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Abstract: In this paper, supplementary cementitious materials are used as a substitute for cement to
decrease carbon dioxide emissions. A by-product of the iron manufacturing industry, ground gran-
ulated blast-furnace slag (GGBS), known to improve some performance characteristics of concrete,
is used as an effective cement replacement to manufacture mortar samples. Here, the influence of
curing conditions on the durability of samples including various amounts of GGBS is investigated
experimentally and numerically. Twelve high-strength Portland cement CEM I 52.5 N samples were
prepared, in which 0%, 45%, 60%, and 80% of cement were substituted by GGBS. In addition, three
curing conditions (standard, dry, and cold curing) were applied to the samples. Durability aspects
were studied through porosity, permeability, and water absorption. Experimental results indicate
that samples cured in standard conditions gave the best performance in comparison to other curing
conditions. Furthermore, samples incorporating 45% of GGBS have superior durability properties.
Permeability and water absorption were improved by 17% and 18%, respectively, compared to the
reference sample. Thereafter, data from capillary suction experiments were used to numerically de-
termine the hydraulic properties based on a Bayesian inversion approach, namely the Markov Chain
Monte Carlo method. Finally, the developed numerical model accurately estimates the hydraulic
characteristics of mortar samples and greatly matches the measured water inflow over time through
the samples.

Keywords: durability; permeability; GGBS; curing conditions; Markov chain Monte Carlo

1. Introduction

Since the end of the tenth century, controlling greenhouse gas emissions has become
a major global issue. The production of the ordinary Portland cement (OPC) requires
significant energy and releases an important amount of CO2 into the atmosphere. Its
manufacturing process generates approximately one ton of CO2 to produce one ton of
OPC [1]. It is estimated at around 8% of global CO2 emissions [2,3]. Therefore, cement
producers have developed strategies to substitute cement in concrete with other binders
to reduce CO2 emissions. The main considered criteria are environmental protection,
user’s safety and health, aesthetic, and functionality aspects. Generally, the manufacture of
concrete can be optimized to: (1) minimize the consumption of raw materials; (2) enhance
durability, deconstruction, and recycling; and (3) limit the impact on the environment.

The use of cementitious materials such as ground granulated blast-furnace slag (GGBS)
replacing cement has many environmental and economic advantages such as the reduction
of cement consumption, therefore the CO2 emissions needed for its production [4], the
valorization of slag that is currently treated as waste, as well as saving of primary energy
to achieve the manufacture of eco-friendly cement [5]. Furthermore, the incorporation
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of GGBS in concrete production offers many mechanical and technical advantages as it
enhances the workability [6,7], durability [8–11], and mechanical properties [12,13] of
concrete. In addition, GGBS minimizes the risk of damage caused by alkali-silica reaction
and provides better resistance to chloride penetration and sulfate attacks. GGBS is an
industrial waste by-product from blast furnaces used to make iron. The main components
of GGBS are amorphous calcium, silica, and alumina, which make it suitable to be utilized
as a binder in concrete production. However, the introduction of GGBS in concrete leads
to changes in their chemical and mineralogical compositions, and also to micro-structural
modifications (including porosity and permeability). Therefore, a deeper knowledge of
GGBS concrete sustainability is needed.

Over the past few decades, considerable research has been performed to comprehend
the performance of concrete incorporating GGBS. Refs. [14–17] observed that the compres-
sive strength of concrete was improved significantly with the increase of GGBS content
up to 40–60%. However, Refs. [18–20] showed that concrete incorporating GGBS has less
strength than the 100% cement concrete. Some researchers investigated the impact of GGBS
on the drying shrinkage behavior of concrete. However, researchers have contradictory
results. Refs. [21–23] found that incorporating GGBS into concrete exhibits higher drying
shrinkage. Nevertheless, Refs. [24–26] observed that concrete with 30% GGBS exhibits
20% lower drying shrinkage. Refs. [27,28] showed that the elastic modulus of concrete
increases with an increase of GGBS content up to 50%. They also found a strong correlation
between the tensile strength of concrete containing GGBS and its compressive strength.
Refs. [29–33] concluded that concrete samples containing GGBS exhibit a lower water
absorption compared to the ordinary concrete. Refs. [34–37] revealed that concrete made
with GGBS can provide an excellent sulfate attack resistance. Refs. [38–40] observed
a reduction in chloride penetration with an increase in the replacement level of GGBS.
Refs. [7,32] indicated that the acid attack resistance of concrete was improved with the
addition of GGBS. Improvements in the tensile strength of concrete containing GGBS were
also reported. Refs. [41,42] found that the inclusion of GGBS in concrete achieved higher
flexural strength compared to the conventional concrete. However, because of the relatively
low permeability of concrete, experimental methods may last weeks or longer to accurately
determine the permeability. It is then crucial to accurately infer the hydraulic properties
and predict the water absorption through concrete samples using numerical simulation.

Inverse modeling is a mathematical approach for estimating the variables and pa-
rameters driving the evolution of a dynamical system. This is usually done by taking
measurements of various observable quantities of the system and using physical models to
relate these observations to the dynamic variables. Different inverse techniques have been
proposed. These can be usually classified between deterministic least-squares optimization
methods [43] and Bayesian inference methods [44]. While the deterministic methods seek
the parameters that bring the model prediction closer to the data, the Bayesian inversion
approach computes the probability distribution functions of the parameters conditioned on
available observations, called the posterior. This posterior distribution is evaluated as the
product of the likelihood of predicting the data and a given prior distribution reflecting
our knowledge of the parameters. Given some experimental data and a range of realistic
estimations for each parameter, Markov chain Monte Carlo (MCMC) algorithms [45] enable
to sample of the posterior distribution of the parameters, which allows computing the best
estimate, based on some criteria, and the associated uncertainties. To date, very few studies
attempted to use parameters estimation and inverse modeling to characterize the hydraulic
properties of concrete [46,47]. Ref. [46] used a deterministic least-squares identification
method, while [47] estimated the hydraulic parameters of concrete and mortar using a
genetic algorithm. In this paper, the proposed inverse modeling framework is based on
Bayesian inference via Markov chain Monte Carlo.

The work reported here sets out to determine experimentally and numerically the
impact of curing conditions and GGBS contents on the durability of high-strength Portland
cement CEM I 52.5 N. The effect of curing conditions and GGBS proportions on porosity,
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permeability, and water absorption by capillarity is investigated. To this end, capillary
suction experiments were conducted on mortar samples. The evolution of absorbed water
by capillary suction is monitored at different times. Thereafter, these observations were
used in an inverse modeling process. Finally, a hydraulic model that simulates the water
penetration in mortar samples was implemented. The hydraulic properties of the samples
are then efficiently estimated by inferring the observations using the MCMC method.

2. Materials and Method
2.1. Samples

Cements used in this study are CEM I 52.5 N and mixed CEM I 52.5 N—GGBS.
Grinding fineness values for CEM I 52.5 N and GGBS are 4700 and 4100 cm2g−1, respectively.
CEM I 52.5 N exhibited a mean particle size of 20 µm and GGBS exhibited a mean size of
22.5 µm. Four proportions of GGBS, namely 0%, 45%, 60%, and 80%, are used to make
samples. This allows us to explore changes in the microstructures of the samples. The
chemical properties of cement and GGBS are listed in Table 1.

A method based on the NF EN 206-1 standard [48] was used to manufacture mortar
samples. A similar water/cement ratio of 0.45 was used to secure similar transfer properties,
reflected in the porosity, gas permeability, and pore size distribution. Mix proportions of
the samples are given in Table 2. Cylindrical samples of 18 mm diameter and 40 mm long
were carried out for the capillary absorption tests.

Table 1. Chemical composition of cement and GGBS (%).

Material SiO2 Al2O3 Fe2O3 CaO Na2O K2O MgO SO3

CEM I 52.5 N 20.1 4.8 3.4 63.6 0.1 1.0 1.3 3.1
GGBS 36.2 11.5 0.3 41.3 0.1 0.4 7.3 3.7

Table 2. Mortar mixes and corresponding content proportions.

Mix Cement (kg/m3) GGBS (kg/m3) Water (kg/m3) Sand (kg/m3) w/c

CEM-GGBS 0% 450 0 202.5 1350 0.45
CEM-GGBS 45% 247.5 202.5 202.5 1350 0.45
CEM-GGBS 60% 180 270 202.5 1350 0.45
CEM-GGBS 80% 90 360 202.5 1350 0.45

2.2. Curing and Drying

After molding, samples were subjected to standard curing conditions (NF EN 196-1) [48]
and kept for 24 h. Later, they were taken out from the molds and subjected to a 28 days
curing. Three curing conditions were used:

• Standard curing: samples were at 20± 1 ◦C and a relative humidity (R.H.) ≥ 90%.
• Dry curing: samples were at 19± 2 ◦C and R.H. < 50%.
• Cold curing: samples were at 5± 2 ◦C and R.H. ≥ 90%.

Once the samples are obtained, they were dried under vacuum at a pressure less
than 13.32 Pa, which is about one hundred times less than the saturation vapor pressure
(∼2000 Pa). The pressure gradient between the core sample and its surface is equal to at
least 170 Pa mm−1. The samples were maintained at this pressure for one week, after which
the mass of the samples remained constant. They were therefore considered to be dry.

2.3. Measuring Porosity and Gas Permeability

The porosity was measured following the testing method in [49]. It is expressed in
percentage as follows:

φ =
m3 −m1

m3 −m2
, (1)
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where m1 is the oven-dried mass of the sample, m2 is the mass of the sample in water, and
m3 is the mass in air of the water-saturated sample after vacuum.

On the other hand, the apparent permeability is a function of the pressure gradient
and the gas flow. Assuming a uni-dimensional and quasi-static gas flow through a dry
sample, Klinkenberg’s equation is written as follows:

Kapp = Keff = K(1 + β/Pm), (2)

where Kapp is apparent (or effective) gas permeability measured at the average gas pressure
Pm through the sample, β is Klinkenberg’s coefficient, and K is the intrinsic gas permeability.
It is therefore possible to determine the permeability experimentally by circulating gas
through a sample of known dimensions and measuring the associated pressure and flow
rate. Dinitrogen gas has been flown through concrete samples. Different flow measurements
at different pressure gradients are needed to determine multiple values of the apparent
permeability. Finally, K can be obtained as the Y-intercept in a graph drawing the apparent
gas permeability with respect to (1/Pm).

2.4. Measuring Water Absorption

Capillary suction experiments were performed to study the impact of curing conditions
and the proportion of GGBS on the porosity, intrinsic permeability, and water absorption of
mortar samples. The method involves observing the saturation by capillary absorption of a
dry sample in which the lower face is in contact with a wetting liquid (water). Water has a
free surface with air; the pressure of water is then equal to that in the air, i.e., atmospheric
pressure. The capillary imbibition tests were carried out on cylindrical samples, through
the bottom face (vertical imbibition), while the top face remained open to the atmospheric
pressure. The remaining surfaces of the samples were covered with plastic to let them
impermeable and thus, the water could penetrate only through the bottom face. Due to
capillary suction, water penetrates into the pores of the sample and progressively saturates
it. The mass of samples was measured at different times and the evolution of the water
absorption was recorded.

3. Modeling Approach
3.1. Mathematical Flow Model

The flow of water through concrete samples can be modeled using Darcy’s law. The
volumetric water flux that penetrates a unit surface per unit time, q, is written as fol-
lows [46]:

q =
Kκ

µw
(∇PL − ρwgk), (3)

where PL, µw, and ρw represent pressure which will be later expressed in terms of water
head h, dynamic viscosity, and density of liquid water, respectively. g denotes the accelera-
tion due to gravity and k is the downward unit vector. K is the intrinsic permeability of
the medium, which has area units and depends on the geometry of the porous media. κ
(dimensionless) represents the relative permeability and relies on the water content θ of the
porous media and can be expressed as a function of the capillary pressure. In this work,
the Van Genuchten [50] formulation for concrete is adopted, i.e.,

κ = θ
1
2
e

[
1−

(
1− θ

1
m
e

)m]2

, (4)

θ =
θs − θr∣∣1 + (αh)n∣∣m + θr, (5)

where θr and θs are the residual and saturated water content, respectively. θe denotes the
relative water content defined as:

θe =
θ − θr

θs − θr
, (6)
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with m, n, and α are three fitting parameters. The usual assumption is considered in this
work:

m = 1− 1
n

. (7)

Finally, the time evolution of water content in a concrete sample is modeled using the
following mass balance equation [46]:

∂(ρwθ)

∂t
+∇(ρwq) = 0, (8)

where t denotes time. A finite element algorithm is developed and implemented to solve
Equation (8). The model is capable to simulate various capillary absorption tests with
reasonable computational cost.

3.2. Bayesian Inference

Bayesian inference is a statistical technique based on Bayes’ theorem to deal with
inverse problems. The method has recently become very popular in many applications,
such as geosciences, biosciences, and material sciences [51–53]. The first step in Bayesian
inference is to choose the prior distribution for the unknown model parameters. The
forward problem is then formulated using an appropriate likelihood function. Given
observation data, the posterior distribution of the uncertain parameters is computed using
Bayes’ rule [54]. In the following, we briefly go over this technique [55].

Let d be the vector of measured water content and Φ be the vector of model parameters.
We consider the forward nonlinear modelM represented by Equations (3)–(8) that forecasts
the data as function of the model parameters such that:

d ≈M(Φ). (9)

Applying Bayes’ rule gives:

Π(Φ|d) ∝ L(d|Φ) p(Φ), (10)

where Π(Φ|d) denotes the posterior, that represents the probability of occurrence of Φ

given the data d. L(d|Φ) represents the likelihood function which is the probability of
getting the data given the parameters vector Φ. Finally, p(Φ) is the prior of Φ, i.e., the a
priori knowledge about the parameters.

To derive the likelihood function, we denote by ε = d−M the deviation between the
observations and the model. The components of ε are assumed to be mutually indepen-
dent and have the same probability distribution function with density ρε. Therefore, the
likelihood function can be expressed as:

L(d|Φ) = ∏
i

ρε[di −Mi(Φ)]. (11)

Assuming that the errors εi follow a normal distribution with a mean of zero and
variance of σ2, i.e., εi ∼ N

(
0, σ2), yields to the following likelihood function:

L(d|Φ) =
1√

2πσ2 ∏
i

exp

{
−(di −Mi(Φ))2

2σ2

}
. (12)

Using Bayes’ rule, the joint posterior can be written as:

Π(Φ|d) ∝
1√

2πσ2 ∏
i

exp

{
−(di −Mi(Φ))2

2σ2

}
p(Φ). (13)
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To compute the posterior, we still need to pick appropriate priors based on a priori
knowledge about the parameters. In this study, a uniform prior for the parameters vector
Φ is considered from the interval [Φmin −Φmax], therefore:

q(Φ) =


1

Φmax −Φmin
for Φmin < Φ < Φmax,

0 otherwise.
(14)

A popular computational strategy to sample the posterior is the MCMC method.

3.3. MCMC Sampling Procedure

In any Bayesian estimation procedure, we desire a search of the probability space for
the most likely values of the retrieved state given a set of observations. However, it is
not easy to analytically compute the posterior distribution. The MCMC method allows to
directly sample the posterior following a Markov chain process and searches out areas of
concentrated probability within the state space. In this paper, we use a version of MCMC
based on the well-known Algorithm 1 [56,57] to accurately and efficiently sample the
posterior distributions of the parameters.

In practice, the Markov chain starts from a set of parameters drawn from a bounded
uniform probability distribution function, with bounds set to physically realistic values
for each estimated parameter. In each MCMC iteration, a randomly-chosen parameter is
generated using the prior distribution p(Φ). The model is then run using the new parameter
values and new values of the state are generated and compared with the observations via a
predetermined likelihood function. The new parameter is kept if the accepted probability
is greater than a uniform random number, otherwise, the new value is rejected and the
previous one is kept. The MCMC algorithm is run for many consecutive iterations to permit
a comprehensive sampling of the state space, and a posterior probability density function
is constructed for every parameter from the accepted values. The Metropolis-Hastings
procedure is summarized in the following pseudo-code:

Algorithm 1 Metropolis-Hastings algorithm.

Require: Initial value Φ0 of the unknown parameters
1: Draw a new value Φ1 from the prior distribution p
2: Compute the joint posterior Π for both Φ0 and Φ1 using Equation (13)

3: Compute an acceptance probability: α =
Π(Φ1|d)
Π(Φ0|d)

4: Calculate a random number ε between 0 and 1
5: if α ≥ ε then
6: Accept Φ1 and start step 1 with Φ1
7: else
8: Start step 1 with Φ0
9: end if

4. Results and Discussion
4.1. Influence of Curing Conditions and GGBS Proportions on the Porosity

Figure 1 shows porosity values for the 12 samples measured by mercury intrusion
porosimetry. The X-axis corresponds to the GGBS proportion to which each sample has
been exposed. Based on the experimental results, the standard cure produced the lowest
porosity with an average of 15.2%. The cold cure showed a slight change in the porosity
compared to the standard cure. The average porosity is 15.5%, which is only 1.97% higher
than the standard cure. However, the dry cure was found to have the highest porosity with
an average of 18.1%, which is 19% higher than the standard cure.
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Porosity values of mortar samples cured in standard condition with 0% (considered
as the reference sample), 45%, 60%, and 80% of GGBS are 14.9, 14.4, 14.7, and 16.7%,
respectively. It can be noticed that the lowest porosity, which is 3.36% lower than the
reference sample, was observed for the sample with 45% of GGBS. The substitution of
cement with 60% of GGBS showed a similar porosity value as the reference sample. With
a further increase in GGBS replacement to 80%, porosity increased by 12%. A similar
pattern was noticed for the cold cure with porosity values of 14.9, 14.7, 15.5, and 17%,
respectively. Samples with 45% were close to the reference sample, beyond which the
porosity started to increase. Samples incorporating 60% and 80% of GGBS surpassed the
reference sample by 4% and 14%, respectively. Finally, the porosity values of samples cured
under dry conditions are 17, 17.7, 18.3, and 19.3%, respectively. It is clear that the porosity
increased with an increase in the GGBS amount. We observed that 0%, 45%, 60%, 80%
of GGBS replacement resulted in 14.1%, 18.8%, 22.8%, and 29.5% increase in the porosity,
respectively.

0 45 60 80

GGBS Proportion (%)

12

14

16

18

20

P
o
ro

s
it
y
 (

%
)

Standard Cure Cold Cure Dry Cure

Figure 1. Porosity of mortar samples in function of their GGBS proportion and curing condition.

4.2. Influence of Curing Conditions and GGBS Proportions on the Permeability

Figure 2 displays intrinsic permeability values for the 12 samples. Intrinsic perme-
ability values ranged between 1.2× 10−18 and 9.1× 10−16 m2. The standard cure had the
lowest intrinsic permeability with an average of 1.8× 10−18 m2. On the other hand, the dry
cure developed the highest intrinsic permeability with an average of 5.1× 10−16 m2, which
is two orders of magnitude greater than the standard cure. Finally, the average intrinsic
permeability of the cold cure was 1.5× 10−17 m2, which is one order of magnitude greater
than the standard cure.

Permeability values of samples cured in standard condition are 1.44× 10−18, 1.2× 10−18,
1.7× 10−18, and 2.8× 10−18 m2, for 0%, 45%, 60%, and 80% replacement of cement with
GGBS, respectively. These results showed that the addition of 45% of GGBS gave the lowest
permeability compared to the reference sample with an improvement of about 17%. However,
permeability values were about 18% and 94% higher than the reference sample at 60% and
80% substitution of cement with GGBS, respectively. For the dry cure, permeability values
were found to be 1.3× 10−16, 3.71× 10−16, 6.29× 10−16, and 9.1× 10−16 m2, respectively.
Permeability values increased with an increase in the GGBS content. On the other hand,
the observed trend is the opposite for samples cured under cold conditions. Permeability
values are 2.14× 10−17, 2× 10−17, 1.27× 10−17, and 6.4× 10−18 m2, respectively. Unlike the
standard and dry cures, results indicated that an increase in the replacement level of GGBS
caused a decrease in permeability.
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Figure 2. Intrinsic permeability of mortar samples in function of their GGBS proportion and curing
condition.

Furthermore, the intrinsic permeability of all samples is plotted versus the porosity in
Figure 3. According to these results, a clear correlation has been observed. In general, the
permeability of samples cured in standard and dry conditions were higher for high porous
samples. On the contrary, the permeability of the cold cure samples was lower for higher
porous samples.

4.3. Influence of Curing Conditions and GGBS Proportions on the Water Absorption

Water absorption values of mortar samples with different curing conditions and
varying percentages of GGBS are presented in Figure 4. Samples cured in the standard
condition presented the lowest water absorption, slightly lower than those cured in cold
conditions. However, the high porosity and low relative humidity in the samples cured in
dry conditions led to higher water absorption. Water absorption values in the samples cured
in dry conditions are almost three times higher than those cured in standard conditions.
Water absorption values for samples with 0%, 45%, 60%, and 80% of GGBS are 0.165, 0.135,
0.17, and 0.16 g·cm−2, respectively. These values for cold condition cured samples are 0.18,
0.16, 0.22, and 0.2 g·cm−2, respectively. Whereas, the water absorption for dry condition
cured samples are 0.23, 0.47, 0.54, and 0.62 g·cm−2, respectively.

Figure 4 also shows that mortar samples containing 45% of GGBS performed better
compared to those containing higher GGBS percentages. Among all samples, the maximum
improvement in water absorption is caused by the standard cure sample with 45% of GGBS.
The latest significantly improved the water absorption resistance by 18% compared to
the reference sample. samples with 60% and 80% exhibited a similar water absorption
resistance as the reference mix. Regarding the cold cure, samples with 45% of GGBS led to
a 3% reduction in water absorption. Whereas the increase of GGBS to 60% and 80% showed
a negative impact on the water absorption compared to the reference sample. Finally, the
water absorption of all samples cured in dry conditions was higher in comparison with the
reference sample. Results revealed that as the level of GGBS increases, so does the rate of
water absorption.
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Figure 3. Intrinsic permeability of mortar samples in function of their porosity and curing condition.
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Figure 4. 400 min water absorption by capillarity in mortar samples in function of their GGBS
proportion and curing condition.

4.4. Forward and Inverse Modeling

The numerical modeling approach seeks at imitating the experimental data collected
during the capillary absorption test. The objective is to reproduce numerically the cu-
mulative water absorption, which represents the water that crosses the mortar samples
by capillary suction. With the aim of doing that, we implemented a one-dimensional
finite element model that is able of simulating water absorption in mortar samples with a
reasonable computational cost.

Assuming a nearly constant porosity and neglecting the impact of chemical reactions
and according to the mathematical model represented by Equations (3)–(8), the flow of
water that penetrates through the samples is a function of the parameters K, θs, θr, α, and
m. The MCMC inverse procedure described above is then implemented to compute the
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optimal values of the parameters that best fit the capillary suction test data. As a way to
simplify the parameter estimation process, we fix the value of θs and set it equal to the
independently measured total porosity. We further impose θr to be equal to 0. To this end,
the only remaining uncertain parameters in the MCMC inverse approach are K, α, and m.

4.5. Analysis of the MCMC Estimates

Results of the Bayesian parameters inference for the standard cure are listed in Table 3
and displayed in Figures 5 and 6 by means of histograms and probability density functions
using kernel density estimation [58]. The two figures showed the most likely values for
each parameters. Results are shown for samples cured in standard condition with 0%, 45%,
60%, and 80% of GGBS content. The posterior probability density functions of the four per-
meabilities (Figure 5) seem to follow Gaussian distributions with clear maximum a posteriori
estimates of about 1.45× 10−18 m2, 1.16× 10−18 m2, 1.71× 10−18 m2, and 2.84× 10−18 m2.
As can be seen, the results showed a notable consistency in the sense that the optimized
values of the intrinsic permeability matched well those found in the experiments (see
Table 3). Figure 6 depicted the two-dimensional joint probability density functions of the
two parameters m and α. For the different samples, we observed posterior probability
density functions that have well defined peaks of (m = 0.156 and α = 7.19× 10−8 Pa−1),
(m = 0.125 and α = 6.79 × 10−8 Pa−1), (m = 0.15 and α = 8.17× 10−8 Pa−1), and
(m = 0.116 and α = 9.02× 10−8 Pa−1), respectively.

The cumulative measured and estimated water absorption of the four samples for a run
time of about 24 h is plotted in Figure 7. The overall tendency of measured water absorption
is nicely reproduced even though, as shown, the model tends to slightly underestimate
the flux at the early stage of the experiment and to overestimate it after around 8 h. The
RMSEs of the four samples shown in Table 3 are quite small and equal to 6.4, 5.3, 4.9, and
8.5× 10−3, respectively. The accurate fitting of the water absorption in addition to the small
values of the computed RMSEs reflects the reliability of the inverse technique and good
recovery of the intrinsic permeability of the tested samples.
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Figure 5. Posterior probability density functions of the intrinsic permeability resulting from the
MCMC simulation. Estimates are shown for samples cured in standard condition. (a) GGBS0;
(b) GGBS45; (c) GGBS60; and (d) GGBS80.
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Figure 6. Two-dimensional joint posterior probability density functions of m and α resulting from the
MCMC simulation. Estimates are shown for samples cured in standard condition.
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Figure 7. Cumulative measured and simulated water inflow. Results are shown for samples cured in
standard condition. (a) GGBS0; (b) GGBS45; (c) GGBS60; and (d) GGBS80.
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Table 3. Parameter values estimated using MCMC and the associated water inflow RMSEs of mortar
samples subjected to standard curing condition.

Sample K × 10−18 (m2) K × 10−18 (m2)
α × 10−8 (Pa−1) m RMSE × 10−3

Experimental Numerical

CEM-GGBS 0% 1.44 1.45 7.19 0.156 6.4
CEM-GGBS 45% 1.20 1.16 6.79 0.125 5.3
CEM-GGBS 60% 1.70 1.71 8.17 0.150 4.9
CEM-GGBS 80% 2.80 2.84 9.02 0.116 8.5

5. Conclusions

This paper highlights the impact of curing conditions on the durability performance of
mortar samples incorporating selected GGBS proportions after a completely experimental
and numerical study. A capillary suction experiment has been performed and a hydraulic
model was implemented to accurately determine the hydraulic properties of the samples
by inverse modeling using a Monte Carlo Markov Chain technique. Our main results are
summarized as follows:

• Among the selected curing conditions, the performance of the standard curing con-
dition is better than that of other curing conditions. Minimum porosity, intrinsic
permeability, and water absorption were measured in samples cured in standard
conditions, while maximum values were found in samples cured in dry conditions.

• Samples containing 45% of GGBS cured in standard condition slightly enhanced the
porosity by 3% as compared to the reference sample. The porosity variation between
the cold and standard cures was not that significant. On the other hand, the dry-cured
samples didn’t show any improvement, whatever the replacement level of GGBS.
Porosity values increased with an increase in GGBS content.

• The permeability was improved by 17% with the inclusion of 45% of GGBS in the
standard curing samples. All other samples presented higher permeability values
compared to the reference sample. Cold curing samples showed a significant decrease
in permeability values with an increase in GGBS replacement, while the opposite
tendency was observed for dry curing samples.

• In terms of water absorption, maximum improvement of 18% was found in samples
cured in standard condition with 45% of GGBS. With a further increase in GGBS
replacement, standard curing samples exhibited almost a similar water absorption
to that of the reference sample. For cold-curing samples with 45% of GGBS, we also
observed a little improvement of 3%. Beyond 45%, a slight drop in water absorption
resistance was noticed. Ultimately, dry curing samples revealed a significant increase
in water absorption with an increase in GGBS content.

• Numerical inverse modeling showed a good agreement between measured and es-
timated intrinsic permeability. Moreover, the simulated cumulative weights of the
samples over time fitted well with those measured. The corresponding average RMSE
is around 6× 10−3. Such promising results demonstrate the capability of the proposed
inference approach to accurately predict the hydraulic parameters of the samples from
extremely short capillary suction experiments and simulate water flow through mortar
samples.
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