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Abstract: Agricultural high throughput diagnostics need to be fast, accurate and have multiplexing
capacity. Metagenomic sequencing is being widely evaluated for plant and animal diagnostics.
Bioinformatic analysis of metagenomic sequence data has been a bottleneck for diagnostic analysis
due to the size of the data files. Most available tools for analyzing high-throughput sequencing (HTS)
data require that the user have computer coding skills and access to high-performance computing.
To overcome constraints to most sequencing-based diagnostic pipelines today, we have developed
Microbe Finder (MiFi®). MiFi® is a web application for quick detection and identification of known
pathogen species/strains in raw, unassembled HTS metagenomic data. HTS-based diagnostic tools
developed through MiFi® must pass rigorous validation, which is outlined in this manuscript. MiFi®

allows researchers to collaborate in the development and validation of HTS-based diagnostic assays
using MiProbe™, a platform used for developing pathogen-specific e-probes. Validated e-probes are
made available to diagnosticians through MiDetect™. Here we describe the e-probe development,
curation and validation process of MiFi® using grapevine pathogens as a model system. MiFi® can
be used with any pathosystem and HTS platform after e-probes have been validated.

Keywords: Microbe Finder (MiFi); diagnostics; nucleic acid; metagenomics; pathogens; taxonomy;
sequencing; assay validation; sensitivity and specificity

1. Introduction

Rapid and accurate pathogen detection in plants and animals is critical to food security
as well as public health. It is estimated that exotic animal and plant diseases cost United
States agriculture billions each year [1]. With time and more trade, it is expected that the
threat of invasive and exotic pathogens increases, requiring high throughput testing of
agricultural imports. The lack of high throughput pathogen detection techniques at ports
of entry and borders make some countries more vulnerable than others [2]. Not only do im-
ported agricultural goods but also local trade have the potential to disseminate pathogens.
Proactive measures to avoid the spread of diseases include extensive surveillance and
testing, but these are limited by the cost and throughput capacity of current diagnostic
technology. An ability to simultaneously screen for all possible pathogens per sample will
enable more timely response, mitigation and management of potential plant, animal and
human disease introductions and outbreaks.

Sequence-based detection technology has been explored recently by multiple plant
quarantine agencies around the world [3,4]. Until recently, nucleic acid sequencing for
diagnostics has been constrained by cost, data volume, and limited bioinformatic tools for
analysis, creating a bottleneck to adoption by most diagnostic clinics. High-throughput
sequencing (HTS) coupled with dedicated bioinformatic analysis promise to overcome
the technical difficulties in detection. HTS-based diagnostics that target all pathogens in a
given host can be used to declare a sample free-from-pathogen. MiFi® is a bioinformatic
graphical user interface built to close the gap between HTS and pathogen detection. MiFi®

Plants 2021, 10, 250. https://doi.org/10.3390/plants10020250 https://www.mdpi.com/journal/plants

https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0002-9658-0673
https://doi.org/10.3390/plants10020250
https://doi.org/10.3390/plants10020250
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/plants10020250
https://www.mdpi.com/journal/plants
https://www.mdpi.com/2223-7747/10/2/250?type=check_update&version=2


Plants 2021, 10, 250 2 of 14

uses, as a founding concept, the E-probe Diagnostics for Nucleic acid Analysis (EDNA)
process [5,6] that queries the metagenome raw data of the sample tissue and all resident
microbes, to identify known pathogen sequences. The MiFi® platform comprises two
parts. (1) MiProbe™, freely available to all, is a platform that houses tools for building,
curating and validating microbe-specific e-probes [7]. MiFi® e-probes are unique nucleic
acid signature sequences carefully curated from across the pathogen genome. E-probes are
used in silico to detect the presence or absence of one or more pathogens in metagenomic
sequence data. MiProbe™ is a unique piece of bioinformatic software for diagnostics that,
to the best of our knowledge, no other research team has developed. Other bioinformatic
tools available such as Metaphlan, MEGAN, Kraken and QIIME have curated their own
databases and made them available for researchers to use [8–11]. By contrast, we provide a
software platform where users can develop their own probe databases. These databases
(e-probes) are then used to determine pathogen presence/absence. MiFi® crowd sources
subject matter researchers to develop pathosystem-specific diagnostic tools that are then
made available to diagnosticians to use on HTS data. This allows diagnostic clinicians to
focus on wet lab techniques rather than having to learn how to undertake bioinformatic
coding. Within MiProbe™ the Probe Tester software allows the e-probe developers to
assess analytical sensitivity and hypothetical limit of detection of the e-probe set for a given
microbe. Further curation and validation of the developed e-probe sequence set can be
performed using a built-in script in MiProbe™. (2) MiDetect™ is the diagnostic side of
the platform in which diagnosticians use e-probes to determine the presence or absence of
pathogens/microbes in the metagenomic sequence data, using any computer with access
to the internet [7,12–17].

The goal of this manuscript is to present the reader with suggested terminology and
processes to validate HTS as a diagnostic tool. To exemplify how the validation process will
work, this study presents the reader with a validation protocol using grapevine pathogens.
The study includes comparisons of bioinformatic tools often used to analyze HTS data
compared with MiFi®. Two basic performance characteristics defined for diagnostic assays
are analytical sensitivity or limit of detection and analytical specificity. Here we will show
how these two metrics are calculated for HTS data and can be affected by the bioinformatic
tool used to analyze the data as well as the level of e-probe curation when using MiFi®.

2. Results

The model pathosystem used in this manuscript, grapevine pathogens, demonstrates
how the MiProbe™ validation pipeline works. The steps for validation were followed as
depicted in Figure 1. The scope includes validation in silico and the recommended pipeline
for e-probe curation and establishment of performance characteristics metrics.

2.1. Data Selection and Raw E-Probe Design

The inclusivity panel for each (target) pathogen is comprised of concatenated se-
quences that include the complete or partial genomes of all/most isolates. The exclusivity
panel or near neighbors, include the genomes of organisms often found in the matrix
(grapevine) or taxonomically related to the target pathogen. The MiProbe™ software runs
a massive parallel comparison of the panel files to generate a set of raw e-probes unique to
the target. The same protocol was run on all grapevine pathogens using their respective
target and near neighbor multi-fasta files. In the case of Grapevine Leafroll associated Virus
3 (GLRaV-3), a total of 15 raw e-probes of 60 nt in length were generated (Table 1).

2.2. E-Probe Curation

Some e-probe sequences may cause false positive hits if there is spurious alignment
with a sequence in another organism. Curation is the process of exclusion, i.e., eliminating
any e-probe sequences that have matches with other pathogens, inherent host microbiota
or host genome (cross reactivity). E-probes generated on the twenty-three pathogens
of grapevine originally had higher number of e-probe sequences (raw e-probes). The
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e-probe curation step undertaken with the NCBI nt/nr databases left a range of two to
14,236 unique e-probe sequences for pathogens of grapevine (Table 1). Curation of the
e-probes decreased the total number of e-probe sequences by 25% to 50%. Specifically, for
GLRaV-3, e-probe sequences were reduced from 15 to five after curation. Note, pathogen
genome size impacts how many unique sequences will be identified. Viroids and viruses
are much smaller than bacteria, which is reflected in the total number of e-probe sequences
(Table 1). Closely related strains of pathogens might only have a few unique probes that
differentiates between them.
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e-probes are assessed using field samples with and without symptoms, and/or known positive/negative. 
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Grapevine Virus A RWC 35288 5 0.0512% 
Grapevine Virus B RWC 35289 11 0.005% 

Grapevine Leafroll-associated virus 1 GLD 47985 16 0.0095% 
Grapevine Leafroll-associated virus 2 GLD 64003 10 0.0174% 
Grapevine Leafroll-associated Virus 3 GLD 55951 5 0.0102% 

Grapevine Leafroll-associated Virus 4(4) GLD 70177 9 0.0089% 
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Grapevine Leafroll-associated Virus 4(6) GLD 203168 2 0.3971% 

Figure 1. Full MiFi® pipeline for the development, curation and validation of e-probes. Complete or partially assembled
genomes are used in whole genome alignments of a target pathogen and near neighbor candidates. E-probes are curated
in step two, using the National Center for Biotechnology Information (NCBI) reference databases. Subsequent steps (3–4)
allow the user to do both in-silico and in-vitro validations to assess sensitivity and specificity. Finally, in step five, the
e-probes are assessed using field samples with and without symptoms, and/or known positive/negative.

2.3. In Silico Validation with Simulated High-Throughput Sequencing (HTS) Data

In silico validation determines analytical sensitivity also known as limit of detection
(LoD) and specificity (i.e., false positives caused by reactivity and interference) of the
e-probe sequences using simulated metagenomes [18]. For the purposes of bioinformatic
analysis and diagnostics with MiFi®, we consider the analyte is a single pathogen-specific
read. Therefore, all calculations are made in reference to the number of pathogen reads
that a metagenome contains, and how many reads are detected by e-probes. The LoD
can be represented as either absolute number (pathogen reads) or relative abundance. In
this proof of concept, the LoD of GLRaV-3 is 400 pathogen reads, which transformed to
relative abundance is 0.04% for 1 million reads metagenomes. A more exact LoD was
calculated by serially diluting 400 pathogen reads, resulting in an LoD of 0.0102% or
102 pathogen reads (Table 1). Pathogen detection is achieved by quantifying total e-probe
hits in simulated metagenomes. Each hit consists of two alignment metrics (percent identity
and query coverage of the e-probe hit). The alignment metrics can be adjusted by the
e-probe developer depending on the stringency needed.
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Table 1. Relevant pathogens of grapevine used as a model to demonstrate MiFi® as an interactive pathogen detection tool.
E-probes are sets of unique 60 nt-long sequences. Minimum relative abundance of pathogen reads to detect (MRAD) is
calculated by in silico simulations and in vitro experiments over a million total reads.

Species Name NCBI
Taxon ID

E-Probe
Sequences

MRAD
(LoD)

Grapevine Fanleaf Virus GFD 12274 6 0.1272%
Grapevine Virus A RWC 35288 5 0.0512%
Grapevine Virus B RWC 35289 11 0.005%

Grapevine Leafroll-associated virus 1 GLD 47985 16 0.0095%
Grapevine Leafroll-associated virus 2 GLD 64003 10 0.0174%
Grapevine Leafroll-associated Virus 3 GLD 55951 5 0.0102%

Grapevine Leafroll-associated Virus 4(4) GLD 70177 9 0.0089%
Grapevine Leafroll-associated Virus 4(5) GLD 71032 3 0.2521%
Grapevine Leafroll-associated Virus 4(6) GLD 203168 2 0.3971%

Grapevine Leafroll-associated Virus 7 GLD 217615 8 0.01%
Grapevine Leafroll-associated Virus 4(9) GLD 184610 7 0.0105%
Grapevine Leafroll-associated Virus 4(Pr) GLD 367121 9 0.01%

Grapevine Leafroll-associated Virus 4(Car) GLD 659661 8 0.0094%
Grapevine Leafroll-associated Virus 13 GLD 1815581 22 0.0017%

Arabis Mosaic Virus MD 12271 7 0.1309%
Tomato Ringspot Virus YV 12280 7 0.04%

Tobacco Ringspot Virus TRD 12282 8 0.1304%
Grapevine red blotch-associated virus RBD 1381007 2 0.4087%

Xylella fastidiosa PD 644356 4034 0.0022%
Agrobacterium vitis CG 373 14,236 0.0011%

Candidatus Phytoplasma solani 69896 83 0.0362%
Candidatus Phytoplasma australiense 59748 78 0.0257%
Candidatus Phytoplasma aurantifolia 180978 122 0.027%

GFD: Grapevine fanleaf degeneration; RWC: Rugose wood complex; GLD: Grapevine leafroll disease; MD: Mosaic disease; YV: Yellow Vein
disease; TRD: Tobacco Ringspot decline; RBD: Red blotch disease; PD: Pierce’s disease; CG: Crown Gall; LoD: is represented as pathogen
reads present in the metagenome.

A simulated metagenome is developed in silico by creating a mock metagenomic
database with a host and a gradient of pathogen genome copies. In the following example,
percent identities and query coverages were selected to be above 95% to classify a hit as
positive. While comparing raw and curated e-probe hits, we can observe in Figure 2, how
the raw e-probes can effectively discriminate positive control (400 pathogen reads) samples
from a negative control (zero pathogen reads).

In simulated metagenomes having lower concentrations of pathogen genome we
observed less false negatives after curation. In the GLRaV-3 model system, it is observed
in Figure 3 that the average e-probe hits decreased for each of the serial dilution (fewer
e-probes = fewer hits), yet it was possible to discriminate a positive sample from the
negative control.

In these simulations, the pathogen concentration is correlated with the e-probe hits.
Therefore, when the pathogen titer reaches zero in the metagenome, any e-probe hits
should be considered false positives (a sign of cross reactivity with the host) (Figure 4).
Specificity may be increased when e-probes are removed based on spurious hits with other
genomes or host. However, sensitivity is decreased when there are fewer e-probes available
to query the metagenome. E-probe curation through the in silico curation process improves
the quantitative capacity of the e-probe set, as observed in the R2 difference between raw
and curated e-probes (Figure 4). Additionally, cross reactivity and interference tested with
simulated multiple infections, yielded zero false positives, which shows the specificity of
the curated e-probes for this pathogen panel (data not shown).
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Figure 4. Grapevine Leafroll-associated Virus 3 (GLRaV-3) in silico e-probe semi-quantitative linearity comparison before
and after curation. Metagenome simulated data (in silico) with GLRaV-3 at varying pathogen read abundances (with
replicates) depicts how e-probes can be used for semi-quantitative analysis by having higher e-probe hits (y-axis) as the
pathogen reads increase in the metagenome. The yellow dots and regression line show the quantitation model before
e-probe curation (15 e-probes) and blue depicts the model after the e-probe curation (five e-probes). The intercept of the
linear equation can be treated as a theoretical limit of detection (LoD).

2.4. In Vitro Validation: Analytical Sensitivity and Specificity

In vitro validation is done by developing a serial dilution of the pathogen (positive
control) in a background of host matrix/other matrixes. Each spiked sample is then put
through nucleic acid extraction and library preparation for sequencing. The limit of detec-
tion must be determined by identifying the lowest pathogen concentration (copy number
or nucleic acid concentration) where pathogen-specific e-probes can detect the pathogen
consistently in MiDetect™. Most of these samples will likely vary in pathogen concen-
tration, therefore, it is ideal that the same samples are analyzed using the gold standard
(often polymerase chain reaction (PCR)) for comparison purposes. LoD is calculated as a
probability of reliable detection when the analyte is rare in the metagenome [18].

2.5. Validation with Field Sample: Diagnostic Sensitivity and Specificity

In vivo validation (Figure 1) is undertaken using field samples that have been verified
positive or negative for a specific pathogen via a gold standard method (often PCR). In
this case, samples taken from various grape vines in Oklahoma did not show false positive
results when using GLRaV-3 e-probes. These samples also were run using quantitative
PCR (qPCR) and specific GLRaV-3 primers which showed a negative result. Therefore, the
diagnostic specificity was 100% when comparing the GLRaV-3 with the gold standard.

2.6. Catalogue of Pathogen E-Probes for Other Hosts

The aforementioned validation pipeline has been replicated in other host–pathogen
systems, which include economically important crops like citrus, blueberry, roses and
wheat among others (Table 2). Similarly, the MiProbe™ platform has been used for the
development of e-probes for animal and human pathogens which have been validated in
silico using the MiProbe™ platform.
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Table 2. Hosts and number of pathogens with validated e-probe sets currently in the MiFi® system.

Type Host Pathogens Taxonomic Level

Plant Grapevine 31 species, strain
Citrus 43 Species, strain
Rose 22 species

Cucurbits 15 species
Wheat 23 species

Rhododendron 1 species
Blueberry 3 strain

Animal Swine gut microbiome 35 family
Bovine respiratory disease complex 5 species

Human Pathogens on Plants Food-borne pathogens 5 species

2.7. Comparison of Microbe Finder (MiFi) with Traditional Bioinformatic Tools Used
for Diagnostics

Mapping to reference genome of a given virus using minimap2 took on average 35 s,
which then multiplied by 23 pathogens of the grapevine is 805 s, or 13.41 min. On the
other hand, the Basic Local Alignment Search Tool (BLAST) against the nt database took
in average 5.3 h for each metagenome, in this case, only 20 metagenomes were analyzed
due to the time and expense that it would take to analyze 100 metagenomes. Finally, using
app.mifi.tech, we were able to get pathogen detection results within 10 min average for
each metagenome for a set of 23 pathogens of grapevine.

When using data from the first Critical Assessment of Metagenome Interpretation
(CAMI) metagenomes spiked with pathogen reads (500,000 total reads containing an aver-
age of 2493.46 pathogen reads), kraken2 was able to report most of the spiked grapevine
pathogens within a period of six hours, however, Metaphlan3 failed to detect the grapevine
pathogens. Building the Kraken2 standard database took five hours in a computer with
32 central processing units (CPUs) and 96 GB or RAM. The kraken2 data analysis was able
to detect almost all pathogens of grapevine that were spiked in all metagenome complexity
files within an average time of 2 h and 42 min. The pathogens that kraken2 failed to detect
were Candidatus Phytoplasma aurantifolia, Candidatus Phytoplasma solani, Grapevine Leafroll-
associated Virus 4(5), Grapevine Leafroll-associated Virus 4(9), Grapevine Leafroll-associated
Virus 4(Pr) and Grapevine Leafroll-associated Virus 4(Car) (Supplementary Data 1).

Metaphlan3 database download took less than 10 min, however, the analysis took
an average time of 1 h and 12 min. The analysis with Metaphlan3 was undertaken using
32 CPUs. The resulting output did not detect any of the spiked grapevine pathogens.
However, high taxonomy ranks were reported, many at the family level, which are not
useful for diagnostic purposes. Instead, it detected mostly bacteria consistent with previous
results. The tutorial of metaphlan3 does mention that their database contains viruses, but
it was unable to detect any of the viruses of grapevine.

Finally, the same spiked CAMI sets were uploaded and analyzed by MiFi® and all
the pathogens of grapevine selected for this analysis were detected. The analysis took an
average time of 33 min when using the low- and high-complexity metagenomes. MiFi®

was able to detect all 23 pathogens of the grapevine (Supplementary Data 1).

3. Discussion
3.1. Data Selection and Raw E-Probe Design

Retrieving quality genomic data for e-probe design is a crucial step when creating
the exclusivity and inclusivity panel. It requires the knowledge of a plant pathologist or
a scientist familiar with the normal microbiome of the host and the phylogeny of other
closely related taxa. Adding genomes that are too distantly related to the target genome in
the exclusivity panel (near neighbors) often yields e-probe sequences with low specificity
and potential false positive readings. On the other hand, selecting near neighbors too
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closely related to the target will generate very few e-probes, resulting in highly specific
(strain level) discrimination, but reduced sensitivity as we have shown in Figures 2–4.
In the case of developing probes for differentiating closely related strains/species, the
designer may have to make a few attempts with different variants of the near neighbor
multi-fasta file to determine which near neighbor sequences generate the optimal number
of e-probe sequences.

3.2. E-Probe Curation

E-probe curation to remove non-performing or non-specific sequences reduces diag-
nostic sensitivity and LoD. However, the remaining e-probes are often the most specific
to detect only the pathogens in the inclusivity panel. The ability to adjust for analyti-
cal sensitivity and specificity on-the-go is a unique feature of the MiFi® processes. PCR,
enzyme-linked immunosorbent assay (ELISA) or other molecular-based diagnostic assays
tend to be more static. It is imperative to find a good balance between sensitivity and
specificity depending on the purpose of the assay. Greater sensitivity will be desirable if it
is necessary to find pathogens in low titer, such as in cases where ‘freedom from’ infection
must be certified. Specificity is most important when differentiation between an exotic
vs. endemic pathovar is needed for regulatory purposes. For example, there are many
strains of Ralstonia solanacearum, but only one strain is a potential invasive species and
select agent [19]. Therefore, the MiFi assays can be adapted for the needs of the end user.

Total raw e-probe unique sequence numbers are usually correlated with the relative
size of the pathogen. Viroids will have the fewest and true fungi will have many more initial
probes. For a bacterial pathogen such as Xylella, unique e-probe sequences will number in
the thousands (Table 1). Curating the sequences by removing a few e-probe sequences will
not significantly alter sensitivity when the unique sequences are plentiful. With viroids
and viruses, and with near neighbor strains, the balance becomes more nuanced.

3.3. In Silico Validation

Curated e-probes can be initially validated in silico to assess their analytical sensitivity
and determine if improvements need to be made. The effect of reducing the number of
e-probes during curation is often observed on the LoD. This is achieved by comparing
e-probe hits of a negative control with a positive control having the lowest concentration.
The p-values describing probability of differentiation between true negative and the lowest
titer positive increased from 1.3 × 10−10 (Figure 2) to 1.2 × 10−3 (Figure 3) once e-probe
numbers are reduced. The p-value increase is expected since the statistical power is re-
duced as the number of e-probes decrease. Part of the in-silico validation is to determine
effective e-probe hit number to assess pathogen presence. Additionally, the hit number on
e-probes has the potential to quantitatively infer the pathogen abundance [20]. Therefore,
the in silico validation can serve two purposes, to determine e-probe LoD and quantitative
efficacy. E-probe selection for quantification aims to improve the R2 of the linear response
using a multiplicity analysis, whereby, e-probe sequences that are unresponsive to titer
(the hit number does not increase in relation to pathogen abundance) can be identified and
removed, improving quantitation (Figure 4). As we have shown, an e-probe sequence set
curated to improve linearity by removing probe sequences may sacrifice analytical sensitiv-
ity and change the theoretical LoD by shifting the intercept (Figure 4). The y intercept is
higher (0.16) before curation than after (0.38), meaning that differentiating between a true
positive and a false negative becomes more demanding. The lack of cross reactivity and
interference observed in the e-probes of grapevine pathogens denotes how this technology
can help diagnosticians remove subjectivity generated by bioinformatic tools.

3.4. In Vitro Validation: Analytical Sensitivity (LoD) and Specificity

Analytical sensitivity and specificity are the performance characteristics of an assay
relative to correctly detecting a pathogen in the host tissue matrix. When using HTS, the
metagenome contains both the host and the pathogen. Sample collection can be a source
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of extreme variability, regardless of the diagnostic technique to be used. Additionally,
the handling of sample material and preparation will have intrinsic biases depending on
multiple factors. Sampling error is a known source of variability for almost all diagnostic
assays. Sampling in plants that have heterogeneity in location of the pathogen in the tissue,
or for which the pathogen goes into remission driven by environmental effects are notably
problematic for any diagnostician. Also, even if a diagnostician is working with tissue
that is clinically symptomatic, it is possible to have sampling effects during the wet lab
sample preparation. HTS, like any molecular technique, requires a well validated sampling
protocol and bench workflow, to assure that the pathogen is actually present in the final
sample aliquot.

Each pathosystem and tissue matrix will require different methods for nucleic acid
extraction and downstream molecular biology methods until reaching library preparation.
All these are variables that must be taken into consideration while using this pipeline to
validate e-probes. Additionally, we suggest that validation for in vitro analytical sensitivity
must be accompanied by real-time PCR (or any other gold standard) results of the same
samples being sequenced until the reliability of the test gains user confidence.

Finally, while in silico validation can provide theoretical diagnostic (analytical sensi-
tivity and specificity) metrics of the e-probes, the metagenomic simulations are simplistic
and do not represent the real composition of a plant microbiome, nor reflect the kinds
of inhibitors that can interfere with sample preparation. The analytical specificity and
sensitivity numbers might change after performing this analysis, since some false posi-
tive and negative e-probe hits are often observed, and e-probe sequences might require
further curation.

3.5. Validation with Field Samples: Diagnostic Sensitivity and Specificity

The process of validating e-probes with field samples is critical to assess the breadth
of diagnostic sensitivity and specificity of the assay. Field samples which have apparent
symptoms and suggest the presence of the pathogen are sequenced and analyzed using
curated e-probes. In parallel, the same samples should be analyzed using the gold standard
method. Finally, diagnostic metrics are taken as tiers of in silico, in vitro and field sample
validations. Ideally, the field samples should comprise different geographical areas across
the country or world to confirm that the e-probe set is broadly specific.

Even though, there are guidelines for the validation of diagnostic tools in plant
pathology [18], a guideline on tiers of validation for HTS-based diagnostic assays is still
needed. In this manuscript we propose methods which can reach different levels of
validation. It is up to the institution or researcher developing the HTS-based diagnostic
assay to determine which level of validation can be achieved depending on availability
of positive controls, funding, laboratory materials and field samples among others. The
pipeline proposed here is not only valid for e-probes but could be modified to be used with
other bioinformatic tools.

3.6. Comparison of MiFi with Traditional Bioinformatic Tools Used for Diagnostics

The use of bioinformatic tools for pathogen detection is limited to mapping to reference
genomes and/or BLAST with the nt database. Even though mapping to reference genomes
can be relatively fast, analyzing the output of Sequence Alignment Map (SAM) format
requires the user to know bioinformatics. MiFi® eliminates the subjectivity that SAM or
BLAST output files create for users. Additionally, it reduces the requirement of a dedicated
bioinformatician to analyze the HTS data. A few samples from the cross-reactivity analysis
were used to compare MiFi® with traditional bioinformatic tools for GLRaV-4. Results
were ambiguous and it was difficult to discriminate between the different strains or isolates
of GLRaV-4 when using BLAST or Kraken2 (Supplementary Data 1), while MiFi® gave a
clear answer within 30 min.

Although kraken2 generated promising results within a reasonable timeframe (~5 h),
the results needed to be further parsed and analyzed to set thresholds to determine what
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is considered a positive sample [10]. That is an issue that any other bioinformatic tool
has when being used for diagnostic purposes. Currently available tools are not able to
produce an objective positive/negative result for pathogen detection. MiFi® on the other
hand generates unambiguous results within minutes to a couple of hours depending on the
metagenome complexity. Similarly, Metaphlan3 relies on their own curated databases, and
did not detect any of the grapevine pathogens [9]. A variety of other bioinformatic tools
exist which allow read binning. The results generated by all available tools do not provide
a clear-cut answer about pathogen presence, since they were developed for classification
purposes, and interpretation is left to the operator. Additionally, the complexity of the
metagenome is not directly related to its size (sequencing depth). Some metagenomes
might be more complex composition wise, however be small in size. Using the CAMI data,
we tested MiFi® in both case scenarios. The sequencing depth is an important parameter
that can improve the chances of finding the analyte (pathogen reads), therefore, knowing
beforehand how deep one needs to sequence to effectively detect the pathogen is an issue
that has been previously addressed by our team by developing a sequence calculator [21].

In conclusion, Metaphlan3 and Kraken2, BLAST and minimap2 are tools that can
provide a broader perspective of the metagenome composition, as long as an experienced
bioinformatician analyzes the data. However, the use of MiFi® removes subjectivity when
detecting pathogens and does not need specialized bioinformatics personnel. Additionally,
MiFi® speed relies in the simplicity of the e-probe databases, which are developed and
validated for detection purposes and not exploratory.

3.7. Calculations of Sequence Depth for Assured Detection of an Analyte in a
Complex Metagenome

A difference between HTS data generation for diagnostics and existing diagnostic
tools is that in silico detection of a pathogen read based on an e-probe hit (and quality match
index) in a metagenome is simply a probability function. Because we are working with
sequence data, the computer search of that data is not subject to bias and will find the read
if it is intact and present. It is just a matter of time and computing power. If the pathogen
reads are abundant in the metagenome, such as when the sample is highly infected, the
hits will happen within minutes. If the pathogen reads are few and far between in the
metagenome, it will take more time, often up to 20 min, for the search algorithm to find
them. The relative size of the non-pathogen genome (host + microbiome) and the relative
size and abundance of the pathogen genome in the metagenome are the critical factors.

The sequence calculator is a tool that we developed to predict the total number of
pathogen reads needed to effectively detect that specific pathogen within the sum of reads
of the entire genome. The model uses as input known variables that can be obtained before
a sequencing run is performed:

• Pathogen reads desired to detect
• Average read length (normal distribution)
• Probability
• Pathogen genome size (nts)
• Non-pathogen genome size, including host and co-habiting microbiome (nts)

When the equation is solved, it gives the number of total reads needed to detect a
given number of pathogen reads [21]. This calculator helps the user know how deep a
sequence needs to be for detection purposes, or whether some level of amplification may
be needed.

4. Materials and Methods

MiFi® MiProbe™ software contains tools for user/researchers to develop, curate and
validate e-probes, which can be released as a diagnostic assay. The MiProbe™ full pipeline
includes five steps to develop and validate e-probes for a pathogen of interest (Figure 1).

We used grapevine pathogens as a proof of concept to determine speed to detection,
sensitivity, specificity and limit of detection. Whole genomes of 18 pathogens of grape were
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downloaded from public databases (Table 1). The complete list contained 13 viral species
which comprised one DNA virus and 12 ssRNA(+) viruses. Additionally, five economically
important bacterial pathogens of grapes were included. Data were retrieved from fully
assembled or mostly complete genomes when multiple strains were available, alternatively,
draft genomes were retrieved. All the genomes were retrieved using NCBI taxon IDs. In
some cases, when the pathogen is considered important for diagnostics, strains were also
included such as GLRaV-4 which is a viral species having strains in different viral genera:
Ampeloviruses, Closteroviruses and Velarivurises.

4.1. Data Selection and Raw E-Probe Design (Step 1)

Target genomes refer to the collection of sequences that are grouped in the inclusivity
panel of the diagnostic assay validation pipeline. The inclusivity panel should contain
all/most isolates that belong to the taxonomy group for which we are developing e-probes.
On the other hand, near neighbor refers to the exclusivity panel, which is a group or
organisms that we do not want to detect using our diagnostic tool (e-probes). Therefore,
for each pathogen, we retrieved all isolate genomes and concatenated them into a single
multi-fasta file, named as target. For the near neighbor, we focused on other organisms
often found in the grapevine phylosphere as well as taxonomically close relatives of the
target. The near neighbors were also concatenated into a single multi-fasta file for each
grapevine pathogen. For example, for the Grapevine Leafroll-associated Virus 3 (GLRaV-3),
the near neighbor included the remaining pathogen genomes listed in Table 1 among
others. Therefore, to generate e-probes for GLRaV-3, two files were uploaded to the
MiProbe™ system, the target and the near neighbor multi-fasta files. After the target
and near neighbors are in the system, the developer can select the length of the e-probe
sequences to be generated, starting at 20 nt up to 120 nt. Based on previous findings, we
suggest using short e-probe sequences (20–60 nt) for viruses and long e-probe sequences
(60–100 nt) for bacteria, fungi and oomycetes [6,20].

4.2. E-Probe Curation (Step 2)

This stage is an alignment-based curation of the raw e-probe sequences with current
publicly available databases (NCBI-nt, nr, refseq) where e-probe sequences that match
anything but the target pathogen, a potential cause of false positives, are removed from the
set [22]. In the curation step, e-probes causing false positive hits in nt/nr were removed.
Here, each raw e-probe set is aligned to the NCBI databases. In cases where the number
of e-probe sequences is small (such as for viroids or closely related strains), an exclusivity
comparison with the host is recommended to eliminate any spurious matches. At the end
of step 2, the developer has a set of e-probes that are very specific to the target.

4.3. In Silico Validation (Step 3)

Step 3 is an in silico validation with simulated samples (host genome) and different
ratios of pathogen genome to assess limit of detection (LoD) and analytical specificity (cross
reactivity and interference). The LoD is determined as the lowest pathogen concentration
(reads) at which we can detect 95% of the positive samples. In this case, we had ten sample
replicates, out of which, at least nine needed to be positive to determine the LoD. MiProbe™
will incorporate a built-in metagenome simulator to decrease metagenome uploads during
validation, however, any third-party metagenome simulator can also be used. In our
validation we used MetaSim and NanoSim [23]. For the example with grapevine, we
simulated Illumina sequence data including the grape genome and GLRaV-3 at various
concentrations. The simulations were capped at 1 million total reads. The simulated
metagenomes were uploaded to MiFi® Probe Tester via a metagenomes tab and queried
with the new e-probe set. Using the raw data from the Probe Tester output, it is possible
to generate a linear regression demonstrating the theoretical limit of detection. Semi-
quantitative e-probes can be developed where curation (sequence elimination/inclusion) is
based on determining which e-probe sequences are most responsive to pathogen gradient
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or titer. Response to pathogen titer is illustrated by the number of times a given e-probe hits
on a matching sequence in the metagenome. At the end of step 3, the e-probe is validated
in silico. E-probes may be placed into MiDetect™ for use by diagnosticians, with the
understanding that the validation is preliminary.

To assess LoD and analytical specificity, NanoSim was used to generate a total of
10,000 reads from Oxford Nanopore Technologies. The simulations contained pathogens
concentrations ranging from 4% to 0.005% (~400 pathogen reads) to 0.05% (~5 pathogen
reads) and each concentration had 10 replicates. A total of seventy simulations performed
allowed to assess LoD, cross reactivity and interference of the e-probes for each of the
pathogens of grapevine in Table 1. For the cross-reactivity analysis, metagenomes that
contained the other 22 grapevine pathogens (Table 1) were generated and the e-probes
for the absent pathogen in the metagenome tested using MiFi®. The cross reactivity was
performed at pathogen concentrations above the LoD, in our case our metagenomes had
an average pathogen ratio of 0.1 in 0.9 of host (Vitis vinifera genome). Each cross-reactivity
assay had 10 replicates, summing up to a total of 230 simulated metagenomes (Table 1).

4.4. In Vitro Validation (Step 4)

Step 4 is a more rigorous validation using in vitro samples spiked with the pathogen
of interest. The spiking can be at the organismal, cellular or molecular nucleic acid level.
The in vitro inoculated sample can be analyzed for analytical sensitivity and specificity
using the e-probes in the Probe Tester software. Numbers regarding absolute pathogen
concentration as copy number or nucleic acid concentration will be required.

4.5. Validation with Field Samples (Step 5)

Step 5 validation using known positive/negative field samples, verified against a gold
standard assay, or where symptomatic and asymptomatic material is collected to create a
gradient challenge to the e-probes; 100% clinical concurrence provides assurance that the
e-probe set will perform as well as current methods.

4.6. Mi Detect

Validated e-probes are placed in the MiDetect™ host-specific library for use by di-
agnosticians following MiDetect™ guidelines. Metadata crediting the probe developer
and institution and describing the level of validation are linked to each pathogen-specific
e-probe set in a library. Third-party use of the e-probes may generate royalty for the
developer if used in commercial settings. MiFi® allows researchers and assay development
scientists to create their own accounts to develop and validate e-probes. Additionally, if a
publication has been generated from the development, it will be referenced in the e-probe
metadata information.

Using MiFi® allows researchers and diagnosticians to rapidly create databases to
detect any type of pathogen or microbe. Using a small targeted database of e-probes to
analyze genome sequence data decreases the time to detection from hours to minutes. The
current platform sits on a mini-cluster and has a scheduler to increase the efficiency of
jobs submitted by each user. Currently, MiFi® can handle up to 800 jobs per week and up
to 100 jobs in a single day of typical use, however we expect to expand scalability in the
future. The functions offered in MiFi® are coded in php, javascript and html, allowing the
user to access the server remotely. Additionally, the system allows only compressed files to
be uploaded, decreasing the time to upload HTS data. Once the data is uploaded, the user
can select the genomes to develop e-probes in the case of MiProbe™. The MiFi® MiProbe™
platform is being used by researchers who want to develop and validate e-probes for
diagnostics and microbe detection.

4.7. Comparison of MiFi with Traditional Bioinformatic Tools Used for Diagnostics

Comparisons with traditional bioinformatic tools was performed using the AWS
system, Ubuntu 18.04 O.S. and an EC2 instance with 4 CPUs and 8 Gb of RAM. The
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most utilized tools to detect pathogens in HTS were used, specifically minimap2 for
mapping to the reference genome and BLAST to the nt database. A random sample of
70 metagenomes containing 100,000 minION reads simulated with NanoSim [23] was
utilized. Each metagenome was analyzed as follows: 1. Mapping with minimap2 [24]
to the reference genome; 2. BLAST with the nt database and 3. MiDetect was used at
app.mifi.tech.

Data from the CAMI were retrieved for datasets of all complexities (high, medium
and low) [25]. Each of the 10 CAMI metagenomes contained simulated reads of virus,
bacteria and eukaryotic DNA. The pathogens of grapevine used in this manuscript were not
included in the original CAMI metagenomes, therefore, we spiked the CAMI metagenomes
with 500,000 simulated reads using NanoSim. Our simulated datasets had 10 replicates
with similar pathogen abundances, which were incorporated into all CAMI metagenomic
datasets (10) for a total of 100 metagenomes to be analyzed. MiFi®, Kraken2 v2.1.1 and
Metaphlan3 v 3.0.6 were used to analyze the 100 metagenomes.

5. Conclusions

MiFi® is a user-friendly and intuitive web application that is available online and
updated to the most stable versions on a daily basis. The platform promotes rapid develop-
ment and validation of e-probes for diagnostic purposes through the MiProbe™ process.
MiFi® has been successfully validated to work in plant and animal HTS data. Aditionally,
MiFi® eliminates the time-consuming bioinformatics learning curve, by making the devel-
oped tools available to the end users in an intuitive graphic user interface, allowing them
to focus on the research and diagnostics instead of coding skills. MiFi® requires subject
matter experts that can be trained to develop highly efficient e-probes. Such training is
provided on request by our research team at Oklahoma State University.

Supplementary Materials: The following are available online at https://www.mdpi.com/2223-7
747/10/2/250/s1, Supplementary data 1: Diagnostic results and computing speed comparisons of
various bioinformatic pipelines and MiFi® used to detect grapevine pathogens.

Author Contributions: Conceptualization, A.S.E. and K.F.C.; methodology, A.S.E. and K.F.C.; soft-
ware, A.S.E. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Oklahoma Viticulture and Enology Center Development
Revolving Fund managed by the Oklahoma Department of Agriculture Food and Forestry (ODAFF).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in Supplementary Data 1.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Paarlberg, P.L.; Hillberg, A.; Lee, J.G.; Mathews, K.H., Jr. Economic Impacts of Foreign Animal Disease; United States Department of

Agriculture, Economic Research Service: Washington, DC, USA, 2008; Volume 57, pp. 1–8.
2. Schaad, N.W.; Frederick, R.D.; Shaw, J.; Schneider, W.L.; Hickson, R.; Petrillo, M.D.; Luster, D.G. Advances in molecular-based

diagnostics in meeting crop biosecurity and phytosanitary issues. Annu. Rev. Phytopathol. 2003, 41, 305–324. [CrossRef] [PubMed]
3. Maree, H.J.; Fox, A.; Al Rwahnih, M.; Boonham, N.; Candresse, T. Application of HTS for Routine Plant Virus Diagnostics: State

of the Art and Challenges. Front. Plant Sci. 2018, 9, 1082. [CrossRef] [PubMed]
4. Malapi-Wight, M.; Kumar, L.; Mollov, D.S.; Foster, J. Implementation of next generation sequencing for high-throughput pathogen

detection in sugarcane introductions grown in quarantine. Sugar J. 2017, 80, 22–23.
5. Stobbe, A.H.; Daniels, J.; Espindola, A.S.; Verma, R.; Melcher, U.; Ochoa-Corona, F.; Garzon, C.; Fletcher, J.; Schneider, W. E-probe

Diagnostic Nucleic acid Analysis (EDNA): A theoretical approach for handling of next generation sequencing data for diagnostics.
J. Microbiol. Methods 2013, 94, 356–366. [CrossRef] [PubMed]

https://www.mdpi.com/2223-7747/10/2/250/s1
https://www.mdpi.com/2223-7747/10/2/250/s1
http://doi.org/10.1146/annurev.phyto.41.052002.095435
http://www.ncbi.nlm.nih.gov/pubmed/14527331
http://doi.org/10.3389/fpls.2018.01082
http://www.ncbi.nlm.nih.gov/pubmed/30210506
http://doi.org/10.1016/j.mimet.2013.07.002
http://www.ncbi.nlm.nih.gov/pubmed/23867249


Plants 2021, 10, 250 14 of 14

6. Espindola, A.S.; Schneider, W.; Cardwell, K.F.; Carrillo, Y.; Hoyt, P.R.; Marek, S.M.; Melouk, H.; Garzon, C.D. Inferring the
presence of aflatoxin-producing Aspergillus flavus strains using RNA sequencing and electronic probes as a transcriptomic
screening tool. bioRxiv 2018, 13, e0198575. [CrossRef] [PubMed]

7. Espindola, A.; Cardwell, K.F. Microbe Finder (MiFi): Pathogen detection in metagenomic sequence data. In Proceedings of the
Plant Health; APSNET: Saint Paul, MN, USA, 2019; Volume 109, p. S2.136.

8. Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.;
Gordon, J.I.; et al. QIIME allows analysis of high- throughput community sequencing data. Nature 2010, 7, 335–336. [CrossRef]
[PubMed]

9. Truong, D.T.; Franzosa, E.A.; Tickle, T.L.; Scholz, M.; Weingart, G.; Pasolli, E.; Tett, A.; Huttenhower, C.; Segata, N. MetaPhlAn2
for enhanced metagenomic taxonomic profiling. Nat. Methods 2015, 12, 902–903. [CrossRef] [PubMed]

10. Wood, D.E.; Salzberg, S.L. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014, 15,
R46. [CrossRef] [PubMed]

11. Huson, D.H.; Beier, S.; Flade, I.; Górska, A.; El-Hadidi, M.; Mitra, S.; Ruscheweyh, H.-J.; Tappu, R. MEGAN Community Edition
- Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data. PLoS Comput. Biol. 2016, 12, e1004957.
[CrossRef] [PubMed]

12. Zuniga, L.P.; Espindola, A.; Melouk, H.A.; Ali, A.; Cardwell, K.F.; Corona, F.O. Detection of cucurbit viruses in Oklahoma
combining EDNA with Multiplex RT-PCR coupled with High Resolution Melting. In Proceedings of the 2017 APS Annual Meeting;
APSNET: Saint Paul, MN, USA, 2017; Volume 107, p. S5.36.

13. Espindola, A.; Freire-Zapata, V.; Watanabe, L.F.M.; Corona, F.O.; Cardwell, K.F. Detecting viruses and bacteria of grapevine with
Microbe Finder (MiFi) and an Oxford Nanopore sequencer. In Proceedings of the Plant Health; APSNET: Saint Paul, MN, USA, 2019;
p. S2.138.

14. Espindola, A. Massively Parallel Sequencing (Mps) As a Diagnostic and Forensic Analysis Tool for Important Fungi and Chromista
Plant Pathogens. Ph.D. Thesis, Oklahoma State University, Stillwater, OK, USA, 2013.

15. Espindola, A.; Roy, A.; Mavrodieva, V.A.; Cardwell, K.F. E-probe: A new diagnostic tool for detection of Dichorhaviruses
associated with Citrus leprosis syndrome. In Proceedings of the Plant Health; APSNET: Saint Paul, MN, USA, 2019; Volume 109,
p. S2.138.

16. Bocsanczy, A.M.; Espindola, A.; Norman, D.J.; Cardwell, K.F. E-probes development for rapid, sensitive and specific pathogen
detection in blueberries. In Proceedings of the ICPP Boston; APSNET: Saint Paul, MN, USA, 2018; Volume 108, p. S1.301.

17. Proano, M.F.; Espindola, A.; Garzon, C.D. Detection of multiple oomycetes in metagenomic data by Using E-probe Detection of
Nucleic Analysis (EDNA). In Proceedings of the ICPP Boston; APSNET: Saint Paul, MN, USA, 2018; Volume 108, p. S1.286.

18. Cardwell, K.; Dennis, G.; Flannery, A.R.; Fletcher, J.; Luster, D.; Nakhla, M.; Rice, A.; Shiel, P.; Stack, J.; Walsh, C.; et al. Principles
of Diagnostic Assay Validation for Plant Pathogens: A Basic Review of Concepts. Plant Health Prog. 2018, 19, 272–278. [CrossRef]

19. Fegan, M.; Taghavi, M.; Sly, L.I.; Hayward, A.C. Phylogeny, Diversity and Molecular Diagnostics of Ralstonia solanacearum.
In Bacterial Wilt Disease: Molecular and Ecological Aspects; Prior, P., Allen, C., Elphinstone, J., Eds.; Springer: Berlin/Heidelberg,
Germany, 1998; pp. 19–33, ISBN 9783662035924.

20. Espindola, A.; Schneider, W.; Hoyt, P.R.; Marek, S.M.; Garzon, C. A new approach for detecting fungal and oomycete plant
pathogens in next generation sequencing metagenome data utilising electronic probes. Int. J. Data Min. Bioinform. 2015, 12,
115–128. [CrossRef] [PubMed]

21. Espindola, A.; Habiger, J.; Cardwell, K. Metagenome sequence calculator for effective pathogen detection. In Proceedings of the
Plant Health; APSNET: Saint Paul, MN, USA, 2019; Volume 109, p. S2.138.

22. Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and
applications. BMC Bioinform. 2009, 10, 421. [CrossRef] [PubMed]

23. Yang, C.; Chu, J.; Warren, R.L.; Birol, I. NanoSim: Nanopore sequence read simulator based on statistical characterization.
Gigascience 2017, 6, 1–6. [CrossRef] [PubMed]

24. Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [CrossRef] [PubMed]
25. Sczyrba, A.; Hofmann, P.; Belmann, P.; Koslicki, D.; Janssen, S.; Dröge, J.; Gregor, I.; Majda, S.; Fiedler, J.; Dahms, E.; et al. Critical

Assessment of Metagenome Interpretation-a benchmark of metagenomics software. Nat. Methods 2017, 14, 1063–1071. [CrossRef]
[PubMed]

http://doi.org/10.1371/journal.pone.0198575
http://www.ncbi.nlm.nih.gov/pubmed/30325975
http://doi.org/10.1038/nmeth.f.303
http://www.ncbi.nlm.nih.gov/pubmed/20383131
http://doi.org/10.1038/nmeth.3589
http://www.ncbi.nlm.nih.gov/pubmed/26418763
http://doi.org/10.1186/gb-2014-15-3-r46
http://www.ncbi.nlm.nih.gov/pubmed/24580807
http://doi.org/10.1371/journal.pcbi.1004957
http://www.ncbi.nlm.nih.gov/pubmed/27327495
http://doi.org/10.1094/PHP-06-18-0036-RV
http://doi.org/10.1504/IJDMB.2015.069422
http://www.ncbi.nlm.nih.gov/pubmed/26510298
http://doi.org/10.1186/1471-2105-10-421
http://www.ncbi.nlm.nih.gov/pubmed/20003500
http://doi.org/10.1093/gigascience/gix010
http://www.ncbi.nlm.nih.gov/pubmed/29112761
http://doi.org/10.1093/bioinformatics/bty191
http://www.ncbi.nlm.nih.gov/pubmed/29750242
http://doi.org/10.1038/nmeth.4458
http://www.ncbi.nlm.nih.gov/pubmed/28967888

	Introduction 
	Results 
	Data Selection and Raw E-Probe Design 
	E-Probe Curation 
	In Silico Validation with Simulated High-Throughput Sequencing (HTS) Data 
	In Vitro Validation: Analytical Sensitivity and Specificity 
	Validation with Field Sample: Diagnostic Sensitivity and Specificity 
	Catalogue of Pathogen E-Probes for Other Hosts 
	Comparison of Microbe Finder (MiFi) with Traditional Bioinformatic Tools Used for Diagnostics 

	Discussion 
	Data Selection and Raw E-Probe Design 
	E-Probe Curation 
	In Silico Validation 
	In Vitro Validation: Analytical Sensitivity (LoD) and Specificity 
	Validation with Field Samples: Diagnostic Sensitivity and Specificity 
	Comparison of MiFi with Traditional Bioinformatic Tools Used for Diagnostics 
	Calculations of Sequence Depth for Assured Detection of an Analyte in a Complex Metagenome 

	Materials and Methods 
	Data Selection and Raw E-Probe Design (Step 1) 
	E-Probe Curation (Step 2) 
	In Silico Validation (Step 3) 
	In Vitro Validation (Step 4) 
	Validation with Field Samples (Step 5) 
	Mi Detect 
	Comparison of MiFi with Traditional Bioinformatic Tools Used for Diagnostics 

	Conclusions 
	References

