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Rett syndrome (RTT) is a rare neurodevelopmental disorder characterized by severe

cognitive, social, and physical impairments resulting from de novo mutations in the

X-chromosomal methyl-CpG binding protein gene 2 (MECP2). While there is still no

cure for RTT, exploring up-to date neurofunctional diagnostic markers, discovering

new potential therapeutic targets, and searching for novel drug efficacy evaluation

indicators are fundamental. Multiple neuroimaging studies on brain structure and function

have been carried out in RTT-linked gene mutation carriers to unravel disease-specific

imaging features and explore genotype-phenotype associations. Here, we reviewed the

neuroimaging literature on this disorder. MRI morphologic studies have shown global

atrophy of gray matter (GM) and white matter (WM) and regional variations in brain

maturation. Diffusion tensor imaging (DTI) studies have demonstrated reduced fractional

anisotropy (FA) in left peripheral WM areas, left major WM tracts, and cingulum bilaterally,

and WM microstructural/network topology changes have been further found to be

correlated with behavioral abnormalities in RTT. Cerebral blood perfusion imaging studies

using single-photon emission CT (SPECT) or PET have evidenced a decreased global

cerebral blood flow (CBF), particularly in prefrontal and temporoparietal areas, while

magnetic resonance spectroscopy (MRS) and PET studies have contributed to unraveling

metabolic alterations in patients with RTT. The results obtained from the available reports

confirm that multimodal neuroimaging can provide new insights into a complex interplay

between genes, neurotransmitter pathway abnormalities, disease-related behaviors,

and clinical severity. However, common limitations related to the available studies

include small sample sizes and hypothesis-based and region-specific approaches.

We, therefore, conclude that this field is still in its early development phase and

that multimodal/multisequence studies with improved post-processing technologies as

well as combined PET–MRI approaches are urgently needed to further explore RTT

brain alterations.

Keywords: Rett syndrome, multimodal neuroimaging, magnetic resonance imaging, positron emission

tomography, MECP2
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INTRODUCTION

The postnatal stage is a significantly dynamic brain growth
and development period characterized by both macrostructural
and microstructural changes. Macrostructural changes include
global/regional brain volume and weight modifications as well
as changes in the regional gray matter (GM)/white matter
(WM) ratio, and microstructural changes mainly involve cell
differentiation,myelination, synaptogenesis, and cortical layering
(1, 2). As a severe neurological disease, Rett syndrome (RTT)
leads to neurodevelopmental abnormalities in this crucial period,
primarily arising from de novomutations in the X-chromosomal
methyl-CpG binding protein gene 2 (MECP2) (3–5). RTT is
manifested as a severe cognitive, social, and physical impairment.
Neuroimaging has been used extensively to assess the brain
structure, connectivity, and function, providing a valuable tool
to link neuronal activity, anatomic structure, cerebral function,
and several complex clinical events (6). The application of
neuroimaging to RTT has been explored for decades. Various
imaging techniques have been used to answer the fundamental
questions about the biological basis of RTT and to characterize
in vivo disease pathology. Neuroimaging studies on RTT provide
essential insights into anatomical, functional, metabolic, and
dynamic changes in the brain reflecting the biological effects
of MECP2 mutations and allow to monitor future therapeutic
outcomes. The present article reviews the current applications of
multimodal neuroimaging to RTT and provides potential future
directions in this field.

METHODS

A formal literature review was conducted on PubMed (https://
pubmed.ncbi.nlm.nih.gov/) with the following search terms:
(“Rett syndrome” OR “MECP2”) AND (“magnetic resonance
imaging” OR “positron emission tomography” OR “single-
photon emission tomography” OR “diffusion MRI” OR
“diffusion tensor imaging” OR “diffusion kurtosis imaging”
OR “neurite orientation dispersion and density imaging” OR
“magnetic resonance spectroscopy” OR “cerebral blood flow”
OR “arterial spin labeling” OR “MRI” OR “PET” OR “SPECT”
OR “MRS” OR “DTI” OR “DKI” OR “NODDI” OR “ASL”). All
searches were updated in October 2021. The retrieved results
were then filtered according to the inclusion criteria reported
as follows.

The study inclusion criteria required articles of full-text
publications in English or translated into English. The research
subjects of eligible articles were RTT subjects with MECP2
mutations. We set the primary focus of our review on the
studies applying multimodal neuroimaging to RTT withMECP2
mutations, so both human and animal studies were included.
Human studies are summarized in Supplementary Table S1, and
animal studies are summarized in Supplementary Table S2.

Case reports and conference communications were excluded.
Also, non-English articles and studies on MECP2 duplication
syndrome or RTT caused by the mutations of genes other than
MECP2 were not considered.

RTT WITH MECP2 MUTATION

Rett syndrome is a severe neurodevelopmental disorder named
after the Austrian pediatrician Andreas Rett, who first described
this disorder in 1966 (7). RTT almost exclusively affects women,
and ∼1 in 10,000–15,000 girls have this disease (8). In RTT,
normal development is usually observed up to 7–18 months,
followed by the developmental regression in which previously
acquired skills are lost (4, 9). Most patients progress through four
clinical stages and show various clinical features. The diagnostic
criteria and clinical stages for RTT are presented in Table 1 (10–
13).

More than 90% of classical RTT arises from de novomutations
in MECP2 (3–5). As a transcriptional regulator, MECP2 is
expressed widely throughout the whole body and particularly in
the mature neurons of the brain (14, 15). It plays a crucial role
in neuronal development, differentiation, and synaptic plasticity
(16–18). It is becoming clear that MECP2 is almost unexpressed
in early embryonic stages in mice and humans, and its expression
gradually increases in the postnatal stage and childhood (19,
20). Researchers have identified hundreds of different MECP2
mutations contributing to distinct clinical phenotypes and
disease severities (18, 21, 22). There has been a consensus in
eight “hotspot” MECP2 mutations in RTT (R106W, R133C,
T158M, R168X, R255X, R270X, R294X, and R306C), which affect
>60% of the documented cases (23). Extensive sample statistics
found that patients with R133C, R294X, R306C, or T158M
manifest with milder phenotypes, while the cases with R106W,
R168X, R255X, or R270X, or large deletions show more severe
disease forms (24, 25). In addition, several studies on MECP2
deletions have found that specific neuronal populations are
involved in distinct pathophysiological mechanisms leading to
different clinical phenotypes (26–35). These details are described
in Supplementary Table S3.

Although some of the disease mechanisms have been
unraveled, genetic heterogeneity, genotype-phenotype interplays,
and epigenetic factors in RTT are still not fully understood. A
few previous studies have reported that a broad spectrum of
disabilities in girls with RTT reflects the pervasive abnormalities
of brain growth (especially the developmental phase of intense
synaptogenesis) and connectivity (the formation of neural
signaling pathways) (36, 37). However, the aforementioned
findings were almost based on postmortem brain tissue analyses
of patients with RTT, while in vivomonitoring of the underlying
pathophysiological processes is more helpful to understand the
development of RTT disease. Although there is still no cure
for RTT and the available treatments are mainly symptomatic
(Supplementary Table S3), alleviating symptoms, reducing pain
and discomfort, and increasing the quality of life are essential
for both patients and caregivers (38). Early identification is
a prerequisite for the implementation of targeted and timely
therapeutic approaches. A few studies have shown that early
intervention can delay the developmental regression in girls with
RTT, and the treatment of symptoms can alleviate the associated
pain. Thus, searching for neurofunctional markers for early
diagnosis, discovering potential targets for effective therapies,
and exploring efficacy evaluation indicators are pivotal.
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TABLE 1 | Diagnostic criteria and clinical stages for Rett syndrome (RTT).

Main criteria Supportive criteria

Diagnostic criteria

1. Regression followed by recovery or

stabilization

1. Respiratory disturbances

2. Partial or complete loss of acquired

purposeful hand

skills and spoken language

2. Bruxism when awake

3. Gait abnormalities 3. Sleep disruption

4. Stereotypic hand movements 4. Abnormal muscle tone

5. Peripheral vasomotor disorders

6. Scoliosis/kyphosis

7. Growth delays

8. Small and cold hands and feet

9. Laughing/screaming

10. Insensitive to pain

11. Intense eye communication

Exclusion criteria

1. Brain injury secondary to trauma, neurometabolic disease, or severe infection

2. Grossly abnormal psychomotor development in first 6 months of life

Clinical stages

I Early

onset stage

II

Rapid

destructive

stage

III Pseudo-

stationary

stage

IV

Late

deterioration

stage

Onset time Age 6–18

months

Age 1–4

years

Age 4–8

years

After Age 8

years

Duration Months Weeks to

Months

Years to

Decades

Decades

Characteristics Developmental

arrest,

diminished

interest in

play, hand

waving, and

decelerating

head growth

Developmental

deterioration,

severe

dementia,

loss of hand

skills and

spoken

communication,

irregular

breathing,

and

appearance

of seizures

Stabilization,

gross motor

dysfunction,

gait apraxia,

jerky truncal

ataxia,

frequent

seizures

Decreasing

mobility, loss

of

independent

ambulation

According to the revised diagnostic criteria and nomenclature of Rett Search Consortium

(10); Clinical stages according to Hagberg and Witt-Engerstrom (11).

MORPHOLOGIC MRI IN RTT WITH MECP2

MUTATION

The addition of MRI to the diagnostic armamentarium of
neurodevelopmental disorders may be considered as a revolution
in this field. Of all the three-dimensional imaging techniques,
MRI has the best soft-tissue contrast. Moreover, different
MRI sequences can reflect corresponding tissue contrasts, thus
providing a wealth of information about the brain structure and
tissue microstructure (39, 40). MRI has been identified as an

effective morphological imaging method for detecting structural
abnormalities in RTT due to its high resolution and its optimized
GM/WM delineation (41).

Rett syndrome is characterized by acquired microcephaly
(42). Accordingly, brain MRI studies on patients with RTT
have shown global brain atrophy and specific regional GM/WM
reductions in the frontal and temporal lobe, hippocampus,
caudate nucleus, striatum, thalamus, midbrain, and WM tracts
(43–45). Animal studies have been further conducted to explore
the relationship between macroscopic brain structure changes
and RTT phenotype. Saywell et al. investigated MECP2-null
mice, a widely recognized experimental model of RTT, using
conventional brain MRI and found a global reduction in
its brain size, a feature constantly observed in patients with
RTT (46). Reduced cerebellum size may account for some of
the neurological signs observed in RTT, including cognition
and motor coordination impairments. Moreover, the authors
found significant thinning of some specific structures, such as
the motor cortex and the corpus callosum (46). Elsewhere,
Allemang-Grand et al. used a high-resolution MRI with
deformation-based morphometric approaches to examine the
brain structure of different mouse models carrying MECP2
mutations, demonstrating the severity of the mutation and the
stage of behavioral impairment were associated with the degree
of neuroanatomical changes (47).

Although qualitative analysis is helpful for clinical decision-
making, it does not provide quantitative values to monitor the
developmental status (48). In this context, it is noteworthy that
only a few quantitative studies on the brain morphology related
to RTT have been carried out. In the field of animal studies,
Patrick et al. created an MRI atlas for detailed cerebellar volume
analysis and quantitatively investigated genetic effects on this
structure (49). Using this approach, the authors were able to
reveal a complex interplay betweenMECP2mutations, cerebellar
volumetric changes, repetitive behaviors, and learning (49). In
the field of human studies, Carter et al. used complementary
semiautomated Talairach- and voxel-based approaches to study
MRI scans acquired in female cases carrying MECP2 mutations.
The authors provided novel pieces of evidence on selective
reductions of dorsal parietal GM and the preservation of the
occipital cortex in RTT (50), and further reported a correlation
between anterior frontal lobe reduction and clinical severity.
As regards cortical WM, mild and diffuse reductions have
been previously reported and linked to axonal pathology (50).
Notably, studies in this field have selectively shown decreased
volumes of the cerebrum, cerebellum, and caudate nucleus (43,
44, 50–53). Surface-based morphological approaches, including
cortical gyrification and regional cortical thickness evaluation,
have not been fully explored. Previous studies using quantitative
analyses (including surface- and voxel-based measurements)
observed no significant differences in global cortical gyrification,
thickness, and volumes, as well as in regional cortical thickness
between patients with RTT/Rett-like (RTT-l) (cases carrying the
MECP2 mutation but not fulfilling the diagnostic criteria for
RTT) and normal controls (54), but evidenced a significant
volumetric reduction of the cerebellum. Given that the patients
with RTT/RTT-l included in this study were younger than
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those described in other reports, it is plausible to hypothesize
that cerebellar volume reductions may precede regional cortical
atrophy, providing a potential early diagnostic marker in patients
with RTT/RTT-l (54).

In addition to morphological studies, MRI sequences can
provide other information about brain changes in patients with
RTT; for example, the underlying tissue microstructure can
be examined using diffusion MRI (dMRI) (55–57), functional
information can be gathered using functional MRI (fMRI) (57),
metabolic differences can be identified using magnetic resonance
spectroscopy (MRS) (46), and cerebral blood flow (CBF) can be
assessed using arterial spin labeling (ASL) (58, 59).

DIFFUSION MRI

Complex microstructural changes are increasingly recognized
as significant contributors to neurodevelopmental disease even
in the absence of gross brain morphologic changes (2). dMRI
can noninvasively monitor microstructural changes and identify
the implicated neural networks by mapping the distribution
and movement of water molecules in the brain tissue. Recent
studies have shown that it is also sensitive to cortical
microstructure properties, such as radial and tangential fiber
populations and neuropil volume fraction (60–65). Previous
morphologic studies have suggested that the decreased cortical
WM volume observed in RTT may be secondary to neuronal
somata changes and primary axonal disturbances (6, 66).
However, confirming this hypothesis requires the application
of complementary imaging approaches such as dMRI. This
technique also provides a new perspective for understanding the
underlying pathological mechanism, assisting in diagnosis, and
evaluating the neurobiological bases of the observed symptoms.

Diffusion tensor imaging (DTI) is an MRI technique based
on the physical principle of water molecule diffusion restrictions
across WM tracts (67). The tensor can derive several parameters,
including fractional anisotropy (FA) and mean diffusivity (MD).
FA represents the degree of anisotropy of the diffusion, which is a
sensitive imaging biomarker for axonal organization and myelin
integrity (2). MD represents the magnitude of diffusion, which is
a commonly used scalar measurement.

In patients with RTT, a reduced FA has been identified in
left peripheral WM areas (including middle temporal, middle
occipital, precuneus, and postcentral regions), left major WM
tracts (such as the superior longitudinal fasciculus, sagittal
stratum, and corpus callosum), and the cingulum bilaterally
(48). By studying the correlation between DTI-derived FA
measurements and specific clinical features in patients with
RTT, Mahmood et al. obtained the following findings: firstly,
FA in the superior longitudinal fasciculus was significantly
associated with speaking abilities; secondly, FA reductions in the
anterior cingulate gyrus were associated with the characteristic
mood and behavioral changes often observed in patients with
RTT; and thirdly, the common observation of intact visual
capabilities might be in accordance with the normal to increased
FA values identified in the posterior corona radiate (68).
Taken together, these preliminary studies suggest that DTI may

represent a valuable noninvasive technique to assess WM tract
pathological processes and add specificity to the assessment of
RTT clinical severity.

Diffusion tensor imaging obtains the two types of information:
quantitative water diffusion parameters described above and
global brain WM organization metrics. The latter includes maps
of fiber bundle orientation using color-coded DTI maps and
a more precise delineation of specific fiber pathways by using
tractography, which is based on identifying tracts using the
color maps (67, 69). Fiber bundles are delineated using the
software that traces the trajectory of the vectors representing
water diffusion. Fiber delineation/reconstruction studies usually
focus on specific pathways, which have been postulated to be
involved in the disease. To date, tractography technology has
been the most widely applied technology in animal studies.Wang
et al. reported abnormal brain WM developmental dynamics
and network topological organizations in RTT monkey models
across different clinical stages via longitudinal DTI (70). They
revealed that theMECP2mutation could lead to early protracted
WMmyelinization affecting later synaptic pruning and inducing
abnormal functional segregation of the brain in RTT (70).
Early abnormal WM development may be the underlying
neural mechanism for some of the significant abnormal clinical
neurobehavioral phenotypes, and it may also serve as an early
predictor of RTT (70).

However, the major limitation of DTI quantitative parameters
is that FA and MD provide nonspecific measures of pathology.
The assumption of a single compartment with Gaussian diffusion
does not adequately model the involved biological systems, like
the WM, with its complex fiber architectures, or the GM, where
diffusion is relatively isotropic, and this model fits poorly (71).
A variety of more advanced models of tissue diffusion providing
alternative parameters are now available, such as diffusion
kurtosis imaging (DKI) or neurite orientation dispersion and
density imaging (NODDI). These have the potential to identify
previously unseen structural abnormalities and improve our
understanding of underlying microstructural changes. However,
no DKI or NODDI studies on RTT have been reported so far.

CEREBRAL BLOOD PERFUSION IMAGING

The most widely used imaging methods of cerebral blood flow
evaluation are single-photon emission CT (SPECT) or PET
imaging (72–74), and the most consistently reported finding in
this field is the presence of frontal hypoperfusion. Nielsen et al.
studied seven patients with RTT with 133Xe SPECT scans and
found that global CBF was decreased and the hypoperfusion
foci were located mainly in prefrontal and temporoparietal areas
(72). Burroni et al. performed 99mTc-ECD brain SPECT imaging
on 12 girls with classical RTT and a control group of normal
children, also attaining similar findings (74). These observations
align with the neuropathological evidence of a global reduction
in brain size and an alteration in the dendritic and synaptic
trees in RTT. Moreover, no significant right-to-left asymmetry
was found in any regions of interest of the cortex, which
confirms that RTT is a diffuse and nonfocal neurological disorder
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(74). Brain perfusion abnormalities were seen more often in
stage IV patients with RTT rather than in stage III patients
with RTT, supporting the notion that CBF reductions probably
reflect clinical disease progression (74, 75). Researchers have also
reported a reduced CBF in patients with normal brain MRI
scans, suggesting that SPECT may be able to reveal functional
alterations before the occurrence of appreciablemorphological or
structural damage (74). Lappalainen et al. performed perfusion
SPECT and electroencephalography (EEG) on 13 patients with
RTT and found that frontal hypoperfusion was consistent with
frontal paroxysmal activity on EEG, and these two alterations
were associated with disease progression (73). Finally, Naidu et al.
performed PET studies using 15O-labeled water and observed
a decreased blood flow in the frontal regions, similar to the
observations made by Yoshikawa et al. in patients with RTT
(6, 76).

Although SPECT and PET are excellent methods for
measuring CBF, it is difficult to justify their use in young children
who were given the radioactivity. However, recent developments
in novel MRI approaches provide an excellent alternative to
PET for measuring CBF. Naidu et al. used a transfer-insensitive
labeling technique to measure CBF based on the concept of
ASL (58), revealing greater hypoperfusion in the frontal lobe
compared to other brain regions (6).

BRAIN FUNCTIONAL IMAGING

PET is helpful not only for brain blood perfusion but also
for brain functional imaging. Due to its associated radiation
exposure, the use of PET to assess pediatric neurodevelopmental
disorders has been greatly limited. Therefore, PET has a vast
unexplored potential to improve our understanding of the
pathophysiology of neurodevelopmental disorders in children
(77). PET biomarkers can be applied to disease diagnosis, clinical
progression monitoring, and treatment response evaluation.

Glucose Metabolism Imaging
18F-fluorodeoxyglucose (18F-FDG) PET has been introduced to
evaluate human cerebral glucose metabolism and has shown
that glucose utilization undergoes dramatic temporal-spatial
changes. Villemagne et al. studied glucose metabolism with PET
in six girls with RTT aged 3–15 years and found relatively
increased glucose metabolism in the frontal cortex of younger
study participants (3–8 years of age) (78). A postmortem report
showed increased N-methyl-D-aspartate (NMDA) glutamate
receptors in the superior frontal gyrus in young RTT subjects (79,
80). These studies showed that increased glutamate–glutamine
neurotransmitter cycling at synapses accounted for the increased
glucose levels in the frontal regions. A few studies have also
found that glucose metabolism is relatively decreased in the
visual association areas of the occipital lobe and increased in the
cerebellum in RTT subjects compared to normal control subjects
(81). This finding was consistent with the developmental delays
observed in girls with RTT as the metabolic alterations occurred
during the developmental period, particularly in children
aged <1 year.

Despite these significant advancements, the relationship
between CBF and glucose metabolism is still unclear. The reasons
for this phenomenon might be, on one hand, the increased
NMDA glutamate receptors observed in the superior frontal
gyrus, and on the other hand, the observation that postsynaptic
neurons respond poorly to excitatory neurotransmitters (6).

Neurotransmitter Receptor Imaging
PET may be used to noninvasively assess gene expression either
at the messenger RNA or protein expression levels using specific
molecular imaging probes to quantitatively study the dynamic
processes in vivo. Therefore, it is an urgent need to develop
more specific PET imaging agents suitable for cerebral target
imaging (77).

Nigrostriatal Function Imaging
PET imaging with the targeted agents has been applied to
investigate a nigrostriatal function in patients with RTT. Using
multimodal PET imaging, Henry et al. reported that in patients
with RTT the mean of 18F-fluoro-L-dopa uptake values was
reduced by 12% in the putamen and 13% in caudate nuclei
compared to age-matched healthy subjects, while 11C-raclopride
(which acts as an antagonist on D2 dopamine receptors (D2Rs))
mean uptake values were increased by 10% in the same
regions (53). This divergence between dopamine reduction
and D2Rs increase suggests that dopamine reduction decreases
dopaminergic activity and thus increases compensatory D2R
activity. These observations also suggest the existence of a
presynaptic deficit of nigrostriatal activity, which could be a
potential biomarker to monitor disease progression in RTT (53,
77).

Naidu et al. studied 12 adult patients with RTT using
11C-N-methyl-spiperone PET imaging and found low levels
of postsynaptic D2Rs in caudate (6). Wong et al. reported
decreased D2R density in women aged 15–30 years with RTT
(82). These findings contrast with the observations of Chiron
et al. who reported a markedly increased specific binding of
123I-iodolisuride to D2Rs in 11 children with RTT in the
age range from 4 to 15 years (75). These studies suggest the
existence of significant age-related changes in D2Rs—that is,
patients may have higher D2R densities than normal subjects
in the first decade of life but lower D2R densities as they
approach adulthood. The abovementioned studies demonstrated
that a steady developmental dopaminergic imbalance develops
as patients age, consistent with the clinical features of increased
muscle tone and rigidity seen in this disease (75, 82).

Further studies have used PET to quantify dopamine
transporter (DAT) and D2Rs. In human studies, researchers
found a significantly reduced DAT in the caudate nuclei of
women with RTT compared to control subjects and reduced
D2R numbers in the striata of women with RTT (6, 82). Wong
et al. demonstrated a significant reduction in D2R density in
the striatum of women with RTT compared to controls, but no
significant differences in DAT density were observed when partial
volume corrections were applied. In animal studies, Wong et al.
also found a significant decrease in D2R and DAT density with
the SRTM analysis inMECP2-null mice andHETmice compared
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to wild-type mice. The above results confirm that reductions
in D2R are more likely to explain ambulation impairments and
progressive rigidity than alterations in DAT (82). Together, these
PET findings add to our understanding of the pathophysiology
of RTT and provide the avenues of research that could lead to the
discovery of valid biomarkers (77).

Histone Deacetylase Function Imaging
Histone deacetylase 6 (HDAC6) is a histone deacetylase
paralogue. Its function and dysregulation correlate with the
etiology of neurodevelopmental disorders, including RTT. In
RTT mouse models, the upregulation of the HDAC (1 and
2) repressor complex has been found to be implicated in
disease etiology. A PET probe of HDAC6 has an excellent
potential to provide new insights into brain functional molecular
mechanisms and facilitate the identification of therapeutic
targets. A highly brain-penetrant HDAC6 inhibitor, bavarostat,
exhibits excellent HDAC6 selectivity. Bavarostat radiolabeling
with 18F by deoxyfluorination has been demonstrated to be
suitable for mapping HDAC6 in the living brain in rodent and
nonhuman primate models. Meanwhile, it has been shown to
exhibit a high uptake in the brain, providing a key tool to study
HDAC6 in the living human brain (83). Therefore, 18F-bavarostat
may show great promise as a radiotracer inMECP2-defect mouse
models and patients with RTT.

Gamma-Aminobutyric Acid Receptor Imaging
Previous studies have demonstrated that GABAergic dysfunction
is a critical mediator of RTT phenotypes. MECP2 deficiency in
GABAergic neurons further leads to a series of clinical symptoms
in RTT, including stereotyped movements, compulsive
grooming, increased sociability, impaired motor coordination,
learning/memory deficits, abnormal EEG hyperexcitability,
severe respiratory dysrhythmias, altered sensorimotor gating
and arousal, and premature lethality (32, 84). These details
are described in Supplementary Table S3. Compared to age-
matched control subjects, a few studies have demonstrated
abnormal densities of gamma aminobutyric acid (GABA)
receptors in the postmortem brain tissue from young female
individuals with RTT. Therefore, it is of great significance to
study the changes of GABA receptors in vivo using neuroimaging.

PET/SPECT approaches with specific imaging agents binding
GABA or benzodiazepine (BZ) receptors allow us to investigate
their distribution in vivo (85). However, the PET/SPECT imaging
agents currently available for human use are more likely to bind
to BZ receptors than to GABAA receptors. Existing PET/SPECT
imaging agents, like iomazenil and flumazenil, have limited
subunit selectivity, binding to GABAA/BZ receptors containing
multiple subunits, whereas 11C Ro15-4513 (a GABAA/BZ
receptor inverse agonist) has more selectivity for α1 and α5 (86).

Yamashita et al. evaluated BZ receptor binding in the brain
of adult patients with RTT using 123I-iomazenil SPECT imaging
(87) and found that BZ receptor binding was significantly
decreased in the frontotemporal cortex of patients with RTT,
and subsequently in the occipital and parietal cortical GM
than in the brain of five healthy male volunteers. Their study
was the first to demonstrate that GABA/BZ receptor-mediated

neurotransmission is inhibited in adult patients with RTT (87).
However, the abovementioned analyses were performed on adult
neurons, and the receptor-binding potential in young patients
requires further evaluation.

Researchers used 11C-flumazenil PET to examine GABAA

receptor-binding abnormalities in patients with Angelman
syndrome and confirmed a significantly decreased uptake of
11C-flumazenil in frontal, parietal, hippocampal, and cerebellar
regions compared to the effects of a patient with a GABRB3
gene deletion (88). Lucignani et al. studied six adults with
Prader–Willi syndrome and found a decreased uptake of 11C-
flumazenil in the insula and cingulate, frontal, and temporal
neocortices than in normal control subjects (89). In previous
studies, GABAergic dysfunction was confirmed in patients with
RTT. Theoretically, high-resolution PETGABA receptor imaging
to examine GABAA receptor-binding abnormalities in patients
with RTT is feasible.

Proton MRS used for GABA detection can measure GABA
concentrations within a voxel of interest. This approach
theoretically measures the total GABA contents of the voxel
(that is, the intracellular and extracellular contents and those
involved in metabolism or neurotransmission). It cannot be
discriminated between GABA levels in different cell types, which
limit its application in addressing cell- and network-specific
GABA abnormalities. The development of the MEGA-PRESS
sequence can quantify GABA concentrations in the human brain
in vivo. Meanwhile, GABAA/BZ receptor PET imaging may
measure the changes in synaptic GABA concentrations.

In the future, the combination of GABA PET with proton
MRS in the same subjects on PET–MRI platforms might be
more accurate in investigating the dysfunction of synaptic vs.
nonsynaptic GABA in RTT (90).

Magnetic Resonance Spectroscopy
In vivo, MRS can detect important cerebral metabolites,
including N-acetyl aspartate (NAA), total choline (Cho), total
creatine (Cr), and glutamate/glutamine, offering the potential
to reveal regional cerebral metabolisms in RTT noninvasively.
MRS has revealed decreased NAA levels in both the GM and
WM (6). The identified regional metabolic abnormalities include
significantly lower NAA concentrations in frontal and parietal
lobes, the insular cortex, and the hippocampus in RTT, reflecting
a reduced neuronal and dendritic size and decreased neuronal
function (91). Studies have reported that the average Cho
concentration was higher in patients with RTT possibly due to
gliosis than the control group, but there were no significant
differences in regional Cho and Cr concentrations. There was
a higher Cho/NAA ratio in the frontal and parietal GM/WM,
insular GM, and hippocampus and a lower NAA/Cr ratio in
the frontal cortical GM, parietal and temporal WM, insula, and
putamen of RTT subjects compared to controls (92). Increased
glutamate in MRS studies suggests the presence of increased
glutamate–glutamine neurotransmitter cycling at the synapses in
RTT, consistent with the increased glucose levels recorded in the
frontal regions in PET studies and the increased glutamate/N-
methyl-D-aspartate receptors identified in postmortem studies
(93, 94).
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Magnetic resonance spectroscopy detected the
abovementioned cerebral metabolites and has revealed the
distribution of other metabolites. In animal studies, a low level of
Myo-inositol measured byMRS was a characteristic of the mouse
model of RTT (46). One 31P MRS study revealed a compelling
reduction in ATP and phosphocreatine (PCr) in MECP2-null
mice that may account for the mitochondrial pathogenesis and
reflect significant impairments in brain energy metabolism
(46). Researchers have detected important brain anatomical and
metabolic differences between C57Bl/6 and MECP2-/y mice
using a multimodal MRI/MRS approach (46). Animal studies
can lay the foundation for applying multimodal imaging in
humans with RTT.

DISCUSSION AND FUTURE DIRECTIONS

While there is still no cure for RTT, the fundamental
research discoveries achieved over the past few decades
have enabled to set the basis for the development of new
potential therapies. Therapeutic approaches for RTT are
divided into the following three categories: symptom treatment,
pharmacological modulators of downstreamMECP2 targets, and
genetic interventions (95). Therefore, it is necessary to search
for neurofunctional markers to track drug safety and treatment
response. A longitudinal brain MRI study of RTT has shown that
MRI may reveal the efficacy of treatment interventions on the
neuroanatomy, particularly across the critical neural networks
that govern classical RTT symptoms (96).

Furthermore, early diagnosis and concerted rehabilitation
efforts will be essential for improving the efficacy of therapies
for RTT. Meanwhile, as RTT is characterized by complex clinical
symptoms progressing through the different stages over time and
varying from one individual to another, clinicians need novel
measures that can reflect multilevel changes at several levels (95).
Being at the interception between etiology, clinical diagnosis,
and treatment, neuroimaging applications to RTT need to be
further developed. In this review, we have summarized a few

imaging literature studies on RTT with MECP2 mutations and
compared various imaging modalities to clarify their strengths
and weaknesses (Table 2). As only a few studies have been
conducted in this series of patients, this field of research should
still be considered in its early stages. We, therefore, believe that
there is still ample space for further neuroimaging studies on
RTT, taking into account the following research priorities.

First, we must improve research on MRI morphologic
imaging of patients with RTT by comparing the identified
characteristics to those of the normal development population
and summarizing the imaging characteristics of abnormal
brain morphologic development in patients with RTT with
different disease stages and phenotypes (97). Second, NODDI
technology will be used to explore the imaging characteristics
of brain microstructural changes in patients with RTT at
different stages and phenotypes. It is expected that NODDI
technology will play a significant role in the early diagnosis of
this disease and the evaluation of therapeutic efficacy. Third,
basic studies have discovered that MECP2 gene mutations lead
to abnormalities in many downstream neurons and related
nerve signaling pathways, but the detailed mechanism is still
not fully clarified, and it is necessary to develop specific
neuroimaging methods/sequences or multimodal imaging to
dynamically observe the abovementioned changes in the brain
in vivo. Pharmacological modulators of downstream MECP2
targets are being developed, and neuroimaging will play an
essential role in future patient-specific drug selection and
drug efficacy evaluation. Fourth, multiple MRI modalities
(multimodal MRI/MRS approach, fusion imaging with ASL
and dMRI, or fusion imaging with MRI and PET) and
various learning algorithms, like the combination of NODDI
and surface-based analyses, have been designed to provide
personalized data. Machine-learning methods, such as deep
learning-based segmentation of brain tissues from dMRI, have
been proposed and achieved a high degree of accuracy (98),
which will further apply to RTT. Lastly, exploring combinations
with nonimaging biomarkers and further identifying those
biomarkers’ longitudinal trajectories and orders will point

TABLE 2 | Strengths and weaknesses of various imaging modalities in RTT with MECP2 mutation*.

Imaging modalities Strengths Weaknesses

Morphologic MRI

Structural analysis High spatial resolution and contrast, great gray/white matter delineation Poor contrast in younger population, especially children

Quantitative analysis Find changes in surface or volume of multiple brain regions under 1 year old, so disadvantageous for whole-brain analysis

Diffusion MRI

DTI Accurately characterize brain microstructure in vivo, high sensitivity Non-specific, can’t adequately model biological system

NODDI More precise delineate microstructure, high sensitivity and specificity High requirements on machine, sequence and image capture

Tractography More precise delineation of specific fiber pathway High requirements on image captures and post-processing

CBP imaging

SPECT/PET Excellent method for measuring CBF, semi-quantitative analysis Radioactivity limits its use in young children, low resolution

ASL No radioactivity, noninvasive, repeatability, quantitative High image require, whole-brain coverage scan takes long time

Metabolism imaging

SPECT/PET High sensitivity and specificity, target imaging, quantitative Radioactivity, specific imaging agents are difficult to develop

MRS No radioactivity, noninvasive, high specificity, quantitative Difficult to develop imaging sequences for specific substances

*ASL, arterial spin labeling; CBF, cerebral blood flow; CBP, cerebral blood perfusion; DTI, diffusion tensor imaging; MECP2, methyl-CpG binding protein gene 2; MRI, magnetic resonance

imaging; MRS, magnetic resonance spectroscopy; NODDI, neurite orientation dispersion and density imaging; PET, positron emission tomography; RTT, Rett syndrome; SPECT, single

positron emission CT.
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FIGURE 1 | Future directions of multimodal neuroimaging in Rett syndrome (RTT) with MECP2 mutation.

to the most potential combinations (99). Calabrese et al.
used diffusion tensor magnetic resonance histology to track
microstructural changes in the rat brain throughout normal
postnatal neurodevelopment and then correlated these changes
with the changes in the cytoarchitecture. They also provided a
comprehensive database of image sets as a foundation for future
studies (2). Consequently, a combination of gene-neuroimaging-
pathophysiology and clinical phenotype analyses can effectively
characterize disease states in the RTT population (Figure 1).

CONCLUSION

In this review, we have attempted to summarize the
findings from the conducted MRI to PET studies over the
past few decades on RTT with MECP2 mutations. MRI
morphologic imaging is particularly sensitive to brain structural
abnormalities in patients with RTT, while dMRI provides
valuable information on brain microstructural changes
and fMRI enables elucidating the underlying dysfunctional
mechanisms. Finally, MRS and PET modalities play a crucial
role in the exploration of metabolic alterations in this complex
neurodevelopmental disease. We emphasize that the field has
not flourished in the area of pediatric disorders compared
to adult neurodegenerative disorders. There also remains an
enormous opportunity to improve our understanding of RTT
through molecular imaging with MRI and PET technology.
These advances will be of great significance for the clinical
diagnosis of RTT and the formulation of individualized
treatment plans.
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