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Haemonchus contortus Y75B8A.8 (Hc8) derived from H. contortus excretory–secretory

(ES) products was identified as a functional inhibitor of goat interleukin 2 (IL-2). It

may act as a vaccine candidate for the development of therapeutic strategies against

H. contortus infection. In this research, recombinant Hc8 (rHc8) and goat anti-rHc8

polyclonal antibodies were employed to evaluate the protective capacities of Hc8 antigen

against H. contortus infections via active and passive immunization trials, respectively. In

both trials, local crossbred female goats aged 9–12 months old were randomly divided

into three groups, five in each group, respectively. Parasitological examinations, including

fecal egg counts (FEC), cumulative FEC (cFEC), and worm burdens, were performed. In

addition, antibody levels in mucosal homogenate (MH) samples and hematological and

immunological parameters were detected. In the passive trial, goats were intravenously

immunized with 5mg total IgG containing anti-rHc8 goat polyclonal antibodies. After

twice immunization, compared with the challenged control group, cFEC was reduced

by 39%. In addition, there was a 46% reduction of worm burdens compared with the

challenged controls. In the active immunization trials, 500 µg of recombinant Hc8 protein

was given subcutaneously twice to 9–12-month-old local crossbred female goats with

a 2-week interval, resulting in the generation of high levels of antigen-specific circulating

antibodies. Besides, cFEC and abomasal worm burden were reduced by 70 and 55%,

respectively, compared with the challenged control group. In addition, immunized goats

had higher mucosal homogenate IgA and hemoglobin levels than the challenged controls

in both passive and active immunization trials. These preliminary results demonstrated

the immunoprophylactic effects of Hc8 antigen and will inform new studies on ES proteins

in developing subunit recombinant vaccines against H. contortus.
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INTRODUCTION

Haemonchosis, caused by the gastrointestinal nematode
Haemonchus contortus, is a highly pathogenic disease with global
distribution (1). Small ruminants are susceptible to H. contortus,
which is responsible for causing anemia, emaciation, edema, and
even death (especially in lambs) (2). So far, anthelmintic drugs
are commonly employed to control the infection of H. contortus,
resulting in the emergence of drug-resistant H. contortus strains.
Moreover, frequent use of anthelmintics (e.g., albendazole and
levamisole) poses a significant threat to the environment and
food safety (3–6). Therefore, practical and feasible strategies are
required to address this public health and food safety problem.
Immune prevention like vaccination can be an effective measure
that could be taken to prevent the infection of H. contortus. In
2014, Barbervax R©, extracted from H. contortus, was authorized
as a commercial vaccine by the Australian Pesticide and
Veterinary Medicines Authority. However, the vaccine requires
multiple vaccination times to offer adequate protection and
needs to be produced in a cost-effective, reproducible, and safe
manner (7). Therefore, developing viable alternative vaccines
like recombinant subunit vaccines for controlling H. contortus
infections is still challenging.

H. contortus excretory–secretory (ES) products (HcESPs) are
considered to be the most immunogenic antigens, which have
immunomodulatory effects on host immune responses (8–14).
Researchers have made consistent efforts to investigate the
abilities of HcESPs and their components in protecting hosts
and understand their protective mechanism of action. Schallig
et al. found that 15 and 24 kDa antigens from HcESPs could
provide protective immunity against haemonchosis, resulting in
significant reductions in mean fecal egg counts (FEC, 77%) and
abomasal worm burden (85%) (15). Bu et al. demonstrated that
rHcftt-2 identified from HcESPs reduced mean eggs per gram in
feces (EPG) and worm burdens by 26.46 and 32.33%, respectively
(16). More recently, H. contortus α/β-hydrolase domain protein
(HcABHD) was identified as an immunomodulatory antigen
that interacts with goat T cells, and it could induce significant
reductions in egg shedding (54%) andworm burden (74.2%) (17).
Given the performance of ES antigens for their immunogenicity
and performance in recombinant forms, it was meaningful
to explore more new ES proteins and their active form in
vaccine development.

Like other intestinal helminths, host cellular immunity against
H. contortus infection is associated with the establishment
of type 2 immune response characterized by the secretion
of interleukin (IL)-4, IL-5, and IL-13, and the development
of a Th1-type immune response related to chronic infections
(7, 18, 19). Although Th2-mediated mechanisms for intestinal
worm expulsion are well-established, the immune mechanisms
behind susceptibility to chronic infections are poorly understood.
Notably, the establishment of chronic intestinal helminth
infections could also be caused by the initiation of type 1
responses (19). Thus, in this regard, we aimed to identify the
inhibitor of IL-2 that might be responsible for the regulation of
host Th1 response in chronic H. contortus infections in vitro.
In our preliminary study, H. contortus Y75B8A.8 (Hc8) (NCBI

Database ID: gi|560120149) derived from HcESPs was identified
as an inhibitor of goat interleukin 2 (IL-2), which could not
only bind to goat recombinant IL-2 (rIL-2) but also significantly
inhibit the biological activity of rIL-2 in vitro (20). Besides,
Hc8 contains a conserved domain Med15, and the latter was
described as a critical transducer of gene activation signals in
controlling early metazoan development (21). In addition, as a
member of HcESPs, Hc8 may serve as a vaccine candidate for
prophylactic intervention. Hence, we hereby aimed to validate
its immune protective roles againstH. contortus infection. Active
immunization could confer long-term protection, whereas the
protection offered by passive immunization lasts for a few
weeks or months. Both ways of gaining immunity, either from
active or passive immunization, can be used for disease control
and prevention. Thus, we investigated the efficacies of the
recombinant version of Hc8, and its specific antibody in the
setting of laboratory trials via the analysis of host immune
response after immunization.

MATERIALS AND METHODS

Animals and Parasites
Local crossbred female goats (9–12 months old) purchased from
a local company (Prosperous Sheep Industry, Nantong, China)
were maintained indoor in helminth-free cages individually at
Nanjing Agricultural University Experimental Animal Center
prior to the experiments. Upon acquisition, FEC were carried
out immediately to evaluate the health status of the goats,
and no coccidian oocytes or nematode/cestode eggs were
observed in their fecal samples. Experimental goats were daily
provided with granulated feed, forage, and water ad libitum.
The animals were reared following the guidelines of the Animal
Ethics Committee, Nanjing Agricultural University, China. All
experimental protocols were approved by the Science and
Technology Agency of Jiangsu Province [approval ID: SYXK
(SU) 2010-0005]. All animals were allowed to acclimate for a
period of 2 weeks before the trials.

H. contortus obtained from Jiangsu Province of China was
maintained and propagated in nematode-free lambs as previously
described (22). Third-stage larvae (L3) hatched and harvested
from fresh goat feces were stored at 4◦C for further usage.

Preparation of rHc8 Antigen and
Generation of Polyclonal Antibodies
Specific for rHc8
E. coli strain expressing rHc8 was constructed with pET28a.
The recombinant protein was purified by nickel chelating
chromatography through affinity for the hexa-histidine tag. The
product of rHc8 antigen was visualized by Coomassie bright
blue staining after sodium dodecyl sulfate–polyacrylamide gel
electrophoresis (SDS-PAGE) electrophoresis, with a molecular
weight of approximately 72 kDa (Supplementary Figure 1). The
endotoxin was removed usingHis Bind R© Resin Chromatography
kit (Merck, Darmstadt, Germany) and Detoxi-Gel Affinity
Pak Prepacked columns (Pierce, Rockford, USA) as described
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previously (23). The purified proteins were stocked at−70◦C for
later use.

Healthy local goats (n = 3) were used to generate polyclonal
antibodies specific for rHc8 (PcAb-rHc8). Briefly, 0.5mg of
purified rHc8 protein formulated with Freund’s complete
adjuvant (Sigma-Aldrich, St Louis, MO, USA) (1:1 in volume)
was subcutaneously injected into goats. The second injection
was given to the goats after a 2-week interval, with 0.5mg of
purified rHc8 protein mixed with Freund’s incomplete adjuvant
(Sigma-Aldrich) (1:1 in volume). The third immunization was
performed 1 week after the second immunization. One week
after the third immunization, the fourth injection was given to
boost the immunized goats. At 1 week after the last injection, the
sera containing specific antibodies were collected, purified using
Protein G Resin (Genscript, Nanjing, China), and then stored at
−30◦C for further usage. The specific antibody titer was analyzed
by indirect ELISA (1:218 in goat serum) as previously described
(24) (Supplementary Figure 2).

Trial 1: Experimental Design of Passive
Immunization With PcAb-rHc8
Goats were randomly allocated into three experimental groups
balanced for body weight: Group A, unimmunized and
uninfected control goats (n = 5); Group B, goats unimmunized
but challenged with L3s (n = 5); and Group C, goats challenged
with L3s (1 week old) and then intravenously immunized with
PcAb-rHc8 (n = 5). Goats from Groups B and C were infected
with 8,000 H. contortus L3s by oral gavage on day 1. Goats from
Group C were immunized with anti-rHc8-specific serum (5mg
of total IgG for each goat) at day 2 and 3 post-challenge. All goats
were sacrificed for necropsies on day 35.

Trial 2: Experimental Design of Active
Immunization With rHc8
Goats were randomly allocated into three experimental groups
matched for body weight: Group D, unvaccinated and uninfected
control goats (n = 5); Group E, unvaccinated but challenged
goats (n = 5); and Group F, subcutaneously vaccinated with
rHc8 and then challenged goats (n = 5). Goats of Group F were
immunized with 500 µg of rHc8 blended with Freund’s complete
adjuvant (1:1) (Sigma-Aldrich) on day 0, and 500µg of rHc8 with
Freund’s incomplete adjuvant (1:1) (Sigma-Aldrich) on day 15.
Goats of Groups E and F were challenged with 8,000 L3s (1 week
old) by oral gavage on day 29. Time points for sampling were
chosen based on the previous study (25). All goats were sacrificed
for necropsies on day 64.

Parasitological Examinations, Serum, and
Mucosal Homogenate Samples
Fresh fecal samples from the rectum of goats were collected on
days 18, 20, 22, 24, 26, 28, 30, and 32 in trial 1 and days 50, 52,
54, 56, 58, 60, and 62 in trial 2 to determine FEC following the
modified McMaster technique (26). Cumulative FEC (cFEC) was
calculated using a linear trapezoidal computational method as
previously described (27). In addition, abomasal samples from
goats necropsied were taken to classify and enumerate the H.

contortus according to the techniques described in a previous
study (28).

For serum collection, blood samples were taken from the
jugular vein using sterile vacuum collective tubes without
anticoagulants. The supernatants from serum samples were
carefully collected after centrifugation and then stored at −20◦C
for later use.

To determine antibody responses in the abomasa, mucosal
homogenate (MH) samples scraped from the surface of the
abomasum were processed as previously described (22). The
mucosa samples were homogenized in 3 volumes of cold
0.1M phosphate-buffered saline (PBS) (pH 7.4) containing
5mM ethylenediaminetetraacetic acid (EDTA) and 5mM
phenylmethylsulfonyl fluoride (PMSF) overnight at 4◦C,
followed by centrifugation at 10,000 × g for 20min. The
supernatants were collected and then stored at −20◦C for
later usage.

Detection of Goat Serum Antibody Levels
Specific for rHc8
The rHc8-specific antibody levels were ascertained by ELISA.
The appropriate rHc8 concentration (250 ng/µl) and the optimal
dilution of goat serum (1: 200) were determined by chessboard
titration. In brief, 100 µl of rHc8 diluted in carbonate coating
buffer (0.05M, pH 9.6) was coated on 96-well microliter plates
at 4◦C overnight. Skim milk (5%) in PBS containing 0.5% Tween
20 (PBST) was used to block the plates at 37◦C for 1 h. As to the
primary antibody, diluted goat serum in PBST was incubated at
37◦C for 1 h, followed by washing three times. The horseradish
peroxidase (HRP)-conjugated rabbit anti-goat IgG (H + L)
(Thermo Scientific,Waltham,MA, USA) was then used in l:5,000
dilution at 37◦C for 1 h. After five washes, the colorimetric
reaction was initiated with 3, 3′, 5, 5′-tetramethylbenzidine
(TMB) substrate. The substrate reactions were terminated with
2M sulfuric acid, and absorbance values at 450 nm (OD450) were
measured by a microplate reader (Thermo Scientific).

Measurement of Antibody Levels in MH
Samples by ELISA
Goat IgG, IgA, and IgE ELISA Quantization Kits (MLBIO,
Shanghai, China) were used to measure antibody levels of each
group according to the manufacturer’s specifications.

Complete Blood Count
Blood samples were harvested from jugular vein using sterile
vacuum tubes with anticoagulant EDTA-K2, and blood count
examination was performed using the whole blood by a blood
test instrument (BC5000-Vet blood cell analyzer, Mindray,
Shenzhen, China).

Statistical Analysis
GraphPad Premier 8.0 software package (GraphPad Prism, San
Diego, CA, USA) was used for the statistical analysis. For
the selection of the appropriate tests, normality distribution
determined by the Shapiro–Wilk test were assessed to ensure
the correctness of conclusions. Two-tailed, unpaired Student’s t-
test was used for cFEC. Comparisons of worm burden data were
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FIGURE 1 | Dynamics of egg outputs and statistics of abomasum worm burdens in trial 1. Group A, unchallenged goats; Group B, goats challenged with L3s at day

1; Group C, goats challenged with L3s at day 1 and then immunized by PcAb-rHc8 antibodies at days 2 and 3 post challenge. (A) FEC are presented as mean ±

SEM. (B) Mean cFEC values presented the data of each goat in each group. (C) Worm burdens are presented as mean ± SEM (*p < 0.05, ns, non-significant vs.

infection group), and a capped line designate significance between two groups (ns, non-significant).

FIGURE 2 | MH-IgA contents of abomasum measured in trial 1. Group A, unchallenged goats; Group B, goats challenged with L3s at day 1; Group C, goats

challenged with L3s at day 1 and then immunized by PcAb-rHc8 antibodies at days 2 and 3 post-challenge. Data are expressed as mean ± SEM. ***p < 0.001,

****p < 0.0001 vs. blank group and a capped line designates two groups that differ significantly (*p < 0.05).

performed using Mann–Whitney U-tests. Repeated measures
(RM) analysis of variance (ANOVA) methods with Tamhane’s
T2 multiple comparison test were conducted for antibody
levels and hematological parameters. Data were represented as
mean ± the standard error of mean (SEM). p < 0.05 were
considered significant.

RESULTS

FEC, cFEC, and Worm Burdens of Trial 1
(Groups A–C)
FEC for passive immunization in trial 1 are plotted in Figure 1A.
The FEC of goats passively immunized with PcAb-rHc8 (Group
C) were significantly lower than those from infected controls

(Group B). The overall mean cFEC per animal was reduced
by 39% in trial 1 compared with infected controls (p > 0.05;
Figure 1B).

As shown in Figure 1C, goats in Group C immunized with
PcAb-rHc8 had decreased total worm burdens compared to the
infected controls, with the reduction rate of 46% (p < 0.05). In
addition, both female and total worm counts in the challenge
control group were significantly higher than the immunization
group (p < 0.05 for both).

MH Antibodies Levels in Trial 1
The MH-IgA levels of goats in trial 1 are presented in Figure 2.
The results showed that abomasumMH-IgA levels in both Group
C (PcAb-rHc8 immunization goats, 71.2 ± 1.15) and Group B
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FIGURE 3 | Dynamics of rHc8-specific IgG in sera of trial 1. Group A, unchallenged goats; Group B, goats challenged with L3s at day 1; Group C, goats challenged

with L3s at day 1 and then immunized by PcAb-rHc8 antibodies at days 2 and 3 post challenge. Data were expressed as mean ± SEM. Same letter indicates

nonsignificant difference (p > 0.05). The different lowercase letters indicate significantly different values at p < 0.05. Different uppercase and lowercase letters indicate

significantly different values p < 0.01.

(infected controls, 62.1 ± 2.18) were significantly higher than
those in Group A (blank controls, 41.8 ± 0.730) (p < 0.001 and
p < 0.0001, respectively). Specifically, a statistically significant
difference in MH-IgA levels was also observed between Groups
B and C (p < 0.05) in trial 1. However, MH-IgG and IgE values
did not differ significantly between groups (data not shown).

Specific Antibody Detection From Goat
Sera in Trial 1
The levels of specific anti-rHc8 IgG were estimated by
ELISA. They were kept at much higher levels in PcAb-rHc8
immunization goats compared with the two control groups from
day 3 to day 28 (Figure 3). Besides, goats in the infected group
also had slightly higher antibody levels than unimmunized and
uninfected control goats (p > 0.05).

Full Blood Count Analysis in Trial 1
As expected, the concentration of hemoglobin presented a
significantly decreased trend in all challenged goats (Groups B

and C), while it remained stable in unchallenged controls (Group
A) (Figure 4). In addition, hemoglobin levels of Groups B and C
showed broadly similar traits. Hemoglobin levels of PcAb-rHc8
immunized goats appeared to be higher than those of challenged
controls at day 35, but no significant difference was observed (p>

0.05; Figure 4). However, as for other hematological parameters,
no notable changes were observed in red blood cells, hematocrit,
or eosinophils in all groups (data not shown).

FEC, cFEC, and Worm Burdens in Trial 2
(Groups D–F)
The dynamics of FEC for active immunization trial is graphically
displayed in Figure 5A. The FEC in goats vaccinated with rHc8
antigen (Group F) were lower than those in the infected controls
(Group E) throughout trial 2. As indicated in Figure 5B, a
significant 70% reduction from overall mean cFEC per animal
was observed (p < 0.0001).

Goats vaccinated with rHc8 in Group F had a significant
decrease in total worm burdens compared to the infected
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FIGURE 4 | Hemoglobin levels in trial 1. Group A, unchallenged goats; Group B, goats challenged with L3s at day 1; Group C, goats challenged with L3s at day 1

and then immunized by PcAb-rHc8 antibodies at days 2 and 3 post challenge. Hemoglobin (HGB) contents of blood samples were determined. Data are shown as

means ± SEM.

FIGURE 5 | Dynamics of egg outputs and statistics of abomasum worm burdens in trial 2. Group D, unchallenged goats; Group E, goats challenged with L3s; Group

F, goats vaccinated by rHc8 antigen mixed with Freund’s adjuvants (at day 0 and 15), and challenged with L3s (at day 29). (A) FEC are presented as mean ± SEM. (B)

Mean cFEC values present the data of each goat in each group. (C) Worm burdens are presented as mean ± SEM. *p < 0.05, **p < 0.01; ns, non-significant vs.

infection group, a capped line designates significance between two groups (****p < 0.0001).

controls (Group E), showing a reduction rate of 55% (p <

0.05; Figure 5C). In contrast, no significant differences in male
burdens between these two groups were observed (Figure 5C).
In addition, a significant reduction in female worms was found
in the vaccinated group compared with the challenged control
group (p < 0.05; Figure 5C).

MH-IgA Levels in Trial 2
As shown in Figure 6, ELISA results from trial 2 revealed that
the MH-IgA levels of both rHc8-vaccinated goats (Group F: 26.6
± 1.25) and infected controls (Group E: 23.1 ± 0.330) were
significantly higher than unimmunized and uninfected control
goats (Group D: 18.7 ± 0.230) (p < 0.0001 and p < 0.01,
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FIGURE 6 | MH-IgA contents detected in abomasum of trial 2. Group D, unchallenged goats; Group E, goats challenged with L3s; Group F, goats vaccinated by rHc8

antigen mixed with Freund’s adjuvants (at day 0 and 15), and challenged with L3s (at day 29). Data were expressed as mean ± SEM. **p < 0.01, ****p < 0.0001 vs.

blank group and a capped line designates two groups that differ significantly (*p < 0.05).

respectively). Additionally, MH-IgA levels of vaccinated goats in
Group F were significantly higher than the challenged controls
in Group E (p < 0.05; Figure 6). Similar to trial 1, significant
differences were observed in the levels MH-IgG or MH-IgE
across all groups (data not shown).

Specific Antibody Detection From Goat
Sera in Trial 2
Circulating anti-rHc8 IgG levels in goat sera were detected by
ELISA, and the results are demonstrated in Figure 7. Goats
vaccinated with rHc8 in Group F displayed robust and sustained
immune responses throughout trial 2, demonstrated by the
significantly higher titers of specific anti-rHc8 IgG compared
with both blank and challenged controls from day 28 (the second
immunization) till the end of the experiment (p < 0.01 for all
time points). In contrast, there were no significant differences in
antibody levels between the infected controls (Group E) and the
blank controls (Group D).

Full Blood Count Analysis in Trial 2
In trial 2, both challenged groups presented a significant
reduction in hemoglobin levels over the time course of the
infection (Figure 8). Compared with the infected controls in
Group E, rHc8-vaccinated goats in Group F showed a slight
decrease in hemoglobin levels. By the way, rHc8-vaccinated goats
in Group F seemed to have a slightly higher level than the infected
controls in Group E on day 57. However, the difference between
these two groups was not statistically significant (p > 0.05;

Figure 8). Similar to trial 1, there were no significant differences
in the levels of red blood cells, hematocrit or eosinophils across
all groups (data not shown).

DISCUSSION

With regards to immune regulation, IL-2 displays an
indispensable role as an immune regulatory factor, which
could promote T-cell proliferation and survival in vitro (29, 30).
It is noteworthy that IL-2 as an adjuvant could improve the
efficacy of the DNA vaccination encoding H11 protein against
H. contortus infection (28). Accumulating studies reveal that
massive ES proteins produced byH. contortus result in a complex
and sophisticated immune response in the host during infection
(8, 9, 31). In our preliminary work, Hc8 protein was identified
from HcESPs and interacted with host IL-2. Besides, Hc8 acted
as an antagonist that interfered with the biological activities of
IL-2, along with associated signaling pathways (20). Based on
these findings, employing anti-rHc8 antibodies that specifically
bind to Hc8 in vivo might help to retrieve the function of IL-2
and host protective immunity against H. contortus. In this
research, immunization with PcAb-Hc8 antibodies conferred
partial but statistically significant protection to challenged
goats, showing a 39% reduction in egg shedding and a 46%
reduction in worm burden compared with challenged controls.
These results indicated that anti-Hc8 antibodies seemed to
act effectively against H. contortus infections to some extent,
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FIGURE 7 | Dynamics of rHc8-specific IgG in sera of trial 2. Group D, unchallenged goats; Group E, goats challenged with L3s; Group F, goats vaccinated by rHc8

antigen mixed with Freund’s adjuvants (at day 0 and 15), and challenged with L3s (at day 29). Data are presented as mean ± SEM. Same letter indicates

nonsignificant difference (p > 0.05). The different lowercase letters indicate significantly different values at p < 0.05. Different between uppercase and lowercase

letters indicate significantly different values p < 0.01.

although future efforts are needed to validate the protective
effects in field trials.

Vaccines could reduce the risk of drenching and pasture
contamination, which may, in turn, lessen the chance of repeated
infections of H. contortus in susceptible animals. Unfortunately,
to date, there are few descriptions of viable vaccines being
successful for H. contortus. The only commercialized vaccine,
Barbervax encompassing various native antigens, attained an
excellent performance in sheep. Besides, for more susceptible
goats, studies demonstrated that the average reductions of
FEC were 69.8 ± 11.7% and 57.4 ± 17.6% for the Anglo
Nubians and Saanens, respectively (32). In addition to native
antigen preparations, recombinant subunit vaccines warrant
much exploration given their commercial applicability and
reliable and reproducible efficacy. Numerous recombinant H.
contortus antigens were tested either in laboratory or field trials,
but few of them have been reported to be effective. To develop
an effective vaccine against H. contortus, the top priority was to
reduce egg shedding and worm burdens in infected hosts (33).

In this study, the data in trial 2 demonstrated that vaccination
with rHc8 antigen could induce significant protection to the
hosts, showing a 70% reduction in egg excretion and a 55%
reduction in worm burden when compared with challenged
controls. It is likely that the immune responses induced by the
administration of rHc8 antigen might effectively reduce egg-
laying capacity and worm burdens. In addition, rHc8, as a
novel protective antigen, may contribute to the development of
a cocktail vaccine encompassing multiple recombinant proteins
against H. contortus, given the success of the recombinant
cocktail vaccine for Teladorsagia circumcincta (34, 35).

As a regulatory factor, the correlation of IgA with host
immunity against H. contortus were not fully understood.
However, a spectrum of reports shows that MH-IgA appeared to
engage in host immune responses and played essential roles in
parasite invasion and expulsion associated with FECs (25, 36, 37).
Sun et al. revealed that the relationship between MH-IgA and
abomasum worm burdens was remarkably negatively correlated
based on Spearman’s rank correlation coefficient (37). This study
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FIGURE 8 | Hemoglobin levels in trial 2. Group D, unchallenged goats; Group E, goats challenged with L3s; Group F, goats vaccinated by rHc8 antigen mixed with

Freund’s adjuvants (at day 0 and 15), and challenged with L3s (at day 29). Hemoglobin (HGB) contents of blood samples were determined. Data are shown as

means ± SEM.

showed that MH-IgA levels in response to active and passive
immunization in challenged goats were higher than those in the
blank controls in both trials 1 and 2, suggesting the essential
roles of host IgA in mucosal immunity against H. contortus. In
addition, regardless of given antibodies or recombinant proteins,
mucosal IgA levels in immunized goats were higher than the
challenged controls in both trials. A previous study observed
significantly increased mucosal IgA levels in goats boosted with
IL-2 as an adjuvant, suggesting the positive correlation of host IL-
2 levels with mucosal IgA production (28). The possible reason
for increased mucosal IgA levels in immunized goats could be
that anti-Hc8 IgG blocked the antagonistic effects of Hc8 on host
IL-2, and the latter might magnify mucosal IgA generation and
mucosal immune responses. However, the detailed mechanism
merits further investigation. Additionally, ELISA results showed
that Hc8-specific IgG maintained high levels throughout both
trials 1 and 2. High circulating antibody levels were considered
to be critical for offering a long period of protection for animals
(38). All these data indicated that MH-IgA and antigen-specific
IgG in response to immunizations could function as important
indicators and contribute to host immune protection against
H. contortus.

Hemoglobin levels were considered an essential hematological
parameter for the diagnosis of anemia and a hallmark for
the assessment of severity in haemonchosis. Previous studies
indicated that hemoglobin level was negatively correlated with
adult worm counts and egg shedding (39, 40). However,
Yanming et al. reached a contradictory conclusion that there

was no significant association between hemoglobin values and
worm burdens (37). Although actively or passively immunized
goats appeared to show higher hemoglobin levels than the
challenged controls at certain time points in both trials, no
significant differences were observed in this study. In addition,
the hemoglobin levels in challenged goats showed consistently
downward trends over the time course of infections, but
there was no significance when compared to the unchallenged
controls in both trials 1 and 2. Possibly, adult worms were
present for a too-short time period to influence hemoglobin
levels significantly.

CONCLUSION

In this study, we evaluated the immune protection efficacies
of PcAb-Hc8 antibodies and Freund’s adjuvanted rHc8 antigens
in an experimental infection model. Both eggs shedding and
worm burdens were significantly decreased in the passive or
active immunization trials. Partial protections were observed
when challenged goats were administrated with PcAb-Hc8
antibodies, while active immunization with Freund’s adjuvanted
Hc8 antigens resulted in strong protection efficacy. Although
the specific mechanism still requires further investigation, this
study indicated the possibility of rHc8 antigens as a potential
vaccine candidate. In addition, rHc8 antigen merits further
investigation for haemonchosis prevention and control in the
setting of field trials.
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