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Multilevel fractional polynomials give a more realistic 
smooth function, and linear spline models are easily inter-
pretable. Each can be used to summarise individual growth 
trajectories and their relationships with individual-level ex-
posures.  © 2014 S. Karger AG, Basel 

 Introduction 

 Childhood growth is increasingly seen both as an im-
portant outcome  [1]  and an exposure  [2]  or mediator for 
later-life outcomes. In order to investigate the factors 
which influence growth, or the outcomes with which it is 
associated  [3] , childhood growth needs to be accurately 
modelled. Analysis of a repeated outcome, such as weight 
or height, needs to take the correlation between repeated 
observations on the same person into account  [4] : meth-
ods to do this [e.g. multilevel models (MLMs)] are now 
widely available in standard statistical software packages 
 [5] . Measurement error may vary over time (e.g. absolute 
measurement error in weight will be larger in later child-
hood than at birth) and there will often be dropout due to 
non-response, illness or emigration, for example.
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 Abstract 

  Background:  There is increasing emphasis in medical re-
search on modelling growth across the life course and iden-
tifying factors associated with growth. Here, we demon-
strate multilevel models for childhood growth either as a 
smooth function (using fractional polynomials) or a set of 
connected linear phases (using linear splines).  Methods:  We 
related parental social class to height from birth to 10 years 
of age in 5,588 girls from the Avon Longitudinal Study of Par-
ents and Children (ALSPAC). Multilevel fractional polynomial 
modelling identified the best-fitting model as being of de-
gree 2 with powers of the square root of age, and the square 
root of age multiplied by the log of age. The multilevel linear 
spline model identified knot points at 3, 12 and 36 months 
of age.  Results:  Both the fractional polynomial and linear 
spline models show an initially fast rate of growth, which 
slowed over time. Both models also showed that there was 
a disparity in length between manual and non-manual social 
class infants at birth, which decreased in magnitude until ap-
proximately 1 year of age and then increased.  Conclusions:  
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  MLMs are often used to describe trajectories, as they 
analyse repeated measures (level 1) clustered within indi-
viduals (level 2). One approach is to model height as a sim-
ple function of age (which could be linear or could include 
polynomials). The aim of this paper is to describe two meth-
ods for choosing the ‘best-fitting’ trajectory within the mul-
tilevel modelling framework using an illustrative example. 
The first method is that of fractional polynomials, which 
can be used to generate a smooth function of growth with 
age. The second method is that of linear splines, which gen-
erate a set of connected phases, each with a different linear 
growth rate. We apply these models to data we have previ-
ously analysed using these methods on height growth in 
girls during childhood, compare the models and show how 
they can be used to examine the association between an ex-
posure (in our example, parental social class) and growth. 
This example is used to illustrate the methods, and is not 
intended to be interpreted as an estimate of the causal effect 
of parental social class on growth – we have not considered 
confounding or any potential sources of bias. We have used 
height in girls as an example here, but these methods could 
be applied to any scenario where a continuous outcome is 
measured repeatedly in a group of individuals.

  Summarising the Growth Trajectory Using MLMs 

 Growth trajectories can be modelled using MLMs, 
where random effects or individual-level residuals repre-
sent individuals’ underlying growth patterns, and the de-
viation of observed measures from predicted values is giv-
en by individual-specific occasion level residuals  [6] .

  A basic random-slope model for linear change can be 
written:

   y  ij  =  β  0  +  u  0  j  + ( β  1  ×  t  ij ) + ( u  1  j  ×  t  ij ) +  e  ij  , (1)

  where  y  ij  is the height for individual  j  at time  t  ij , and  e  ij   ∼  
 N  (0,  σ  2  e  0 ) and ( u  0  j ,  u  1  j ) follow a bivariate normal distribu-
tion with means of zero, variances  σ  2  u  0   and covariance  σ  2  u  1 .
   Here,  β  0  and  β  1  (the ‘fixed’ coefficients) represent the av-
erage intercept and slope, respectively, and  u  0  j  and  u  1  j  (the 
‘random’ coefficients) represent the deviation from the 
average intercept and slope, respectively, for individual  j . 
The occasion level residuals  e  ij  represent the measure-
ment error, and here are assumed to have constant vari-
ance. This model can be extended to incorporate a com-
plex variance structure at the occasion level  [7]  by includ-
ing functions of age and/or other covariates in the function 
for the occasion level variance. We have not considered 
this further here, but have found in other applications 

that considering complex measurement error can im-
prove the fit of the model  [8] . 

 The fixed coefficients ( β  0  and  β  1 ) and the individual 
intercept and slope ( u  0  j  and  u  1  j ) can be used to predict the 
height for a specific individual at any time point.

  Non-Linear Trajectories 
 When growth is non-linear, one approach is to find a 

transformation of either the growth measure or time such 
that growth is approximately linear  [9] . A more flexible 
method is to include non-linear functions of time in an 
MLM – although it is then necessary to choose a best-
fitting function of time. Restricting the choice of models 
to a small number of simple polynomials can be mislead-
ing, since simple polynomials encompass relatively few 
curve shapes and do not have asymptotes. More complex 
polynomials (e.g. cubics and higher powers) may fit bad-
ly at extremes of the data and also may produce artefac-
tual turns in the curve shape.

  Fractional Polynomials 
 An alternative is to select the best-fitting function 

from a family of flexible polynomial functions  [10] . The 
procedure, known as selection of a fractional polyno-
mial, is described elsewhere  [10] , so only brief details are 
given here. With simple (single-level) linear regression, 
the model deviance of each of eight powers (–2, –1, –0.5, 
0, 0.5, 1, 2, 3, where a power of zero is the log function) 
is used to identify the best-fitting single polynomial. All 
possible combinations of pairs of these polynomials are 
then examined, and again the model deviance is used to 
select the best-fitting model containing two powers. The 
difference between the model deviance for the best-fit-
ting polynomials of degrees 1 and 2 are then compared 
to the χ 2  distribution with 2 degrees of freedom (be-
cause one extra power and coefficient are being esti-
mated), to test whether the addition of an extra polyno-
mial term significantly improves the model.

  In the multilevel framework, the method is similar, 
with the model for a polynomial of degree 2 with powers 
 p  1  and  p  2  being given by:

  if  p  1     ≠   p  2 :
   y  ij    =  β  0  + ( β  1  +  u  1  j ) t  i  j  

p1  + ( β  2  +  u  2j ) t  i  j  
p2  +  u  0  j  +  e  ij  . (2)

  If  p  1  =  p  2  then the second term is multiplied by the log of 
time, since we cannot have two separate terms containing 
the same powers of time: 

 if  p  1  =  p  2  : 
   y  ij  =  β  0  + ( β  1  +  u  1  j ) t  i  j  

p1  + ( β  2  +  u  2j ) t  i  j  
p2 log t  ij  +  u  0  j  +  e  ij    ,
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  where  β  0 ,  β  1  and  β  2  are the fixed coefficients describing 
the average shape of the trajectory, and  u  0  j ,  u  1  j  and  u  2  j  de-
scribe the deviation of individual  j ’s trajectory from this 
average. The same set of choices of power (–2, –1, –0.5, 0, 
0.5, 1, 2, 3, where a power of zero is the log function) are 
usually used, although some authors also include –3  [11] . 
The difference in model deviance between the best-fitting 
polynomial of degree 2 and that of degree 1 is compared 
to the χ 2  distribution with 5 degrees of freedom, since one 
extra power, one fixed coefficient and three random pa-
rameters (the variance of one extra random coefficient, 
 u  2  j , and its covariance with the other random coefficients, 
 u  0  j  and  u  1  j ) are being estimated. As alternatives to the log-
likelihood, the Akaike information criterion (AIC) or 
Bayesian information criterion could be used to select the 
best-fitting model  [11] . 

 When using fractional polynomials, time/age must be 
strictly greater than zero. Where a trajectory starts at zero 
(i.e. weight is modelled against age, starting from birth) 
then a constant can be added to age in order to achieve 
this strict positivity. However, the fractional polynomials 
are affected by additive (although not multiplicative) 
transformations, and thus the choice of this constant is 
important – one recommendation is to add the smallest 
difference between successive time measurements  [11] . 
Here we added 0.01 months to all ages. Further analyses 
could explore the sensitivity to other choices.

  We only considered 2nd-degree polynomials here, but 
3rd- or higher-degree polynomials may be needed for 
more complex trajectory shapes (particularly those with 
several maxima/minima).

  Linear Splines 
 An alternative approach is to model the growth tra-

jectory as a series of connected lines (‘linear splines’, 
also called ‘broken-stick’ or ‘piecewise’ models) joined 
at ‘knots’. For example, a multilevel linear spline model 
for height with knots at 3 and 6 months would allow 
different linear slopes from 0 to 3, from 3 to 6, and be-
yond 6 months, with these slopes varying between indi-
viduals.

  We define  c  knot points at times  t  k ,  k  = 1, …,  c ,
and define  t  0  = 0,  t  c   + 1  = max(time). For person  j , with 
height ij  observed at time  t  ij  we create  c  + 1 splines  s  ijk :

  For  k  = 1, .. c :  s  ijk  = 0                            if  t  ij   ≤   t  k   – 1 
                           s  ijk  =  t  ij  –  t  k – 1                 if  t  ij   ≤   t  k 
                           s  ijk  =  t  k  –  t  k   – 1                 if  t  ij  >  t  k  . 

  Thus, each spline is zero for all ages before the knot point 
at which that spline begins, rises linearly with age until 

age reaches the next knot point (at which this spline ends), 
and then takes the value of this 2nd knot point thereafter. 
In the multilevel context, a model with  c  knots would then 
be of the form: 

 1

0 0
1

ij j k kj ijk ij
k

y u u s e� �
c

,
 

(3)

  where  β  0 , …,  β  c   + 1  are the fixed coefficients describing the 
average intercept and average slope between each set of 
knots,  u  kj    describes the deviation for individual  j  from the 
average slope between  t  k – 1  and t k , and  u  0j  is the   deviation 
of individual  j ’s intercept from the average intercept. 

 Including Individual-Level Covariates 
 A covariate  X  j , measured for each person  j , can be re-

lated to growth using either the fractional polynomial or 
the linear spline models.

  For the fractional polynomial model, a term is includ-
ed for the association of the covariate with the outcome 
at time zero (in this example, birth length) and its interac-
tion with each of the polynomial terms:

  if  p  1     ≠   p  2 : 
   y  ij  =  β  0  +  α  0  X  j  + ( β  1  +  α  1  X  j  +  u  1  j ) t  i  j  

p1  + ( β  2 +  α  2  X  j  +  u  2j ) t  i  j  
p2  +  u  0  j  

+  e  ij ;

  if  p  1  =  p  2 :
    y  ij  =  β  0  +  α  0  X  j  + ( β  1  +  α  1  X  j  +  u  1  j ) t  i  j  

p1  + ( β  2  +  α  2  X  j  +  u  2j ) t  i  j  
p2 log t  ij  

+  u  0  j  +  e  ij    .

  For the linear spline model, a term is included for the 
association of the covariate with the outcome at time zero, 
and its interaction with each of the spline terms. These 
interactions are easily interpretable as being the increase 
in linear change related to a 1-unit increase in the co-
variate. 

 1

0 0 0
1

.  
c

ij j j k k j kj ijk ij
k
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(4)

  Illustrative Example: Modelling Height during 

Infancy and Early Childhood 

 Study Population 
 The Avon Longitudinal Study of Parents and Children 

(ALSPAC) is a prospective cohort study investigating the 
health and development of children. Full study method-
ology has been published elsewhere  [12]  and is detailed 
on the study website (www.bristol.ac.uk/alspac). Briefly, 
pregnant women resident in one of three Bristol-based 
health districts with an expected delivery date between 
the 1st of April 1991 and the 31st of December 1992 were 
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invited to take part. Of these, 14,541 women were en-
rolled, with 14,062 children born, of which 13,988 were 
alive at 1 year. Mothers who had moved out of the study 
area, those lost to follow-up and those taking part in an-
other study of infant development were excluded. Fol-
low-up has included parent- and child-completed ques-
tionnaires, links to routine data and clinic attendance. A 
random sub-sample of children from the last 6 months of 
recruitment [‘Children in Focus’ (CiF) group – approx. 
10% of the total cohort] were invited to clinics between 
ages 4 months and 5 years; all children were invited to 
clinics from age 7 years onwards. CiF clinics were held at 
4, 8, 12, 18, 25, 31, 37, 43, 49 and 61 months, and 1,432 
families attended at least one CiF clinic. Ethical approval 
of the study was obtained from the ALSPAC Law and Eth-
ics Committee and the local research ethics committees. 
Please note that the study website contains details of all 
the data that are available through a fully searchable data 
dictionary (http://www.bris.ac.uk/alspac/researchers/da-
ta-access/data-dictionary).

  Measurement of Length and Height 
 Length/height data for the children are available from 

several sources. Birth length (crown-heel) was measured 
for almost the whole cohort by ALSPAC staff who visited 
newborns soon after birth (median 1 day, range 1–14 days) 
using a Harpenden neonatometer (Holtain Ltd). From 
birth to 5 years, measurements are also available for the 
majority of the cohort from health visitor records, which 
form part of standard child care in the United Kingdom. 
At the CiF clinics, crown-heel length was measured up to 
25 months using a Harpenden neonatometer and from 25 
months standing height was measured using a Leicester 
height measure (Seca). From age 7–10 years, all children 
were invited to annual clinic visits, at which standing 
height (without shoes) was measured to the last complete 
millimetre using the Harpenden stadiometer (Holtain 

Ltd). Across all ages, parent-reported child heights are also 
available from questionnaires. We have previously shown 
that the health visitor measurements are reliable  [13] . A 
binary indicator of parent-reported measurements versus 
research or clinical record measurements was included in 
all growth trajectory models as a fixed effect.

  Assessment of Social Class 
 Mother and her partner’s occupations (self reported in 

questionnaires at baseline) were used to generate a mea-
sure of the highest household social class, using the 1991 
classification of the UK Office of Population Censuses 
and Surveys (classes I–V, with III split into manual and 
non-manual). This was dichotomised into manual and 
non-manual.

  Analysis Dataset 
 Because we hypothesised that boys and girls would 

have different growth trajectories, we have only included 
girls in the analyses presented here to simplify our de-
scription of the methods. We have included in our analy-
ses the 5,588 girls who have 1 or more measures of height 
between birth and age 10 years and also have data on 
household social class.

  Results 

 There were 6,733 girls with at least 1 measure of 
height; 5,588 of these also had data on social class; 1,097 
(19.6%) of the girls were in the manual social class cat-
egory. The median number of measures per girl was 7, 
interquartile range 5–10.  Table  1  shows the average 
height for different age groups, both for the entire sam-
ple of 5,588 girls and separately by manual and non-
manual social class.

 Table 1.  Ages and heights of 5,588 girls up to 10 years of age and with complete social class data: ALSPAC Study

Growth 
period

Measures,
n

 Mean height, cm (SD) Mean difference in height, cm (95% CI)
manual – non-manual social class entire group non-manual 

social class
manual social class

Birth 4,326 50.29 (2.24) 50.37 (2.23) 49.97 (2.24) –0.40 (–0.57 to –0.23)
0 – 3 months 5,789 56.64 (2.95) 56.69 (2.97) 56.40 (2.86) –0.30 (–0.50 to –0.10)
3 – 12 months 8,100 68.97 (4.66) 68.92 (4.71) 69.27 (4.40) 0.35 (0.07 to 0.64)
1 – 3 years 7,708 82.95 (5.67) 83.03 (5.68) 82.53 (5.60) –0.51 (–0.89 to –0.13)
3 – 10 years 20,187 117.84 (15.27) 118.12 (15.26) 116.3 (15.27) –1.86 (–2.51 to –1.21)
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  Fractional Polynomials 
 A MLM was fitted to all available measures of height 

up to age 10 for all 5,588 girls in the sample, with 0.01 
months added to all ages (to ensure that age was strictly 
positive). The best-fitting fractional polynomial had pow-
ers of the square root of age, and the square root of age 
multiplied by the log of age. We assumed an unstructured 
variance/covariance matrix (shown in online suppl. ta-
ble  1; see www.karger.com/doi/10.1159/000362695 for 
all online suppl. material), thus estimating all six vari-
ances/covariances for the three random effects. The AIC 
for this model was 213,683.9. The fixed part of the equa-
tion for this best-fitting polynomial was:

  height ij  =  β  0  +  β  1  (t  ij  )  0.5  +  β  2 [log (t  ij  )   ×   (t  ij ) 0.5 ] ,

  where: 
  t  ij  = age (months) + 0.01 at time  i  for individual  j 
   β  0  = 49.69 (SE = 0.044)
   β  1  = 5.93 (SE = 0.023)
   β  2  = 0.452 (SE = 0.005) .

  The interpretation of these coefficients is difficult due to 
the complexity of the function – a graph is the clearest 
way to examine the average curve for this best-fitting 
polynomial ( fig. 1 ). There was no evidence of any peaks 
or sharp changes in the velocity of height gain. The fixed 
coefficients, plus the individual-level coefficients for the 
intercept, square root of age and the square root of age 
multiplied by the log of age terms were used to predict 
height for each individual, for each age at which they were 
measured. The means of these predicted heights (from 
the best-fitting fractional polynomial) in each age period 
are shown in  table 2  together with the average observed 
height during that period. For example, the average pre-
dicted height for all children aged 0–3 months was 57.43 
cm, and 95% of the predicted heights were within –3.6 to 
+2.0 cm of the observed height. The model appears to fit 
the data well, with 95% limits of agreement between ob-
served and expected heights being within 10% of the 
mean height in each period. 

 Linear Spline Model 
 From examination of the best-fitting fractional polyno-

mial and previous work  [14] , it appeared that height gain 
was fastest in the first few months of life, slowing down 
thereafter, with approximately linear growth between 0–3, 
3–12, 12–36 and 36–120 months (with a different linear 
rate in each of these time periods). Models with knot 
points at each whole month within 6 months of either side 
of these knot points (or within 3 months for the 1st knot 
point) were compared: we fitted models with 2 knot points 

only and compared the best fitting of these with the best-
fitting model with 3 knot points. The best-fitting model 
based only on the model deviance had knots at 2, 11 and 
32 months. For ease of interpretation and clarity of pre-
sentation, we compared this model with one where knot 
points were placed at 3, 12 and 36 months. There was very 
little change in model deviance and no change in the mean 
and range of differences between observed measurements 
and those predicted by the MLM, so the model with knot 
points at 3, 12 and 36 months was chosen. The AIC for this 
model was 210,887.1 – lower than that of the fractional 
polynomial model, indicating slightly better model fit. We 
assumed an unstructured variance/covariance matrix 
(shown in online suppl. table  2), thus estimating all 15 
variances/covariances for the 5 random effects. The fixed 
part of this model had the form:

   height  ij   = β  0  +  β  1  s  ij  1  +  β  2  s  ij  2  +  β  3  s  ij  3  +  β  4  s  ij  4  ,

  where: 
  β  0  = 50.09 (SE = 0.040) cm
   β  1  = 3.57 (SE = 0.014) cm/month
   β  2  = 1.63 (SE = 0.006) cm/month
   β  3  = 0.83 (SE = 0.002) cm/month
   β  4  = 0.53 (SE = 0.001) cm/month.

  The interpretation of these coefficients is simple (in con-
trast to those from the fractional polynomials). Estimated 
average length at birth is 50.09 cm, with estimated growth 
of 3.57 cm/month during the period from birth to 3 
months, and rate of change in height decreasing with age 
to a mean gain of 0.53 cm/month after age 3 years. 

 The average shape for this trajectory (given by the 
fixed coefficients) is shown in  figure 1 . The fixed coeffi-
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  Fig. 1.  Average predicted height trajectories from birth to 10 years 
in girls from the ALSPAC study predicted by the best-fitting frac-
tional polynomial and the linear spline MLMs. 
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 Table 2.  Fit of the best-fitting fractional polynomial and linear spline models to data on height from birth to 10 years of age in 5,588 girls: 
ALSPAC Study 1990 – 2002

Growth 
period

Mean observed
height, cm (SD)

Fractional polynomial model (AIC = 213,683.9)  Linear spline model (AIC = 210,887.1)

mean
predicted
height

mean difference
(observed – 
predicted)

95% limits of
agreementa

mea n
predicted
height

mean difference
(observed – 
predicted)

95% limits of 
agreementa

Birth 50.29 (2.24) 50.01 0.28 –1.63 to 2.20 50.38 –0.09 –1.79 to 1.61
0 – 3 months 56.64 (2.95) 57.43 –0.79 –3.62 to 2.04 56.50 0.14 –2.30 to 2.57
3 – 12 months 68.97 (4.66) 68.58 0.39 –2.41 to 3.19 69.02 –0.05 –2.37 to 2.26
1 – 3 years 82.95 (5.67) 82.38 0.57 –2.66 to 3.79 82.84 0.11 –2.97 to 3.18
3 – 10 years 117.84 (15.27) 118.06 –0.22 –3.76 to 3.32 117.87 –0.03 –3.33 to 3.28

 a Limits within which 95% of the differences between observed and predicted values lie.

 Table 3.  Predicted height per linear spline period in girls from the non-manual social class, manual social class, 
and the mean difference in predicted height comparing girls from the manual with the non-manual social class

 Mean height, cm (SD) Mean difference in height, cm (95% CI)
manual – non-manual social class non-manual social class manual social class

Fractional polynomial model
Birth 49.786 (1.532) 49.299 (1.516) –0.487 (–0.669 to –0.306)
3 months 60.897 (1.655) 60.651 (1.682) –0.246 (–0.386 to –0.106)
1 year 74.198 (2.081) 73.920 (2.098) –0.278 (–0.445 to –0.110)
3 years 95.103 (3.053) 94.604 (3.013) –0.499 (–0.728 to –0.270)
10 years 138.614 (5.754) 137.355 (5.530) –1.259 (–1.723 to –0.795)

Linear spline model
Birth 50.173 (1.642) 49.734 (1.652) –0.439 (–0.599 to –0.279)
3 months 60.833 (1.921) 60.654 (1.958) –0.179 (–0.385 to 0.028)
1 year 75.466 (2.202) 75.267 (2.233) –0.199 (–0.410 to 0.011)
3 years 95.529 (3.287) 94.958 (3.238) –0.570 (–0.850 to –0.291)
10 years 140.167 (5.745) 138.948 (5.476) –1.219 (–1.709 to –0.729)

 Table 4.  Mean growth rates per linear spline period in the non-manual social class and the mean difference in 
growth rates comparing the manual with the non-manual social class

Mean growth rate (SD) 
non-manual social class

Mean difference (95% CI)
manual vs. non-manual social class

Birth length, cm 50.173 (1.642) –0.439 (–0.599 to –0.279)
Growth rate, cm/month

0 – 3 months 3.553 (0.241) 0.087 (0.016 to 0.158)
3 – 12 months 1.626 (0.136) –0.002 (–0.030 to 0.026)
1 – 3 years 0.836 (0.071) –0.015 (–0.026 to –0.005)
3 – 10 years 0.531 (0.035) –0.008 (–0.013 to –0.003)
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cients, plus the individual-level coefficients for each slope, 
were used to predict height for each individual, for each 
age at which they were measured. The average of the pre-
dicted heights in each age period are shown in  table 2 . The 
model appears to fit the data well, with 95% limits of 
agreement between observed and expected heights being 
within 10% of the mean height in each period.  Table 2  also 
shows that, on average, the linear spline model fits the 
observed data slightly better than the fractional polyno-
mial model, as the mean and the range of the differences 
between observed and predicted heights are smaller for 
the linear spline model.

  Including Social Class as an Individual-Level 
Covariate 
 In order to assess the association between household 

social class and child growth, social class (as a binary co-
variate: manual vs. non-manual) was included in both the 
fractional polynomial and the linear spline models. For 
the fractional polynomials, the coefficients for the inter-
action between social class and the powers of age are not 
readily interpretable. A plot of the predicted average 
height gain in girls of the manual and non-manual social 
class ( fig. 2 ) shows that there is a gradually widening dif-
ference: girls of the non-manual social class are slightly 
taller by 10 years of age. A table of predicted heights at 
different ages ( table 3 ) reveals that the initial difference in 
height between the two groups decreases from birth to 
approximately 1 year of age, and then increases. 

 For the linear spline model, the coefficients for the in-
teractions between social class and the spline terms show 
the predicted growth rates for each social class group ( ta-
ble 4 ). These indicate that girls of the manual social class 
have lower birth length and slower growth than those of 
the non-manual social class, except between birth and 3 
months, when the manual group grows 0.087 (95% CI 
0.016–0.158) cm/month faster. The plot of the predicted 
average height gain ( fig. 3 ) and tables of predicted heights 
at different ages ( table 3 ) are very similar to those from 
the fractional polynomial model.

  Discussion 

 We have used MLMs to estimate height gain trajecto-
ries for each individual, comparing the fractional polyno-
mial and linear splines approaches. The fractional poly-
nomial model assumes a smooth, monotonic curve of 
height with age, whereas the linear spline model assumes 
a biologically implausible (but more interpretable) piece-
wise linear relationship between height gain and age. 
Both models demonstrated an initially rapid growth in 
height, with rate of growth decreasing over time. Both 
models also showed that girls in the manual social class 
gained height more slowly than those in the non-manual 
social class. Despite the implausible linearity assumption, 
the 3-knot linear spline model appeared to fit the height 
data slightly better than the two-degree fractional poly-
nomial in our example.
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  Fig. 2.  Average predicted height gain from birth to 10 years in girls 
of the manual and non-manual social class from the ALSPAC 
study predicted by the best-fitting fractional polynomial model. 

  Fig. 3.  Average predicted height gain from birth to 10 years in girls 
of the manual and non-manual social class from the ALSPAC 
study predicted by the best-fitting linear spline model. 



 Tilling/Macdonald-Wallis/Lawlor/ 
Hughes/Howe
 

Ann Nutr Metab 2014;65:129–138
DOI: 10.1159/000362695

136

  Fractional polynomials have been compared to con-
ventional polynomials in the multilevel setting  [11] . Us-
ing simulated data, fractional polynomials were more 
parsimonious than conventional polynomials, with at 
least equal fit to the data. Fractional polynomials have 
been used in the multilevel modelling framework to mod-
el body mass index  [15] , early growth  [16] , sodium con-
tent in breast milk  [17]  and blood pressure in pregnancy 
 [18] . The effect of covariates on trajectories can be ex-
plored, and summaries of the curves can be extracted – 
for example, curves can be differentiated to obtain age at 
maxima/minima  [11, 15] . An a priori decision is often 
made only to examine fractional polynomials up to de-
gree 2. Degree 1 fractional polynomials are strictly mono-
tonic, whereas those of degree 2 can be non-monotonic, 
with 1 maximum or minimum. The choice of degree to 
consider should be driven by theory of underlying biol-
ogy. For example, for height change over childhood, de-
gree 2 is a sensible choice, whereas for body mass index 
in infancy/puberty, with multiple potential maxima/min-
ima, degrees greater than 2 should be included  [15] .

  Linear spline models have been used to model growth 
in childhood  [14, 19, 20] , blood pressure in pregnancy 
 [21, 22] , aspects of gait in childhood  [23]  and fetal growth 
 [16] . Linear spline models are often used where the knot 
point is known – for example, to model body fat before 
and after menarche  [24] . Where the number and plac-
ing of the knot point(s) are unknown, they must be esti-
mated. For simple regression models, options for select-
ing the number and position of the knots include: using 
a large number of knots and reducing the number until 
a ‘smooth’ curve is reached; placing knots at centiles of 
the time variable, and stepwise regression to select those 
knots which are ‘significant’  [25] . We are aware of no 
such guidance for MLMs; the theoretical properties of 

these methods are unknown. We have previously used 
fractional polynomials to derive a smooth approximation 
to the curve, and used its derivatives to inform the num-
ber and placing of knot points  [14, 19] . External knowl-
edge of growth patterns or ‘critical’ periods throughout 
the life course may also inform the placement of knots.

  A comparison of fractional polynomials and linear 
splines in a non-repeated measure setting showed that the 
two approaches performed similarly, although there was 
a tendency for fractional polynomials to perform better 
at recovering simpler functions and splines for more 
complex functions  [26] . Multilevel linear splines per-
formed better than fractional polynomials in modelling 
repeated measures of prostate-specific antigen over time, 
although smoothing methods outperformed both  [27] . 
The number of parameters in a multilevel linear spline 
model can become large  [28] , particularly if each spline 
has an associated random effect. With balanced data, to 
fit a fractional polynomial with random effects for all pa-
rameters requires at least 3 measures per individual for 
degree 1, and 4 for degree 2. To fit a linear spline model 
with 1 knot point would require at least 4 measures per 
individual, with 5 required for a 2-knot-point model.  Ta-
ble  5  outlines some of the differences between the two 
methods.

  Alternative models include fitting individual knots in 
a linear spline model  [29] , using non-linear splines  [30] , 
more complex transformations  [31]  or non-linear func-
tions (including the Preece-Baines model  [32, 33] ). How-
ever, these suffer from needing a larger number of obser-
vations per individual (e.g. Preece-Baines estimates 5
parameters per person), are harder to fit in general mul-
tilevel modelling software and suffer from the same dif-
ficulty in interpretation as the fractional polynomial 
models described above.

 Table 5.  Comparison of fractional polynomials and splines

Fractional polynomial Linear splines

Automated procedure for selecting the best-fitting model ‘Rule of thumb’ – no consensus on the best method to choose the 
number and position of knot points

Needs constant term (fixed and random effect), plus 1 fixed 
and 1 random effect per degree (e.g. a 2nd-degree polynomial 
needs 3 fixed effects and 3 random effects)

Needs constant term (fixed and random effect), plus 1 fixed and 1 
random effect, plus 1 fixed and random effect per knot point (e.g. a 
model with 2 knot points requires 4 fixed and 4 random effects)

Smooth curve Biologically implausible broken-stick model

Harder to interpret coefficients directly Easy to interpret coefficients
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  Conclusions 

 Either fractional polynomials or linear splines can be 
used to summarise growth and to identify relationships 
between individual-level exposures and growth. Linear 
splines may be more easily interpretable, particularly 
when examining the associations between exposures and 
growth. The choice of method depends upon the aim of 
the study, the number of measures available per individ-
ual and the complexity of the underlying trajectories.
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