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Abstract: Although systemic reactions caused by allergenic proteins present in venoms affect a
small part of the world population, Hymenoptera stings are among the main causes of immediate
hypersensitivity responses, with risk of anaphylactic shock. In the attempt to obtain therapeutic
treatments and prophylaxis to hypersensitivity responses, interest in the molecular characterization
of these allergens has grown in the scientific community due to the promising results obtained
in immunological and clinical studies. The present review provides an update on the knowledge
regarding the immune response and the therapeutic potential of Antigen 5 derived from Hymenoptera
venom. The results confirm that the identification and topology of epitopes, associated with
molecular regions that interact with antibodies, are crucial to the improvement of hypersensitivity
diagnostic methods.
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Key Contribution: Antigen 5 has been frequently reported as the most allergenic venom component
in almost all species of the genus belonging to family Vespidae. The high similarity among the Ag
5 s from different social wasp species has been used to explain the broad immune cross-reactivity
among these proteins. Investigations of new variants of Ag 5 in other species of vespids are necessary
for the development of more precise methodologies to aid in the accurate diagnosis of Vespidae
venom allergies.

1. Introduction

The order Hymenoptera (Apocrita, Aculeata) is the main group among insects, which consists
of three main families: Vespidae (comprising the best-known eusocial wasps from genera Polistes,
Polybia, Vespa, Vespula and Dolichovesvula) [1–3], Formicidae (ants) and Apidae (bees). Social wasps are
responsible for the increasing number of accidents recorded. In southeastern Brazil, Polybia paulista
is one of the most relevant social wasp from the medical point of view, justifying the need for
a more detailed characterization of the action mechanisms of the major proteins and allergenic
compounds of its venom. Although the anaphylactic shock associated with immediate hypersensitivity
reactions caused by allergenic proteins present in venoms affects a small part of the world population,
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Hymenoptera stings are among the main causes of systemic allergic responses [4,5], representing 9 to
23% of hypersensitivity reactions [5,6].

The classical symptoms of stings are local burning, followed by edema and pain that can last for
long periods. In addition, respiratory and circulatory reactions are common in allergic conditions [4,5].
The amount of venom to which the person has been exposed and the level of individual sensitivity to
allergens should be taken into account while evaluating the immunological and clinical response [6–8].
The allergen components of the venom trigger the immune system response by producing specific
antibodies [9]. In more severe stages, the immune response can lead to intense systemic inflammatory
processes and fatal anaphylaxis reactions [4–6].

The molecular characterization of these allergens has brought promising results in clinical and
immunological studies, supporting the development of therapeutic treatments and the prophylaxis
of hypersensitivity responses. In addition, such knowledge can provide a better understanding of
the allergic processes and allow the identification of epitopes and molecular regions interacting with
antibodies [6,8,10].

Venom

Eventual stings caused by Hymenoptera account for 20 to 40% of all types of anaphylaxis
reported per year [11,12]. These venoms are composed of a complex mixture of proteins, enzymes,
biologically active peptides and low molecular weight molecules, which are responsible for prolonged
pain, edema, erythema, and allergic and systemic reactions [13,14]. Systemic reactions occur mainly in
allergic patients, and clinical symptoms include generalized urticaria, angioedema, blood pressure
drop, bronchospasm, cardiac arrest, and respiratory and anaphylactic shock [12,15–17].

Allergy diagnosis includes the history of a systemic reaction, a positive response to the skin
test and the detection of venom-specific IgE antibodies. However, correct diagnosis is not always
easy due to problems and limitations of both tests, especially when it is not possible to identify the
species [18,19]. Moreover, allergic patients may present positive reactions to more than one insect
venom of the Hymenoptera order, which may be caused by the cross reactivity of one or more allergens,
considering the similarity between their primary sequences [12,15–17,20–24]. False-positive results
can also be observed due to the cross-reactivity of patient IgE against the cross-reactive carbohydrate
determinants (CCDs) present in most Hymenoptera venom allergens [23–27]. Having these difficulties
solved and the correct diagnosis, immunotherapy with the whole venom of culprit insect represents
the most effective treatment to reduce the risk of subsequent systemic reactions.

Wasp venom contains a variety of proteins such as phospholipases, hyaluronidases, Antigen 5,
phosphatases, and serine proteases. Phospholipases have been chemically characterized in Apis melífera [28],
venoms of neotropical wasps and ants [29–33], being responsible for the hydrolysis of the plasma
membrane phospholipids, allowing the diffusion of some toxins into the cells. Phospholipase is
also responsible for the formation of edema [34]. Hyaluronidase is a 45 kDa glycoprotein [35] that
hydrolyzes hyaluronic acid, a polysaccharide of high molecular mass located in the cellular interstice,
with the property of maintaining cell adhesion. By the action of hyaluronidase, hyaluronic acid is
transformed into small fragments, significantly reducing its viscosity and facilitating the diffusion of
the venom components into the cells [36,37]. Phosphatases are found in large quantities in bee venom.
These enzymes act as important allergens [38]. The venom of the wasp P. paulista, presents two types
of phosphatase activity: acid and alkaline [32]. The esterases are important in the cell lysis process;
however, its specific function has not been defined [38].

Social insect venoms do not contain significant amounts of proteases [39–41]. However, high protease
activity has already been observed in venoms of the social wasp Polistes infuscatus, in Eciton burchelli
ants and Bombus pennsylvanicus bees [38,42], and some protease activity was found in venoms of
Hymenoptera: Vespidae, commonly found in São Paulo State [43]. Proteases catalyze the breakdown
of peptide bonds into proteins, and the term “peptidases” may be used to denote any enzyme that
hydrolyzes this type of linkage [44].
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2. Antigen 5

King et al. (1978) identified a protein of approximately 23 kDa of Dolichovespula maculata venom,
naming it Antigen 5 (Ag 5) [45]. Since then, Antigen 5 has been frequently reported to be the most
allergenic venom component in different species of social wasps, such as those belonging to the
genus Dolichovespula, Vespa, Vespula, Polistes and Polybia [46–51]. Interestingly, Ag 5 also exhibits
sequence homology with other proteins from various tissues, such as ant venoms, tomato leaf tobacco,
mammalian testis proteins and human brain tumor [52].

This antigen belongs to a superfamily composed of proteins that are rich in cysteine residues
(CRISP-Cysteine-Rich Secretory Proteins). Analysis of its domains have showed that it belongs to
a CRISP subgroup, antigen 5 and Pr-1 (CAP) [52]. Ag 5-related proteins are also found in glial cell
tumors [53]. According to Milne et al. (2003), Ag 5 is a protein that presents a high similarity of
sequence with the protease of the venom of the family Conidae [54]. However, its biological function
remains unknown and there is no knowledge of its biological action as a component of the venom of
Vespidae family [47]. Animal studies have shown that, despite having no toxic action, Ag 5 may be
associated with hypersensitivity responses [10].

2.1. Superfamily CAP

The superfamily CAP [cysteine-rich secretory proteins (CRISPs), Ag 5 and pathogenesis-1 (PR-1)
related proteins] was named after the recognition of sequence similarity between CRISPs in eukaryotes,
reptile venoms, plant pathogenic defense proteins or other stress responses (PR, PR-1) as found in
tobacco leaf and tomato (P14-A-PRPs), CRISP and mammalian reproductive organ (TPX-1) specific
proteins. CAP comprises three domains: N-terminal PR domain, a hinge region and a cysteine-rich
C-terminal domain [55]. Evidence suggests that CAPs plays an important role in the reproductive
function, immune system, tumors and chronic diseases, organogenesis, and development of mammals.
Asojo et al. (2005) reported a high similarity in the primary sequence and three-dimensional
structure of the Na-ASP-2 protein (from CRISP-1 family and the one present in the nematode parasite
Necator americanus) with Ag 5 of wasp venom. The potential of this protein to be used in the development
of vaccines containing blocking or ligand antibodies to disrupt the cellular activation responses has
already been demonstrated [52,56].

2.2. Isoforms of Ag 5

Antigen 5 isolated and structurally characterized from the venom of the wasp Polybia scutellaris
rioplatensis [49,57,58] has 207 amino acid residues, eight cysteine-rich residues forming four
disulfide bonds, molecular mass around 23 kDa and isoelectric point around nine [36,47,59].
The three-dimensional structure of venom Ag 5 of Vespula vulgaris was determined by X-ray
crystallography, revealing that it has a secondary structure composed of five α-helices and four
β-sheets [59]. In proteomic studies, six isoforms of the Ag 5 of P. paulista have been identified [36].
The most abundant isoform has been extensively analyzed through mass spectrophotometry,
and several of its post-translational modifications have been determined. Its structural model (Figure 1)
showed three α-helices, one helix 310, and four β-sheets covering 28% and 17%, 9% of its sequence.
Linear epitopes of this form have also been identified, mapped and immunologically characterized [48,60].

Antigen 5 from the venoms of Polybia paulista (Poly p 5) and of P. scutellaris rioplatensis presented
a high similarity (59.3–93.7%) with its counterpart in the other Vespidae venom. Considering the
diversity of substances in venoms and the scarce knowledge on the immunological potential of their
allergenic components, such as the Ag 5 protein, further studies are needed to elucidate the processes
involved in sensitization and allergic response [61]. The in-depth knowledge on the antigen-directed
immune response presented in the venom of Hymenoptera may increase therapeutic possibilities for
hypersensitive patients.
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Figure 1. Three-dimensional molecular model of the antigen 5 allergen from social wasp Polybia 
paulista venom [60]. Reprinted with permission from [60], 2014, American Chemical Society.  
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stimulates proinflammatory gene expression, such as the inducible synthase genes (iNOS) and 
cyclooxygenase-2 (COX-2). Macrophages, depending on the microenvironment, can differentiate into 
distinct types: classically activated macrophages (M1) and alternatively activated macrophages (M2) 
with anti-inflammatory profile [65,66]. The inducible isoform of nitric oxide synthase (iNOS) 
stimulates the production of nitric oxide (NO) from L-arginine [67], one of the functions of 
macrophages M1 [68]. Cytokines IL1, IL6, IL-12, and TNF-α are known to have inflammatory 
potential, whereas IL-10 and TGF-β act in the modulation and inhibition of the immune response 
[69]. The gene encoding the iNOS enzyme is controlled by NF-κB, which plays a key role in 
inflammatory and immune cell responses [70]. The NF-κB transcription complex is present in the 
cytoplasm, bound to inhibitory proteins called IκB, maintaining them in the inactive form. Inhibition 
of NF-κB is associated with inflammatory diseases and can be a potential therapeutic target [71]. 

As noted above, exposure to this class of venom insect triggers a type I hypersensitivity reaction. 
IL-4 induces CD4 + T to differentiate into Th2, crucial for the entire development of the 
hypersensitivity framework. Immunotherapies for this type of response aim to increase suppressor 
cytokines, such as IL-10 and TNF-β and decrease IL-4 secretion [72]. 

2.4. Cross Reactivity 

One of the main obstacles to find an effective treatment for hypersensitivity responses is the 
occurrence of unspecific or undefined reactions, i.e., immune cross reactivity, a consequence of the 
significant similarity between the primary sequences of the allergenic proteins [50] and the presence 
of cross-reactive carbohydrate determinants (CCDs) of N-linked glycans [73–75] in some 
Hymenoptera venom allergens [76,77].  

Generally, the diagnostic of allergic response is based on the patient’s clinical history, detection 
of specific IgE on the skin and/or blood of the allergic individual. When usual analyses are not 
conclusive, basophil activation or histamine releasing tests are performed to identify the culprit 
venom [26]. However, false-negative responses may occur due to the low amount of IgE detected or 
the low level of sensitivity of the test applied. False-positive responses can be caused by cross-
reactivity with allergens from different venoms, whose epitopes have similar conformations [78,79]. 

Figure 1. Three-dimensional molecular model of the antigen 5 allergen from social wasp Polybia paulista
venom [60]. Reprinted with permission from [60], 2014, American Chemical Society.

2.3. Immune Response to Allergens

The immune responses to wasp venoms are complex and can include systemic allergic/hypersensitivity
disorders [62]. In general, the wasp venom leads to a type I hypersensitivity reaction [5,8,10]. The antigens
induce a helper (Th) 2 T lymphocyte cellular response profile, characterized by the production of specific
IgE antibodies, as well as the secretion of interleukins (IL) -4 and IL-5 [63,64]. In the immune response,
interferon gamma (IFN-γ), a proinflammatory cytokine, stimulates proinflammatory gene expression,
such as the inducible synthase genes (iNOS) and cyclooxygenase-2 (COX-2). Macrophages, depending on
the microenvironment, can differentiate into distinct types: classically activated macrophages (M1) and
alternatively activated macrophages (M2) with anti-inflammatory profile [65,66]. The inducible isoform
of nitric oxide synthase (iNOS) stimulates the production of nitric oxide (NO) from L-arginine [67],
one of the functions of macrophages M1 [68]. Cytokines IL1, IL6, IL-12, and TNF-α are known to have
inflammatory potential, whereas IL-10 and TGF-β act in the modulation and inhibition of the immune
response [69]. The gene encoding the iNOS enzyme is controlled by NF-κB, which plays a key role
in inflammatory and immune cell responses [70]. The NF-κB transcription complex is present in the
cytoplasm, bound to inhibitory proteins called IκB, maintaining them in the inactive form. Inhibition
of NF-κB is associated with inflammatory diseases and can be a potential therapeutic target [71].

As noted above, exposure to this class of venom insect triggers a type I hypersensitivity reaction.
IL-4 induces CD4 + T to differentiate into Th2, crucial for the entire development of the hypersensitivity
framework. Immunotherapies for this type of response aim to increase suppressor cytokines, such as
IL-10 and TNF-β and decrease IL-4 secretion [72].

2.4. Cross Reactivity

One of the main obstacles to find an effective treatment for hypersensitivity responses is the
occurrence of unspecific or undefined reactions, i.e., immune cross reactivity, a consequence of the
significant similarity between the primary sequences of the allergenic proteins [50] and the presence of
cross-reactive carbohydrate determinants (CCDs) of N-linked glycans [73–75] in some Hymenoptera
venom allergens [76,77].

Generally, the diagnostic of allergic response is based on the patient’s clinical history, detection of
specific IgE on the skin and/or blood of the allergic individual. When usual analyses are not conclusive,
basophil activation or histamine releasing tests are performed to identify the culprit venom [26].
However, false-negative responses may occur due to the low amount of IgE detected or the low level of
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sensitivity of the test applied. False-positive responses can be caused by cross-reactivity with allergens
from different venoms, whose epitopes have similar conformations [78,79].

The high similarity between the primary sequences of the allergens of several species of
social wasps promotes a wide potential for the occurrence of cross reactivity between the different
species. The similarity between Ag 5 from different social wasp species could explain the broad
cross-reactivity between proteins. Posttranslational modifications (PTMS) of different species, such as
glycosylation, could also be a cause of cross-reactivity of the Hymenoptera venom [47,60]. The Ag
5 allergen demonstrated cross reactivity with the venom of other species as Agelaia pallipes and
Apis mellifera, being immunoreactive in the experiments performed [51,80,81]. The presence of IgE
against carbohydrate-determining regions (CCD) occurred in more than 80% of the samples positively
tested for both species [82].

Studies on the primary structure and immunological response of the Ag 5 from venom from
wasp species (endemic in the northern hemisphere) have reported that the identity of Ag 5 sequences
in species of the same genus is approximately 98%, whereas among the different genera, such as
Vespula and Polistes, this value is approximately 57% (Figure 2) [55]. According to the allergen list from
the International Union of Immunological Societies (IUIS), Ag 5 is present in venoms of almost all
species of the genus belonging to family Vespidae, including Solenopsis ants (Solenopsis invicta, Sol i 3;
Solenopsis richteri, Sol r 3; Solenopsis saevissima, Sol s 3), whose allergens have high similarity to Ag 5
from other Vespidae venoms [83].

Figure 2. Multiple alignment of primary sequences of venom allergen Ag 5 of wasps (Polybia, Polistes,
Dolichovespula, Vespula and Vespa) with sequences from other members of the superfamily CAP
(Solenopsis invicta, Solenopsis richteri, Tityus serrulatus, Solanum lycopersicum and Nicotiana tabacum).
Data referenced in GenBank and adapted.

Nevertheless, the IgE associated with the cross-activity between Ag 5 of V. vulgaris and Sol i 3 from
Solenopsis invicta, which show 44% similarity on amino acid sequence [55], has not been investigated.
The fact that the Ag 5 homologous proteins found in some ant venoms do not exhibit cross-reactive
antigen reactivity with the same protein in vespid venoms is a consistent result regarding the low
degree of structure conservation and the length of the loops in these allergens. However, some cross
reactivity has been observed between Ag 5 of vespids and the homologous proteins (from CRISP
family) of other animals [53]. Müller et al. [84] observed cross reactivity in human serum between
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V. vulgaris Ag 5 venom allergen and mammalian testis proteins belonging to the family of cysteine-rich
secretory proteins (hCRIsp).

Van Vaerenbergh et al. [18] demonstrated the expression of a molecule similar to wasp venom
Ag 5 of Apis mellifera bee venom and named apidaecina. In addition, the authors reported that this
molecule is expressed in different tissue types, such as the hypopharyngeal, brain, and midgut glands,
more abundantly in the brain. The comparative analysis of this sequence was clearly paralleled to
the sequences of Ag 5 already described for wasp (Vespula, Vespa, Dolichovespula, Polistes, Polybia and
Rhynchium) and ant (Pachycondyla and Solenopsis) venoms [18,83].

Comparing the primary sequences of Dol m 5 with those of the defense proteins related to the
pathogenicity of these viruses in plants, 28% of conservation was found. When consuming tomato
products or smoking, these patients developed antibodies against PRPs, which in turn showed cross
reactivity with Dol m 5 of Dolichovespula maculate [59,85].

Despite this high similarity between the Ag 5 proteins of the P. paulista and P. scutellaris venoms,
the component was described as a hypoallergenic molecule in P. scutellaris [44,65]. This result is
conflicting with studies on P. paulista [34,35] and other wasps, such as Vespula vulgaris (Ves v 5) [58,86–88].
Antigen 5 from P. scutellaris was reported as a variant with reduced reactivity to specific IgE and
anaphylactic activity and so, it was considered an important allergen to be used in immunotherapy
of allergic patients [49]. Thus, the importance of cross-reactivity among insect venoms in clinical
practice is unquestionable, since these interactions have a direct impact on the diagnosis and on the
definition of the best therapeutic approach. Using recombinant Ag 5, immunologically and structurally
fully characterized, from seven allergy-relevant species from Vespoidea group, Schiener et al. [16,20]
investigated the immunological IgE cross-reactivity through ImmunoCAP, ELISA, cross-inhibition and
basophil activation test (BAT). They concluded that Ag 5 is not an appropriate diagnostic marker for
vespid venom, since high levels of cross-reactivity were observed in many of the analyses performed.
Therefore, the investigation of new Ag 5 variants in other vespid species and the development of more
accurate methodologies may assist the precise diagnostic of wasp venom allergies.

2.5. Potential of the Molecule Ag 5 in Immunotherapy

Considering the evolutionary diversity of proteins from CAP superfamily, several functional
relations have been proposed for them, such as the regulation of the immune system [52]. Ag 5 is part of
the salivary proteins that supposedly function in the suppression of the host immune system or in the
prevention of coagulation [89–91]. Ag 5 has been demonstrated to trigger immune and inflammatory
responses via mast cell activation. This activation occurs when molecules associate with G-protein
receptors through different mechanisms: (a) when polycationic peptides bind to the G-protein receptors
present in cell membranes and βγ subunits stimulate phospholipase C, leading to the release of
mediators [92] or (b) by the cross-linking of IgE receptors on the cell membrane. This results in the
aggregation of high affinity receptors FcεRI and the secretion of substances that may have effector,
immunoregulatory or autocrine actions.

Mast cell activation generates three types of biological responses: secretion of preformed granule
contents through a regulated process of exocytosis, synthesis and secretion of lipid mediators, and synthesis
and secretion of cytokines. These responses occur due to FcεRI cross-linking, which initiates a
signaling cascade in the mast cells, involving protein tyrosine kinases and leading to the release of
mediators [93,94].

The evidence of the biological function of the Ag 5 is related to the poor inhibition of trypsin in
human glioblastoma cells [95]. Trypsin inhibition has not been reported for other species of wasps
and bees. Venom Ag 5 from several wasp species has been expressed as recombinant proteins in both
prokaryotic and eukaryotic systems [87]. Thus, expression of the Ag 5 allergen has the potential to
provide a large number molecule for diagnosis and therapy. In general, recombinant allergens have
been considered a promising alternative for the improvement of specific allergen immunotherapy and
in in vitro diagnosis of allergic sensitization [96].
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Bohle et al. [97] provided evidences that the T-cell immune response to Hymenoptera allergens
differs from the typical Th2-dominated response observed to the most inhalant allergens. Their report
showed that the immune response to Ag 5 involves high secretion of IL-4 and low levels of
IFN-gamma. Surprisingly, the secretion of IL-10, which commonly is associated with the suppression
of allergen-specific T cell responses in healthy individuals, had no differences between Ves v 5-specific
T cell clones from allergic and non-allergic individuals [97].

Antigens 5 is an inappropriate marker for differential IgE diagnostics in vespid venom allergy
since it can cause extensive cross-reactivity in various diagnostic settings [20]. However, there are few
reports related with immunotherapies with Ag 5 in use [15,16,58]. Although the European guidelines
still recommend the venom immunotherapy with Vespula venom in order to achieve an adequate
protection against Vespa crabro venom, studies with Antigen 5 showed that sensitization may occur.
Immunotherapy, when available, is still the safest method, since venom extracts are available [98].

3. Future Perspectives

Ag 5 is a common allergen found in social wasp venoms and in many different animal and plant
systems. Immunotherapy with venom extracts from social insects is highly effective and widely used
in the treatment of patients with a history of anaphylaxis [87]. Specific immunotherapy is the only
treatment for type I allergies and is based on the accurate allergy history of the individual and the
results of skin and RAST (Radioallergosorbent) diagnoses, which confirm the presence of IgE [99,100].
The risk of inefficiency of specific immunotherapy can be associated with de novo sensitization
to new allergenic proteins (or cross-reacting allergens) to which patient had not presented any
reaction [19]. On the other hand, patients presenting systemic reactions and opposed immunotherapy,
lost sensitivity in the same proportion as those who underwent treatment [101]. One way to reduce
the risk of anaphylaxis during specific immunotherapy is to use modified allergens, with decreased
interaction [102]. Another possibility is the preparation of genetically modified allergens or peptide
allergenic derivatives with reduced allergenic activity that will induce a specific interaction of the
allergen based on IgG antibodies [103]. Although antigen 5 function has not been clarified, the molecule
is a strong candidate to be used in immunotherapy in patients allergic to social wasp venom. It has been
demonstrated that the soluble recombinant form of Poly p 5 (rPoly p 5) obtained through expression in
P. pastoris is allergenic and induces an immune response that occurs qualitatively at the same level as
its natural variant (nPoly p 5) [104]. This finding strongly indicates that this molecule can be effectively
used for the molecular diagnosis of allergies. Studies on the pro-or anti-inflammatory potential of
Ag 5, specifically on its ability to stimulate nitric oxide production or cytokine secretion, may be of
great relevance for the comprehension of the immunomodulatory potential of this protein.
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