since it can be postulated that particle specific changes are more
closely related to cardiovascular risk, novel therapies addressing
this are in development which may accomplish improved
protection. In this section, we hypothesize an example of such
a therapy which may allow for improved cardioprotection owing
to a selective increase in cardioprotective HDL subclasses. In this
context, In this context, rHDL may be an option. Originally,
rHDL composed of apoAI and phospholipids (Jonas, 1985),
was exploited for years in experimental laboratory settings to
investigate HDL function. It presents an attractive model to test
the roles of individual peptide and lipid components of HDL.
Examples of current rHDL therapies include CER-001 (an HDL
mimetic agent), CSL112 (an infusible, plasma derived apoAI)
and ACP-501 (recombinant human LCAT). These agents have
been separately tested and have shown good tolerability with no
adverse side effects in patients (Gibson et al., 2016; Shamburek
et al., 2016; Keyserling et al., 2017). In patients, administration
of rHDL was associated with reduction in plaque size, better
endothelial function and increase in anti-inflammatory markers
(Nissen et al., 2003; Tardif et al., 2007; Nieuwdorp et al., 2008;
Shaw et al., 2008; Patel et al., 2009). rHDL were used in patients
with acute coronary syndrome and lead to an increase in plasma
HDL-C and a decrease in a decrease in LDL-C (Chenevard et al.,
2012). As a caveat to these positive findings, animal studies
and HDL-targeted gene therapy studies have indicated that
apoAI overexpression did not cause regression of pre-existing
atherosclerotic lesions but rather retarded further expansion
of pre-existing lesions (Rong et al., 2001; Li et al., 2011; Van
Craeyveld et al., 2011). Additionally, a study analyzing CER-
001 found no difference between placebo and treatment in the
reduction of atheroma volume (Tardif et al., 2014). The effects
of CER-001, may however, be dose-dependent (Keyserling et al.,
2017). Importantly, addition of rHDL improved HDL RCT in
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a number of studies (Gibson et al., 2016; Zheng et al., 2016;
Keyserling et al., 2017). The composition of rHDL resembles the
preβ-1 HDL particle and is highly modifiable. rHDL can absorb
many products including cholesterol, proteins, and S1P in vivo.
These observations strongly suggest that rHDL can therefore be
protective through improving RCT or by absorbing beneficial
proteins.

It would be interesting to assess the ability to improve these
beneficial capacities by modulating rHDL composition. In this
context our group has investigated the beneficial effect of the
addition of S1P to basal rHDL. We demonstrated experimentally
that adding S1P improves the cardiac survival capacity in vitro,
ex vivo, and in vivo (Frias et al., 2010; Brulhart-Meynet et al.,
2015). The HDL3 subclass, contains 2–3 times more S1P than
HDL2 (Kontush et al., 2007; Lee et al., 2010). It seems that
the S1P content influences HDL-induced cardioprotection and
that S1P-enriched rHDL offer a better protection (Brulhart-
Meynet et al., 2015). But until now, human studies using rHDL
have not considered the S1P content in their preparations but
rather focused on the apoAI content. In addition, the peptide
components of HDL outlined in this review (such as PON1,
apoJ, or apoM) could be added to better improve cardioprotective
capacities. In this regard, engineering a functionally superior
rHDL may be possible for patient treatment. This intervention
has been shown to improve cardioprotection in patients (see
review, Darabi et al., 2016). Some studies have also indicated
that infusion with rHDL can influence apoAI concentrations and
lipidome profiles of native HDL (Nanjee et al., 1999); increase the
concentrations of preβ-1 HDL (Nanjee et al., 2001) and improve
anti-inflammatory function of native HDL (Patel et al., 2009).
More detailed information on the apoAI-directed therapies can
be found in the review (Millar and Cuchel, 2015).

CONCLUSION

We have discussed in this review that HDL is an extremely
complex particle composed of an array of lipids and peptides
which result in functionally and structurally distinct HDL
subclasses. We have suggested, similar to Kontush and Chapman
(2006), that the smaller HDL subclass, HDL3 performs a
functionally superior role to the larger HDL2 owing in particular
to increased association with cardioprotective enzymes and lipids
such as S1P. Drug therapies which raise HDL-C have been met
with disappointing results. We recommend that future research
focuses to a greater extent on HDL functionality and subclass
distribution. Novel therapies such as rHDL infusion may then
permit selectively raising the levels of functionally superior
HDL subclasses thereby reducing cardiovascular risk in patients
(Figure 2).
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