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Abstract: The objective of this study is to evaluate the feasibility of deep-learning-based segmentation
of the area covered by fresh and young concrete in the images of construction sites. The RGB images
of construction sites under various actual situations were used as an input into several types of
convolutional neural network (CNN)–based segmentation models, which were trained using training
image sets. Various ranges of threshold values were applied for the classification, and their accuracy
and recall capacity were quantified. The trained models could segment the concrete area overall
although they were not able to judge the difference between concrete of different ages as professionals
can. By increasing the threshold values for the softmax classifier, the cases of incorrect prediction as
concrete became almost zero, while some areas of concrete became segmented as not concrete.

Keywords: concrete; section; construction site; deep learning; convolutional neural network (CNN);
image segmentation

1. Introduction

Visual inspection is an important nondestructive way to monitor the condition of
concrete structures. Conventionally, experts visit the construction sites or existing structures
to observe the condition of the concrete and take pictures or videos, i.e., a manual inspection.
Through the inspection, information including the surface condition, location and depth of
cracks could be investigated, and, by very experienced experts, even the moisture condition
and the binder composition of concrete can be inspected indirectly. Meanwhile, automated
monitoring techniques, especially various computer vision solutions have been proposed
to solve the inconvenience of the manual inspection.

The implementation of computer-based image processing methods for concrete struc-
tures and materials progressed gradually from filtering- and thresholding-based techniques,
such as histogram analysis and brightness adjustment, to artificial-intelligence-based tech-
niques. A number of studies have been conducted on the filtering and thresholding
techniques to process images of concrete, many of which are related to understandable
pattern recognition and object localization such as crack detection and surface assessment.
Joshi et al. [1] investigated the classification of different mixtures of concrete and their com-
position from X-ray computed-tomography (CT) images using a thresholding algorithm.
Hoang et al. [2] identified and calculated the crack width and length from RGB images
by using a thresholding technique, called Min–Max gray level discrimination (M2GLD),
which could adjust the image’s intensity to increase the crack-detection results. Kabir
et al. [3] implemented gradient-based image processing techniques and edge detectors
to assess damage in concrete structures from captured images. Lee et al. [4] and Rivera
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et al. [5] also used different morphological feature extraction and binarization mechanisms
to detect cracks on concrete walls. Choi et al. [6] also identified phenolphthalein-sprayed
carbonation regions of concrete using morphological and thresholding techniques, which
were found to be very effective in detecting the areas accurately. Most of the research
done was related to the detection of discontinuities and failure mechanisms which are,
from the standpoint of pattern recognition, not difficult and do not insist on an image
database. Even as a whole, pattern recognition is an ‘ill-posed problem’, but objectified
image segmentation is a well-defined technique to implement, which will be very crucial
to the proposed study [7,8].

Recently, deep learning (DL)–based techniques in the construction industry are be-
coming very popular due to a number of deep neural network architectures following
AlexNet [9] and training techniques for the deep architectures. Convolutional neural
networks (CNNs) are one of the subdivisions of DL initially developed for optical character
recognition [10] and expanded to image and video processing. One of the tasks CNNs
handle well is semantic segmentation that infers labels for every pixel in an image to
predict the shapes of objects or regions. Recently, various semantic segmentation models
have been proposed [11,12] such as SegNet [13], U-Net [14], and DeepLabV3+ [15]. Due
to their large number of parameters and functions, these models resulted in an accuracy
closer to that of human beings [16–18].

In 1993, a paper was published that investigated a neural-network-based crack-
detection technique on pavements [19], which is the first known application of a neural
network model to image recognition in the field of civil engineering, to the best of the
authors’ knowledge. The result was very promising with some need for minor adjustments.
Since then, different studies were conducted that are useful for the monitoring and main-
tenance of civil structures, especially concrete structures. Kim and Cho [20] detected and
quantified different type of cracks on a concrete wall by using AlexNet CNN architecture.
They also investigated a method called mask and region-based CNN models on crack
detection the following year [21]. Song et al. [22] used a CNN model to segment concrete
images to determine the content of air voids in the concrete mix. The above-mentioned
studies and others related to the image-based classification research have focused on the
identification of specific defects on concrete structures such as crack damage, efflorescence,
and other related deteriorations and damages.

On the other hand, in this research, the image segmentation of concrete section and
area was attempted. Segmentation in various civil structures such as roads, pavements,
concrete walls, or guardrails from the RGB images has been studied in the aspect of
computer vision for autonomous vehicles [9–12]; however, there has been no attempt at
performing segmentation on concrete construction sites [23]. The automatic separation
of the concrete section from the complex images from the construction sites or existing
structures will be highly beneficial to monitor and maintain the region of interest on
concrete structures both under construction and during operation.

Through the course of the development of deep-learning-based techniques, various
types of CNN models were proposed. These models had their own unique structures and
characteristics that were only suitable for certain tasks. Some were more extensive than
others, and some possessed a broader set of parameters than others. As a result, it was
important to examine and select a model that was compatible with the research objectives.
In this work, the CNN architectures were used to classify the area covered by fresh or
young concrete at pixel level from the RGB images taken from construction sites under
various conditions. A comparison between the performances of various architectures was
conducted through different statistical metrics as well as a qualitative evaluation on the
segmented area. The main contribution of this work focuses on the tendency of these
architectures and their implementation on a database composed of a series of images,
which will be able to objectively determine what is concrete or what is not.
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2. Investigational Methodology

This section contains the procedures implemented on the CNNs for concrete area
detection. This study concentrated on the procedures of acquiring the dataset, the steps
involved in the development of the labeling method, and finally on finding the most
appropriate pretrained CNN model that can be applicable for various purposes. The entire
procedure was divided into three basic steps: data acquisition, data training, and data
evaluation, which are detailed below.

2.1. Data Acquisition

The dataset is an image directory where the images are labeled with their respective
classes. Classes are the variables or categories that are on the images that the CNN is
going to classify. The classification is somehow similar to binary classification in which,
the output can have only two values, a negative class or a positive class. However, it is
also equipped with a probabilistic score that gives the probabilistic values of each pixel or
object in the image for both classes. Since our objective was to determine the area covered
by concrete, the first class was called ‘concrete’ and the section that is not concrete as a
whole was considered as another class and called ‘nonconcrete’.

The dataset was a cluster that contained 1059 images taken at different construction
sites in South Korea with a conventional digital camera. The images contained different
phases of construction stages from the formwork preparation, rebar placement, concrete
placement, and curing. They also contained different situations related to concrete construc-
tion and placing, which will be briefly discussed in the next section. These images were
organized randomly and labeled to avoid bias. The images were gathered with different
resolutions, which then were resized to 224 × 224 or 227 × 227 pixel resolutions, according
to the network input size.

After the resolution adjustment, the images were labeled at the pixel level. Note that
the regions of interest (ROI) in the images can be labeled in two ways, named rectangle (or
polygon) labeling and pixel labeling. The rectangle or polygon labeling is usually used to
label discrete and distinct objects that have definitive patterns and edges that are easily
recognizable and teachable. Cars, person’s face, and any objects that have a definite shape
are examples that can be labeled by object or line labeling. These labeling methods are
very crucial in object detection and localization techniques, which are applicable in pattern
recognition [24]. On the other hand, a pixel-to-pixel labeling method is more appropriate
for this research since the area covered by concrete does not have a lot of recognizable
patterns or distinctive shapes other than the color [25].

The labeling was done according to the example shown in Figure 1. As mentioned
above, different images from different situations were taken. Based on that, different
adjustments were done in the labeling process to find the possible classification of images.
It should be mentioned that the concrete in the construction sites could be classified into
three categories: fresh concrete before setting, young concrete after setting but needing
a proper curing process, and old concrete requiring no additional curing but needing
long-term maintenance.
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Figure 1. Examples of criteria of pixel-based labeling for construction site images (original: left; labeled: right; red: non-

concrete; blue: concrete): (a) Every concrete area was labeled, even the shadows and the dark spots. (b) The whole image 

was labeled as ‘not concrete’ since there were no traces of concrete. (c) The reinforcement bars were avoided as much as 

possible. (d) The people were omitted. Moreover, the fresh concrete below reinforcements was also omitted. (e) Only the 

fresh and young concrete was labeled as concrete. Old concrete and concrete covered by paint was omitted. (f) When the 

concrete was covered with a transparent sheet, the areas where the sheet was in contact with concrete were labeled as 

‘concrete’. (g) Wet regions or concrete covered with water was also labeled as ‘concrete’. (h) When the area covered with 

concrete was in an extreme darkness, it was labeled as ‘nonconcrete’. 

For the construction site management, fresh and young concrete should be moni-

tored as they need appropriate curing processes such as moderated temperature and hu-

midity. In this study, fresh and young concrete were labeled as ‘concrete’ as shown in 

Figure 1, while the old one was not. In the future works, if necessary, the fresh, young, 

and old concrete could be labeled (or clustered) separately. 

Figure 1. Examples of criteria of pixel-based labeling for construction site images (original: left; labeled: right; red:
nonconcrete; blue: concrete): (a) Every concrete area was labeled, even the shadows and the dark spots. (b) The whole
image was labeled as ‘not concrete’ since there were no traces of concrete. (c) The reinforcement bars were avoided as much
as possible. (d) The people were omitted. Moreover, the fresh concrete below reinforcements was also omitted. (e) Only
the fresh and young concrete was labeled as concrete. Old concrete and concrete covered by paint was omitted. (f) When
the concrete was covered with a transparent sheet, the areas where the sheet was in contact with concrete were labeled as
‘concrete’. (g) Wet regions or concrete covered with water was also labeled as ‘concrete’. (h) When the area covered with
concrete was in an extreme darkness, it was labeled as ‘nonconcrete’.

For the construction site management, fresh and young concrete should be monitored
as they need appropriate curing processes such as moderated temperature and humidity.
In this study, fresh and young concrete were labeled as ‘concrete’ as shown in Figure 1,
while the old one was not. In the future works, if necessary, the fresh, young, and old
concrete could be labeled (or clustered) separately.
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After the labeling, the data were separated into two sets, containing 80% (about
847 photos) of the data in the training set and the remaining 20% (about 212 photos) in the
testing set. The separation was randomly performed to avoid a biased training dataset.
Labeling is a very crucial step as mentioned above. In supervised learning, solid and
tangible true data are important since the validity of the result depends on it. Labeling the
images provides a ground truth (gTruth) of the data. The gTruth is the true value of the
dataset, which stores the correct value and spatial orientation of labeled classes that are
going to be used for the training and evaluation process. It is important that the gTruth
has to be properly generated since it is the foundation of the training process. It is also
relevant in the performance evaluation of the testing images, which is in turn valuable for
the validity of the trained model.

2.2. Data Training

Training a deep neural network from scratch without pretrained datasets, i.e., unsu-
pervised learning, is an all-embracing work, and it will not be practicable since it requires a
very large number of datasets. Therefore, usually a pretrained CNN architecture is used as
mentioned in the above explanation, i.e., transfer learning. Transfer learning has been the
main beneficiary in the current deep-learning-based segmentation works. Transfer learning
is extracting knowledge from previously classified tasks and applying that knowledge to
the targeted classes [26]. It provides an effective method of training a large network using
scarce training data without overfitting [27]. This is important in boosting the efficiency
of the training time and avoiding unnecessary architecture development from the ground
up. Therefore, in this investigation, three DL segmentation models with pretrained CNN
backbone architectures were used. DeepLab V3+ was used as a one of the state-of-the-art
segmentation models, whereas ResNet 18 and 50 [16] were used as base encoder networks.
SegNet was the other model that was implemented for the segmentation process using
VGG 16 [28] as a backbone encoder. A fully convolutional network (FCN) model using
AlexNet [9] was used after remodeling the layers and optimization parameters. As a result,
data training was done by tuning their parameters and features. Although the detailed
architectures of these models are different from each other, the general architecture of the
models is somehow similar as presented in Figure 2.
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Figure 2. General architecture of CNN model for present work (modified from [17,29,30]).

Each of the CNN models followed more or less the same procedures in the training
process, starting from the usage of the same dataset to the testing process. The detailed
characteristics and parameters of the CNN models are presented in Table 1.
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Table 1. Summary of the pretrained CNN models used.

CNN Model FCN SegNet DeepLab V3+ DeepLab V3+

Backbone encoder AlexNet [9] VGG 16 [28] ResNet 18 [16] ResNet 50 [16]
Parameters ~60 million ~138 million ~11 million ~23 million

Neurons 650,000 5504 4096
Input image size 227 × 227 224 × 224 224 × 224 224 × 224

Convolutional layer 5 3 5 5
Fully connected layer 3 3 1 1

Max pooling layer 5 5 2 (1 average) 2 (1 average)
Total connections 24 40 78 192

Total layers 25 41 71 177
Output type Classification Classification Classification Classification

Data augmentation techniques were implemented to create a different dataset for
every training set. Geometric transformations, one of the types of data augmentation
methods, was used for this study. All the training, datasets were translated in both the x
and y directions to a specific degree every time the images were trained. This was helpful
in circumventing overfitted outcomes every time the models were trained. It also prevents
the network from memorizing the exact details of the training dataset.

After the gTruth dataset was generated and all these conditions were set, training was
conducted using the training parameters that are stated below in Table 2.

Table 2. Training parameters used in the training process of the dataset.

Training Parameters Options Used

Optimization algorithm SGDM
Momentum 0.9

Execution environment Single GPU
L2 regularization 0.0005

Shuffle Every epoch
Initial learn rate 0.003

Learn rate schedule Piece-wise
Mini batch size Varied

Max epochs Varied

The manipulation of mini-batch size and epoch is of a great importance due to the
fact that they influence the accuracy of the model. They are also closely related to the other
parameters especially the learning rate. The main reason behind this is the effect of the
generalization gap (over fitting and underfitting). A larger batch size and epoch does not
imply it will result the higher accuracy of results, thereby increasing the generalization gap.
In most situations, a lower batch size results in a better output [31]. There is also a GPU
requirement when dealing with these hyperparameters. Therefore, proper and efficient
values of mini-batch size and epoch should be found in terms of accuracy and execution
time. The training execution environment is also described in Table 3.

Table 3. Machine and software environment implemented in the training process.

Machine and Software Environment Selections Used

System type Microsoft Windows 10, 64-bit
RAM 24 GB

Processor Intel(R) Core™ i7-7700 CPU @ 3.6 GHz
Graphics driver NVIDIA GeForce RTX 2080 Ti 11 GB

Execution environment MATLAB, R2020a

After the above-mentioned CNN architectures were trained, they were evaluated
based on a number of evaluation metrics (mentioned in the next section) to determine
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which model had a higher capacity for accuracy relative to the other models. Then, after
this model was determined, it was tested on images with different situations to determine
how it will respond and adopt to these variations. A range of thresholding approaches
were carried out to investigate how well the model localized and segmented the images.
The softmax classifier [32] was the foundation behind the classification process. It gives a
binary type-based response (1s and 0s) as a first-hand segmented image and a probabilistic
score (from 0 to 1) for the purpose of thresholding the segmented image.

2.3. Evaluation Process and Metrics

The performance of the proposed method was evaluated by comparing the pretrained
models with different evaluation metrics. Before mentioning the evaluation metrics, it
is important to explain the four classes of statistical classification, also called confusion
matrix, which is not familiar in construction fields. These are mentioned as follows [33]:

• True positives (TP): an outcome where the model correctly predicts the positive class.
• True negative (TN): an outcome where the model correctly predicts the negative class.
• False positive (FP): an outcome where the model incorrectly indicates the positive

class, but it is actually negative.
• False negatives (FN): an outcome where the model incorrectly indicates the negative

class, but it is actually positive.

Based on the confusion matrix and other operations, in this work, four types of
evaluation metrics were used to determine the capability and tendency of detection of the
architectures. The quality of the learning algorithms is generally evaluated by analyzing
the metrics [34].

The first one is the accuracy. It is the ratio of correctly classified pixels, regardless of
class, to the total number of pixels. In simpler terms, it is the ratio of the sum of TP and TN
to the sum of TP, TN, FP, and FN. Recall, also called sensitivity, is the second one, which
for our case represents the percentage of correctly identified pixels for each class. It is the
ratio of correctly classified pixels to the total number of pixels in that class, according to
the ground truth. In simpler terms, it is the ratio of the TP to the sum of TP and FN. The
main difference between accuracy and recall is that the accuracy does not consider the
class, which makes it a generalized evaluation method compared to the recall.

Intersection over union (IoU), sometimes called ‘Jaccard Index’, is another parameter
used to evaluate the neural networks. It is a metric for measuring the overlap between the
ground truth class and the predicted class. The lower the value, the more the prediction
capability decreases. Finally, time, i.e., running time, is also a parameter for evaluating the
efficiency of the networks.

3. Results and Discussion
3.1. Effects of Epoch and Batch Size

The retrained models were evaluated based on the evaluation metrics proposed in the
above segment by varying the epoch and the batch size. Figure 3 presents the evaluation
metrics of the models with various epoch and batch sizes. It can be seen that the model
with ResNet CNN architecture as a backbone have a higher score of accuracy, recall, and
IoU than the other models on average. This was achieved despite the lesser number of
parameters that DeepLab V3+ with ResNet backbone has compared to the others. The
main reason behind this is that the ResNet series is a very deep residual network with a
much lower number of parameters compared to the other two models. It has what we call
a skip connection and features heavy batch normalization in which the output layer is the
result of the function of the pervious layer and the input of the previous layer. This will
increase the depth of the learning rate of each layer as it goes. It is usually assumed that
stacking more layers will result in an increase of the accuracy of the network, but this is
not the case. The accuracy accumulates and will go down rapidly because of the vanishing
gradient problem. This means that as the layers are deeper and have more parameters, the
initial layers will become insignificant during back propagation [35]. Therefore, this will
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cause the accuracy to drop rapidly. However, since the DeepLab V3+ model using ResNet
series uses shortcut connections these gaps will not be created. This makes this model very
efficient and effective for our objective.
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Figure 3. Evaluation of CNN models based on the evaluation metrics: averaged values of accuracy (a), recall (b), and IoU
(c) for testing datasets and (d) training time for dataset.

On the other hand, compared to the ResNet 18 model, the ResNet 50 required much
more training time as shown in Figure 4, while the averaged accuracy and recall values
were seldom improved. Therefore, in this study, the DeepLab V3+ model using a ResNet
18 backbone was selected for further works.
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The other interesting thing was, as the batch size values increase maintaining the epoch
values constant, the predictability of the model was increased. However, this does not
mean that increasing the batch size will always have a good implication. The CNN models
were trained in a stochastic gradient decent optimization method (SGDM). This method
is based on updating the weights of the parameters to minimize the loss function until it
converges to the minimum value. Therefore, with a smaller batch size, the parameters will
be updated more. Unfortunately, a batch size more than eight was not possible in the test
environment due to the GPU’s limitations. Even though we used the batch normalization
(BN) parameter in the CNN models, the BN itself was bounded by the mini batch size
chosen by the training options. Therefore, the option of mini batch size was crucial since
it was the basepoint for other parameters. From the investigation done on the evaluation
metrics, the model that was chosen was trained with an epoch of 30 and a batch size of
8 for our further analyses.

3.2. Case Study: Thresholding Approaches

The averaged accuracy and recall of the pretrained models may be enhanced as the
number of datasets being trained increases. However, in the case of images with very
diverse objects and complex situations such as those of construction sites, the important
thing in pixel-level segmentation is not only the overall and averaged accuracy of the
dataset but also local accuracy for each single image.

Figure 4 is the visual representations of TP, TN, FP, and FN predicted by the ResNet
18 model. As is well known, many of the objects in the images from the construction sites
were gray. For this reason, brightness spectra threshold techniques were hard to use for
judging the area covered by concrete in general. Moreover, there were many limitations
in clearly classifying the fresh, young, and old concrete with similar colors. As shown in
Figure 4, the area of TP from the pretrained models shows relatively good agreement with
of actual area of concrete. In Case 1 in Figure 4, there are concrete slabs in the center and
concrete walls of different ages in the back, and there is also a formwork in the distance.
For this image, the main region of interest was the concrete slab in the center, so that only it
was labeled as concrete, and the most of TP area from the model agreed with this. However,
there was some FP area at the boundary between the area of people and concrete. At the
same time, concrete walls at the back that were labeled as nonconcrete were predicted as
concrete. This area was judged as FP, but it was concrete although it was out of the ROI.
A similar phenomenon appeared in Case 2 as the FP at the edge of the concrete. Some
range of the area of FP in Case 2 was also the concrete party wall cast before pouring fresh
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concrete. In other words, although it could not distinguish between concrete of different
ages as a professional would, this model could segment the overall concrete section.

In Case 3 of Figure 4, there are some objects (actually buried pipes) similar in color
to concrete in the back part of the image, but as a result, all parts were predicted as
not concrete. In this case, the TP value became 0. In Case 4, the surface of the young
concrete slab had different colors. It should be mentioned that, in practical, the plastic
sheets were covered on the fresh concrete after pouring and finishing to prevent the plastic
shrinkage, and there were cases where the sheets were contacted to the surface of the
concrete depending on the area. The surface color and texture of the young concrete may
have been changed by this contact as it affects the drying and bleeding condition. But the
model predicted the TP and TN well with minor mis detections.

Using the number of pixels of TP, TN, FP, and FN, the values of the evaluation metrics
were calculated for each image in the dataset. Figure 5 presents the relationship between
the recall and specificity (= TN/(TN + FP)) for 100 randomly selected images from testing
datasets. This type of figure is called the receiver operating characteristic (ROC) plot, and
it presents the performance of a classification model. As mentioned above, the recall, also
called the true positive rate (TPR), is the proportion of positive instances classified correctly,
for this case, how the model classified the concrete areas suitably. Meanwhile, sensitivity,
also called the true negative rate (TNR), is the portion of not concrete areas that are correctly
classified. Most of the results were close to the point of recall = 1 and specificity = 0, which
meant that the proportion of TP was high in general while that of TN was low. Thus, from
Figure 5 we can infer that the credibility of the model was quite high. Figure 6 shows the
results of accuracy and recall for 100 randomly selected images from testing datasets. The
accuracy, which contained both TN and TP, was within a range of 0.9 ± 0.1 in most cases.
Meanwhile, as shown in Case 3 of Figure 4, there was a case where the pixel numbers of
TP were low as there was limited concrete area. If the model could not predict this limited
area of concrete, i.e., FN for this case, then the recall values became very small as shown in
the right side of Figure 6.

The prediction results of the model could also be obtained through a thresholding
approach. As shown in Figure 2, the softmax classifier yielded both binarized (0s and 1s)
and probabilistic values for each pixel after calculation. As is well known, the probabilistic
value from the softmax function is a kind of hypothetical value from mathematical nor-
malization. Therefore, the probabilistic values for pixel-level segmentation should be also
evaluated for each image in both quantitative and qualitative ways.
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Figure 6. Accuracy and recall values of the randomly selected test dataset.

Figure 7 shows the comparison of the pixel numbers of the concrete area in a labeled
image with those in prediction for 100 images randomly selected among the testing datasets.
In ideal terms, both values may be identical if the model was perfectly trained. In the
present study, the threshold value for probabilistic scores for the pixels was divided into
three levels of 85%, 90%, and 95%. Figure 7 indicates that, as the threshold value increased,
that is, the more stringent the criterion, the number of pixels classified as concrete decreased.
Moreover, the number of predicted pixels in the case of the thresholding approach was
less than those from the binarized results. The pixel numbers of concrete from binarized
segmentation were in a somewhat similar range to those in the labeled images. It should
be noted the higher range of thresholding values were the subset of the 50% thresholding
method with a more refined filtering threshold.
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Figure 8 shows the confusion matrices of the models for both approaches. In the case
of the 50% thresholding, the values of TP were relatively higher than in other cases, which
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corresponded with the results in Figure 7. The values of FP for this case were also relatively
higher within the range from 0 and 0.2, while the FN values were smaller. In the strictest
case of 95% threshold, some of TP values were closed to 0, while most of the TN and FP
values were 1.0 and 0, respectively. These values indicated that, through this approach,
the model could predict the area covered by concrete well, but there was a possibility that
some parts that were not concrete in actual were incorrectly predicted as concrete. On
the other hand, when the criterion became stricter, some of actual concrete area could not
classified as concrete, but at the same time, the incorrect prediction as concrete became
almost zero. Therefore, the value of the threshold can vary depending on how to use this
prediction model.
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Figure 8. Confusion matrices of the model: (thresholding with 50% and above) (a) and with thresh-
olding approaches of 80 % (b), 90% (c), and 95% (d) (x and y axes indicate sample image number of
test dataset and percentages of each matrix, respectively).

Figure 9 shows the cases of the concrete area classified from the range of thresholding
approaches. In Case 1 in Figure 9, as mentioned above in Figure 4, concrete walls of
backside of the images, which were labeled as nonconcrete, were judged as concrete in
the 50% thresholding approach, whereas they were not in the higher range thresholding
values. By increasing the threshold values, the concrete area with a persons’ shadow
became classified as nonconcrete. In Case 2, despite the very dark conditions, there was
an actual concrete placement at the bottom of the image, and it was judged as concrete in
the 50% thresholding segmentation. However, as the threshold values increased, this part
was excluded.
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In Case 3 of Figure 9, there were very dark shadows over the concrete because of
strong artificial light. The concrete in this shadow could not be included in prediction area
by any approaches in this work. There was some incorrect judgement in this image, i.e., the
concrete stains on the worker’s clothes. This part could be excluded by an increase in the
threshold values. In Case 4, the prediction area by the 50% thresholding approach included
a vertical wall that was actually concrete but was out of the ROI. However, when it was
necessary to focus only with fresh concrete, it was also necessary to increase the threshold
value as well.

In Case 5 of Figure 9, five examples were provided to see whether the model can
distinguish between fresh and old concrete. Based on the results, it was impossible to
distinguish between the two using any of the approaches. This was mostly attributed to
the reason that both have comparable characteristics and patterns, particularly in color and
texture. As a result, further research is required to resolve this issue. Moreover, additional
classification method such as the convex hull concept may be helpful for more detail
segmentation. In Case 6 of Figure 9, the original image contained a painted concrete wall
while the ROI was young concrete at the slab. In the 50% thresholding approach, some
of the painted wall was included in the prediction area, it could be excluded by applying
higher threshold values.
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Case 7 in Figure 9 shows the site of concrete curing where a plastic sheet was protecting
the fresh or young concrete. As mentioned in Figure 1, the areas where the concrete directly
attached with the plastic sheet were labeled as concrete. As a result of the binarized
approach, not only was the section where the plastic sheet was not attached with concrete
judged as concrete but also some area of the temporary wall to prevent the wind was
incorrectly evaluated as concrete, which are FPs. This problem was sufficiently eliminated
when the threshold value was increased. When the threshold was over 90%, the floating
part of the plastic sheet was removed. Case 8 in Figure 9 presents the concrete slab directly
after pouring, which directly mirrors the surrounding environment due to bleeding of
water. A heavy equipment was reflected in some portion of the image. This reflected
portion was ignored in the 50% thresholding segmentation. However, the manhole in
the middle in concrete was included at the same time. When the threshold value was
increased, the manhole part was removed and the reflected part of the image was excluded
and labeled as not concrete.

In Case 9 of Figure 9, the original image contained a plate with a color similar to that of
concrete, which was the metal forms, and this area was labeled as nonconcrete. As a result
of prediction, it was confirmed that all parts were nonconcrete, regardless of the threshold
value. Case 10 shows a complex situation in which newly poured fresh concrete and young
concrete existed at the same time. The natural light was strong, and bleeding occurred in
the newly poured concrete, so that there were reflections and dark shadows. In this case,
it was impossible to separate the two types of concrete through the binarized approach
and also hard to contain the concrete area covered with the shadow and reflection. As the
threshold value was gradually increased, only the floor, which was fresh concrete, was
classified as concrete. However, it was difficult to include the concrete area with shadows
and light reflections.

In general, the cases listed above were intended to show how well the model would
perform in real-life circumstances. It is clear from the findings that the model is capable of
segmenting concrete areas, whether fresh or old, from images of construction sites. Addi-
tional adjustments can be made to improve detection accuracy by integrating the model
with other techniques and refining the approaches to data labeling and training. This allows
for the development of a more accurate and reliable concrete area segmentation model.

4. Conclusions

Deep-learning-based image segmentation is highly applicable in the construction
industry especially for monitoring and inspection purposes. The main target of this
investigation was to identify the area covered by fresh and young concrete from images
of construction sites so that it can be used for various applications. Dataset for training
contained about a thousand RGB images taken from actual construction sites in South Korea.
A pixel-level labeling of concrete areas was conducted for the dataset, and various CNN
architectures, including AlexNet and SegNet, were applied to train this. The performance
of these deep-learning models for the prediction of concrete area was analyzed by means
of quantitative and qualitative methods.

The DeepLab V3+ using the ResNet 18 model with a training condition of an 30 epoch
and mini batch size of 8 gave the best performance among the models in terms of accuracy,
recall, and training time. With this model, the averaged accuracy and recall for a randomly
selected test set were higher than 0.9 and 0.87, respectively. It should be emphasized
that this model could segment the concrete area overall, although it could not judge
the difference between concrete of different ages as a professional would. Moreover, by
adjusting the threshold values for the softmax classifier, the incorrect prediction (false
positive) as concrete became almost zero. The present model worked correctly when a
single type of concrete area was contained in the images. In this case, the other objects
frequently included in the images of a construction site, such as person (worker), concrete
forms, pipes and lines, and metallic or plastic sheet and panels, were successfully excluded
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from the prediction area for concrete. When a strong reflected light or shadow were on the
concrete, these areas sometimes could not be classified as concrete.

To summarize the aforementioned facts, it was critical to prepare the visible conditions
or situations that target concrete so that it could be properly categorized in order to
successfully apply these deep-learning-based segmentation approaches. In some of the
images that were taken in a darker light, there was some misidentification of the area by
the model. However, overall, this problem was minimized when the threshold limit was
increased even though some areas that were covered by concrete were not recognized.
Furthermore, the FP and FN values of the model were lower, implying that the model
effectively identified nonconcrete regions, which is an advantage considering that detecting
nonconcrete areas is also essential.
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