
1 3

DOI 10.1007/s00018-013-1480-4 Cellular and Molecular Life Sciences
Cell. Mol. Life Sci. (2014) 71:999–1015

REVIEW

Cellular therapy to target neuroinflammation in amyotrophic 
lateral sclerosis

Federica Rizzo · Giulietta Riboldi · Sabrina Salani · 
Monica Nizzardo · Chiara Simone · Stefania Corti · 
Eva Hedlund 

Received: 12 July 2013 / Revised: 27 August 2013 / Accepted: 16 September 2013 / Published online: 8 October 2013 
© The Author(s) 2013. This article is published with open access at Springerlink.com

potential of these cellular populations, after transplanta-
tion into ALS patients and animal models of the disease, 
in modulating the environment surrounding motor neurons 
from pro-inflammatory to neuroprotective. We also thor-
oughly discuss the recent advances made in the field and 
caveats that need to be overcome for clinical translation of 
cell therapies aimed at modulating non-cell autonomous 
events to preserve remaining motor neurons in patients.
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Abbreviations
ALS	� Amyotrophic lateral sclerosis
ANG	� Angiogenin
APS	� Antigen-presenting cells
BLBP	� Brain lipid binding protein
CHG	� Chromogranin
CNS	� Central nervous system
CCL2	� Chemokine (C–C motif) ligand 2
CCR2	� Chemokine receptor-2
DRG	� Dorsal root ganglia
EAAT	� Excitatory amino acid transporter
fALS	� Familial amyotrophic lateral sclerosis
FGF-1	� Fibroblast growth factor 1
FUS/TLS	� Fused in sarcoma/translocated in 

liposarcoma
GDNF	� Glial cell line-derived neurotrophic 

factor
GFAP	� Glial fibrillary acidic protein
GRPs	� Glial-restricted precursors
HSC	� Hematopoietic stem cells
LPS	� Lipopolysaccharide
MHC	� Major histocompatibility complex
mSOD1	� Mutant superoxide dismutase 1

Abstract  Neurodegenerative disorders are characterized 
by the selective vulnerability and progressive loss of dis-
crete neuronal populations. Non-neuronal cells appear to 
significantly contribute to neuronal loss in diseases such as 
amyotrophic lateral sclerosis (ALS), Parkinson, and Alz-
heimer’s disease. In ALS, there is deterioration of motor 
neurons in the cortex, brainstem, and spinal cord, which 
control voluntary muscle groups. This results in muscle 
wasting, paralysis, and death. Neuroinflammation, charac-
terized by the appearance of reactive astrocytes and micro-
glia as well as macrophage and T-lymphocyte infiltration, 
appears to be highly involved in the disease pathogenesis, 
highlighting the involvement of non-neuronal cells in neu-
rodegeneration. There appears to be cross-talk between 
motor neurons, astrocytes, and immune cells, including 
microglia and T-lymphocytes, which are subsequently 
activated. Currently, effective therapies for ALS are lack-
ing; however, the non-cell autonomous nature of ALS may 
indicate potential therapeutic targets. Here, we review 
the mechanisms of action of astrocytes, microglia, and 
T-lymphocytes in the nervous system in health and during 
the pathogenesis of ALS. We also evaluate the therapeutic 
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NGF	� Nerve growth factor
NSC	� Neuronal stem cell
OPTN	� Optineurin
PFN	� Profilin
PSA-NCAM	� Polysialylated neural cell adhesion 

molecule
RC2	� Radial glial cell marker-2
sALS	� Sporadic amyotrophic lateral sclerosis
SDF-1α/CXCR4	� Stromal cell-derived factor 1α/

chemokine receptor 4
TDP-43	� TAR DNA-binding protein 43
Teffs	� CD4(+)CD25(−) T lymphocytes
TLR	� Toll-like receptor
Tregs	� CD4(+)CD25(high) T lymphocytes
VCP	� Valosin-containing protein

Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurode-
generative disorder characterized by the selective and 
progressive deterioration of cortical, brainstem, and spi-
nal cord motor neurons. This pathological process clini-
cally results in progressive muscle weakness and atrophy, 
spasticity, respiratory failure, and finally death [1]. ALS is 
dominantly inherited in 5–10 % of cases [termed “familial 
ALS” (fALS)], but approximately 90  % of ALS patients 
have no apparent family history and are often termed “spo-
radic” (sALS) [2, 3]. However, the distinction between 
familial and sporadic ALS is somewhat artificial since 
there is a strong genetic component in sALS [4–6]. Over 
the last decades, numerous ALS-causing or ALS-associ-
ated genes have been identified [4, 7–14]. In particular, 
20  % of fALS patients are characterized by toxic gain-
of-function mutations in superoxide dismutase 1 (SOD1) 
[4, 11, 13]. A massive intronic hexanucleotide repeat in 
the C9ORF72 gene is, to date, the most common cause of 
fALS (20–40 %, depending on the population) and sALS 
(10 %) [7, 12]. It is unclear why the GGGGCCn expansion 
repeats in this gene, with as far unknown function, lead to 
ALS. ALS is also caused by mutations in the genes encod-
ing the DNA/RNA-binding proteins: TAR DNA-binding 
protein 43  (TDP43) and fused in sarcoma/translocated in 
liposarcoma  (FUS), the ubiquitin-like protein Ubiquilin 
2 [8], angiogenin, the actin-binding protein profilin [13], 
valosin-containing protein (VCP) (or transitional endo-
plasmic reticulum ATPase), and optineurin [4, 9, 10]. Rilu-
zole is currently the only drug clinically proven to improve 
survival of ALS patients, but its action is not clearly under-
stood and survival is only extended 2–3 months, with little 
functional improvement [15].

While motor neurons are the main target in ALS, non-
neuronal cells significantly contribute to motor neuron 

dysfunction and death. Indeed, mice chimeric for mutant 
SOD1 (mSOD1) show prolonged life span. Here, wild-type 
motor neurons in close proximity to mSOD1-containing 
non-neuronal cells degenerated in an ALS-like way [16]; 
while mSOD1-containing motor neurons surrounded by 
wild-type non-neuronal cells appeared less affected. Inter-
estingly, removal of mSOD1 from motor neurons delayed 
the onset and early progression of disease, but did not affect 
the late progression phase [17, 18]. ALS is not classified as 
an auto-immune disorder, but neuroinflammatory processes 
elicited by microglia and astrocytes appear to play funda-
mental roles in ALS pathology [19–41]. Indeed, removal of 
mSOD1 from either microglial cells or astrocytes in fALS 
mice prolonged the late progression of the disease [17, 40]. 
It is apparent from these studies that in ALS there is com-
munication between motor neurons, astrocytes, and dis-
tinct immune cells with consequent activation at sites of 
neuronal injury. Neurotoxic signaling from motor neurons 
appears to stimulate cells to produce reactive oxygen spe-
cies and pro-inflammatory cytokines, causing motor neuron 
stress, cell damage, and initiating a self-propagating cycle 
of progressive cell death [18, 41, 42]. Hence, activated cells 
shift from an anti-inflammatory and neuroprotective role to 
one that is pro-inflammatory and neurotoxic. The cell pop-
ulations that participate in this neuroinflammatory reaction 
include microglia, astrocytes, and T lymphocytes ([18, 28, 
41, 42]; Fig. 1). Microglia, key players in brain damage and 
disorders, can play a deleterious or beneficial role based 
on their intrinsic characteristics, their interactions with the 
microenvironment, and the presence of pathogens [18]. 
The behavior of microglia is closely related to the action 
of T lymphocytes and astrocytes. Astrocytes are of neuroe-
ctodermal origin and do not belong to the immune system, 
but may take part in the immune response, particularly in 
pathological conditions involving neuronal damage [43]. In 
ALS, astrocytes acquire toxic attributes and subsequently 
contribute to motor neuron degeneration [32, 36, 38, 39]. 
Infiltrating T lymphocyte subpopulations appear to contrib-
ute to an endogenous neuroprotective response in ALS by 
increasing the protective capacity of microglia and limiting 
their toxic responses [26–29].

Neuroinflammation plays an important role in disease 
progression also in Alzheimer’s and Parkinson disease 
[44, 45]. Thus, finding appropriate tools to effectively tar-
get neuroinflammation could be of vital importance to 
delay disease progression in several neurodegenerative 
disorders. Multiple compounds with anti-inflammatory 
properties were previously tested in fALS mSOD1 animal 
models with positive outcomes in terms of weight loss, 
survival, and functional performances. The compounds 
tested include: minocycline, a broad-spectrum tetracycline 
antibiotic, which decreases the ability of T cells to contact 
microglia, subsequently impairing cytokine production 



1001Cell therapy targeting neuroinflammation

1 3

[46–48]; thalidomide and lenalidomide, which modulate 
the production of inflammatory cytokines TNF-alpha, Il-1, 
IL-6, IL10, and IL-12 [49–51]; celecoxib, a sulfonamide 
nonsteroidal anti-inflammatory drug (NSAID) and selec-
tive inhibitor of cyclooxygenase 2 (COX-2), which results 
in reduced production of inflammatory prostaglandins [52]; 
rofecoxib plus creatinine, where rofecoxib is a NSAID and 
COX-2 inhibitor, which causes an increased risk of heart 
attack and stroke with long-term usage [53]; sulindac, a 
NSAID, which inhibits COX-2 [54] and the anti-diabetic 
drug pioglitazone, which is an agonist of the peroxisome 
proliferator-activated receptor gamma with anti-inflamma-
tory effects [55, 56]. Based on the positive results in ALS 
mouse models, clinical trials were conducted with mino-
cycline [57], thalidomide [58], celecoxib [59], cyclophos-
phamide [60, 61], and pioglitazone [62, 63]. Unfortunately, 
none of the trials resulted in an improved outcome for ALS 
patients. The minocycline trial in fact even showed nega-
tive results for treated patients [64]. There could be several 
reasons for the failure of these clinical trials: (1) Moder-
ately positive results from animal studies with presympto-
matic ALS mice do not necessarily translate into successful 
clinical trials when the same compound is given to patients 
with advanced stages of ALS. This is not a reflection of any 

lack of utility of mSOD1 fALS mouse models, but rather 
illustrates that a small positive effect in these mice should 
predict low success in humans. Nonetheless, it will be of 
high relevance to validate therapies in additional genetic 
models of ALS, when such are available. (2) The patient 
selection for the trials might not have been optimal. While 
neuroinflammation occurs in ALS patients independent of 
the cause of the disease and thus should be a shared tar-
get, it is however likely that patients will respond differ-
ently to certain therapies depending on their progression 
rate and disease state when receiving the treatment. Thus, 
understanding when and which patients would benefit more 
or less from specific therapies is a crucial, but challenging 
task. (3) The use of suboptimal dosing regimens in clinical 
trials could give false-negative results.

Neuroinflammation may be better modulated through 
cell-based therapies. Here, we discuss the potential of cel-
lular therapy to modulate the activity of non-neuronal cells, 
including astrocytes, microglia, and T-lymphocytes, which 
contribute to the disease progression of ALS. Dysfunctional 
non-neuronal cells could be replaced by cell transplantation 
to modulate the inflammatory environment surrounding 
motor neurons. These pathways are not currently controlled 
by pharmaceuticals used in clinics.

Fig. 1   Cross-talk between motor neurons, astrocytes, and immune cells (including microglia, T lymphocytes, and macrophages) in a healthy 
individual (a) and an ALS patient (b)
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Astrocytes

Astrocytes are the most abundant cellular population in the 
CNS and outnumber their neuronal counterparts approxi-
mately tenfold. In physiological conditions, astrocytes play 
key housekeeping roles offering structural, metabolic, and 
trophic support to motor neurons [65]. They are fundamen-
tal to the catabolism and synthesis of amino acids and neu-
rotransmitters in the CNS. Astrocytes represent a glycogen 
reserve and are very important in the antioxidant protec-
tion of the brain, controlling the susceptibility of neurons 
to noxious stimuli [65–67]. During development, astrocytes 
establish tight associations with endothelial cells that form 
blood vessels and with neurons as these establish new syn-
apses and organize circuits. The interaction between these 
cell types aids in blood brain barrier (BBB) development 
and maintenance and particularly in the control of cerebral 
blood flow [68, 69]. Astrocytes also influence neuronal 
excitability, regulate neurotransmitter concentrations, and 
integrate and process synaptic information. Astrocytes are 
involved in the exchange of information between neurons. 
Thus, in addition to the traditionally “bipartite” communi-
cation between the pre- and post-synaptic terminals of neu-
rons, CNS functions depend on a network defined as the 
“tripartite synapse” that includes both neurons and astro-
cytes ([70]; Fig. 2). Indeed, astrocytes actively control the 
structural and functional plasticity of synapses throughout 
the CNS [70–74].

In pathological conditions, such as ALS, reactive 
astrogliosis occurs, in which astrocytes are modified 
both molecularly and morphologically [21–25, 75]. The 

astrocytes modify their phenotype, adopting a cellular mor-
phology characterized by hypertrophic nuclei and cell bod-
ies with distinct long and thick processes with increased 
glial fibrillary acidic protein (GFAP). Their morphologi-
cal activation is accompanied by changes in expression 
levels and/or type of markers such as cytoskeletal pro-
teins, cell surface and matrix molecules, growth factors, 
and cytokines [76]. In addition to GFAP, precursor mark-
ers including vimentin, nestin, radial glial cell marker-2, 
and brain lipid binding protein are up-regulated, mostly in 
the initial phase after damage [75, 77]. The morphologi-
cal modifications of astrocytes are associated with physi-
ological changes, including in the molecules that astrocytes 
secrete; thus, cells shift from a “neuroprotective” to a “neu-
rodegenerative” role towards motor neurons, and thus are 
potential therapeutic targets [78]. A population of astro-
cytes derived from SOD1G93A fALS rats present an aber-
rant phenotype (referred to as “AbA cells”) with increased 
proliferative capacity. These AbA cells display astrocytic 
markers, particularly S100β and connexin 43, but lack the 
excitatory amino acid transporter (GLT-1) and the glial 
progenitor marker NG2 glycoprotein. Moreover, these 
AbA cells secrete soluble factors that induce motor neuron 
death [78, 79]. There appears to be a complex interaction 
between astrocytes and motor neurons in ALS, leading to 
astrocyte activation. Degenerating motor neurons release 
fibroblast growth factor 1 that activates astrocytes, which in 
turn increases their oxidation levels and the production of 
pro-inflammatory/apoptotic factors including nerve growth 
factor (NGF) [38, 67, 78, 79]. Astrocytes overexpressing 
mSOD1 release soluble factors that trigger degeneration of 

Fig. 2   Tripartite synapse in health and in ALS: CNS functions 
depend on a network that includes both pre- and post-synaptic termi-
nals of neurons and astrocytes. Left In a healthy individual, astrocytes 
take up glutamate, which is released into the synaptic cleft, through 
sodium-dependent excitatory amino acid transporter-1 (EAAT1) and 
-2 (EAAT2; GLT1 in mice). Middle In ALS patients and rodent fALS 
models, EAAT2 expression is reduced in astrocytes in the motor cor-

tex and spinal cord, which could cause an accumulation of excitotoxic 
levels of extracellular glutamate and subsequently increase the neu-
ronal intracellular calcium concentration and initiate cascades that 
regulate motor neuron death. Right Transplantation of healthy astro-
cytes expressing EEATs into an ALS host could sequester excess glu-
tamate from the synapse and decrease excitotoxicity



1003Cell therapy targeting neuroinflammation

1 3

motor neurons, with motor neurons overexpressing mSOD1 
being particularly vulnerable. The toxic effect of mSOD1 
astrocytes appears specific to motor neurons, as interneu-
rons, GABAergic, and dorsal root ganglia neurons are not 
affected [31, 32, 36, 38, 39]. Engraftment of mSOD1-
astrocyte progenitors (which mature into astrocytes) into 
wild-type mice induced motor neuron death in the host 
([80]; Table 1). Mechanistically, astrocytes seem to activate 
NOX2 to synthesize superoxide. Apocynin, a NOX2 inhibi-
tor, prevented motor neuron loss caused by SOD1-mutated 
astrocytes in vitro [38]. The precursor form of NGF, pro-
duced by reactive astrocytes in response to peroxynitrite, 
also induces degeneration of motor neurons through the p75 
neurotrophin receptor and its co-receptor on motor neurons 
[67, 78, 79]. While astrocyte transplantation appears less 
technically challenging than replacing motor neurons with 
their long axons and synaptic connections at multiple foci, 
these data pose important questions regarding the feasibil-
ity of therapeutic astrocyte engraftment. If there is already 
marked astrocyte proliferation, is it still useful to introduce 
additional astrocytes, even with a healthy phenotype? It is 
still not known whether donor astrocytes could be nega-
tively influenced by the toxic host environment and by 
activation signals from degenerating motor neurons, and if 
healthy transplanted cells can turn into aberrant astrocytes. 
Encouragingly, initial studies indicate that wild-type rodent 
astrocytic precursors show some resistance to developing 
pathological features and do not show signs of ubiquitina-
tion in an ALS host environment [67]. On the other hand, 
mSOD1 astrocytes induced ubiquitination of host wild-type 
motor neurons [80], providing insight as to why mSOD1 
non-neuronal cells can induce damage to wild-type motor 
neurons, as described in chimeric fALS mouse experiments 
[16]. Mutant SOD1 misfolding seems to be essential, and 
mSOD1 aggregates appear to propagate in a prion-like 
manner from neuronal cell to neuronal cell without cellu-
lar contact, but with the extracellular release of aggregates 
[81]. Misfolded SOD1 can induce misfolding of natively 
structured wild-type SOD1 through a direct protein–pro-
tein interaction [82]. Thus, astrocytes could contribute to 

a prion-like spread of misfolded proteins leading to motor 
neuron loss. Interestingly, astrocytes generated from neural 
progenitor cells that were isolated from post-mortem tis-
sue from both fALS and sALS patients were similarly toxic 
specifically to wild-type motor neurons [34]. Consequently, 
it appears that both fALS and sALS astrocytes secrete fac-
tors that are toxic to motor neurons, or alternatively do not 
provide factors needed for motor neuron survival, resulting 
in cell death. Furthermore, shRNA suppression of SOD1 in 
sALS astrocytes could confer significant motor neuron pro-
tection from ALS astrocyte-derived toxicity, demonstrat-
ing that not only mSOD1, but also wild-type SOD1 could 
be involved in the pathogenesis of sALS [34]. The finding 
that neural progenitor cell-derived astrocytes from sALS 
postmortem patients can be toxic questions the feasibility 
of autologous cell transplantation with reprogrammed cells 
[induced pluripotent stem cells (iPSCs)] from the patient. 
However, to clearly understand the mechanisms and level 
of toxicity of sALS astrocytes, it remains to be investigated 
if sALS and fALS astrocytes are equally detrimental to 
motor neurons upon activation [in response to an ALS envi-
ronment or to lipopolysaccharide (LPS)] and their secretion 
pattern in such a context.

Astrocytes have a close physical relationship with motor 
neurons through elaborate end-feet processes that are in 
contact with synapses and microvessel walls (Fig. 1). The 
tripartite synaptic network between motor neurons and glia 
will likely need to be reproduced to achieve an optimal 
therapeutic benefit of grafted cells in ALS. It is not clear 
how to achieve this goal, which presumably would involve 
“convincing” dysfunctional disease-astrocytes to physi-
cally “give up” their established connections with motor 
neurons and be replaced by healthy astrocytes, if not occur-
ring spontaneously (Fig.  2). Transplantation of lineage-
restricted astrocyte precursors, a.k.a. glial-restricted precur-
sors (GRPs), to enrich for normal astrocytes in SOD1G93A 
mice, appeared to promote motor neuron protection locally 
([37, 80, 83]; Table  1) and improve survival [83]. Cells 
were transplanted around cervical spinal cord respiratory 
motor neuron pools, the loss of which results in respiratory 

Table 1   Recent advancements in astrocyte [glial-restricted precursors (GRP)] transplantation for ALS

Transplanted cells Host Outcome References

Wild-type rat or mouse GRPs SOD1G93A rats Reduced microgliosis [67]

Extended survival and disease duration. Improved motor functions

GLT1−/− rat or mouse GRPs SOD1G93A rats No extension of disease duration

Human fetal neural tissue GRPs SOD1G93A mice No demonstrated motor neuron protection [29]

No therapeutic benefits on disease

Wild-type (B6SJL) GRPs Wt rats Focal motor neuron protection [64]

mSOD1 mouse GRPs Wt rats Focal motor neuron degeneration

Declined forelimb motor and respiratory physiological functions
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failure and death in ALS, and transplanted GRPs showed 
robust survival up to 3  months post-transplantation. The 
vast majority of transplanted cells were localized near the 
sites of injection in both white and gray matter regions of 
the cervical spinal cord [37, 83]. Transplanted cells also 
migrated to adjacent white matter regions both rostrally and 
caudally, although the number of cells gradually declined 
as the distance from the injection site increased. It is likely 
that the focal effects of donor astrocytes were limited due to 
their relatively restricted capacity to migrate. Consequently, 
to treat ALS using astrocytes, it would be necessary to use 
multiple injection sites to obtain therapeutic benefit or to 
focus the grafting sites to specific CNS nuclei, such as the 
phrenic nerve, to preserve certain crucial functions. Strate-
gies aimed at enhancing transplanted astrocyte or astrocyte 
precursor migration in the CNS should improve their thera-
peutic potential. Therefore, it could be beneficial to geneti-
cally engineer donor cells to overexpress the polysialylated 
neural cell adhesion molecule (PSA-NCAM), which seems 
to regulate precursor cell migration during CNS develop-
ment [84]. When this approach was used on adult macaque 
Schwann cells, their migration was stimulated and cellu-
lar interactions with reactive astrocytes were promoted at 
injury sites without negatively interfering with their myeli-
nation properties [85]. Furthermore, several components of 
the chemokine CXC motif receptor (CXCR) system could 
be modulated in donor astrocytes to improve migration. 
For example, the CXCL12/CXCR4 signaling system regu-
lates the correct migration of neuronal cell populations in 
the rodent brain [86, 87]. Neural cell migration is also acti-
vated by stromal cell-derived factor 1α/chemokine recep-
tor 4 (SDF-1α/CXCR4) [88, 89] and neuronal cells express 
CXCR4, the cognate receptor for SDF-1α. Human neuronal 
cells migrate toward sites of damage, where neighbor-
ing astrocytes up-regulate the inflammatory SDF-1α [88]. 
Modulation of these factors in astrocytes could increase 
migration towards sites of neuronal damage in response to 
specific cytokine gradients.

To identify the astrocyte or astrocyte precursor popula-
tion most suitable as a cellular source for transplantation in 
ALS, these cells should be studied as heterogeneous popu-
lations, rather than a homogeneous group. Astrocytes dif-
fer in morphology, metabolism, developmental origin, gene 
expression profile, physiological aspects, and functions 
[90]. The major historical distinctions of astrocyte sub-
types were based on morphological and antigenic criteria. 
Positionally, distinguished astrocytes residing in the grey 
matter were defined as protoplasmic and those situated in 
the white matter were called fibrous [91–94]. Recent data 
have further highlighted the positional heterogeneity of 
astrocyte precursors in the spinal cord. Three positionally 
distinct subtypes of astrocytes in the white matter could 
be distinguished based on their combinatorial expression 

of Reelin and Slit1. Loss- and gain-of-function experi-
ments indicate that Pax6 and Nkx6.1 control the identities 
of these astrocytes [95]. Furthermore, astrocytes appear 
to be allocated to spatial domains in the mouse brain and 
spinal cord in accordance with their embryonic site of ori-
gin in the ventricular zone. The domain-specific depletion 
of astrocytes in the ventral spinal cord resulted in abnor-
mal synaptogenesis, which could not be rescued by astro-
cytes migrating from other regions [96]. Consequently, the 
“positional identity” of astrocytes appear to reflect a unique 
“functional identity”. Importantly, astrocytes obtained from 
various brain regions differ in their capacities to stimulate 
neuronal migration, survival, growth, and uptake of extra-
cellular glutamate, aspects that are critical in the pathol-
ogy of ALS [90, 97, 98]. These observations suggest that 
specific subpopulations of astrocytes could show promise 
for cellular transplantation in ALS, depending on the site 
of motor neuron loss. Pre-selection of these subpopula-
tions is very likely to influence the ability to recreate com-
plex interactions between motor neurons and astrocytes, 
which are altered in ALS. Moreover, differences in sur-
face glycoprotein expression correspond to variations in 
astrocyte-neuron or astrocyte–astrocyte interactions [90]. 
Genetic modification of these expression profiles could be 
an important strategy for restoring astrocyte-motor neuron 
interactions in ALS.

It is not yet fully understood what factors affect the inte-
gration of grafted astrocyte precursors and mature astro-
cytes. The host environment could influence graft integra-
tion. If the host retains some instructive capacity, grafted 
cells may attain slightly different functions depending on 
the injection site. There appears to be species differences in 
cell maturation after transplantation, with mouse precursors 
differentiating into mature astrocytes more robustly than 
human precursors ([37, 83]; Table 1). This propensity could 
be due to instructive differences between species, where a 
rodent host cannot fully instruct human cells to differenti-
ate. Astrocyte precursors do not appear to have the same 
benefit as mature astrocytes on nearby motor neurons in 
ALS rodents, indicating that a replacement of connectivity 
with motor neurons is needed rather than just trophic sup-
port ([37, 83]; Table 1). Therefore, strictly controlled dif-
ferentiation is necessary before in vivo cell transplantation, 
especially when astrocytes derived from iPSCs, including 
embryonic stem cells (ESCs) and induced iPSCs, are used 
as cellular sources.

In the absence of damage, astrocytes uptake glutamate, 
which is released into the synaptic cleft, through sodium-
dependent excitatory amino acid transporter-1 (EAAT1) 
and -2 (EAAT2; GLT1 in mice). Normally, astrocytes 
protect motor neurons from excitotoxicity, stimulating 
AMPA-GluR2 subunit upregulation and the generation of 
receptors that are impermeable to calcium, as demonstrated 
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in co-cultures of motor neurons and astrocytes. Overex-
pression of human mSOD1 in astrocytes abolished their 
capacity to induce GluR2 up-regulation [99]. Transplanted 
mSOD1-GRPs, which induced wild-type motor neuron 
degeneration, reduced GLT-1 transporter expression in 
wild-type animals in a non-cell autonomous manner [80]. 
In ALS patients and rodent models, EAAT2 expression is 
reduced in astrocytes in the motor cortex and spinal cord, 
which could cause an accumulation of excitotoxic levels of 
extracellular glutamate and subsequently increase the neu-
ronal intracellular calcium concentration and initiate cas-
cades that regulate motor neuron death ([99–103]; Fig. 2). 
The efficacy of rodent astrocyte precursors engraftment on 
motor neuron preservation, while modest, appeared partly 
mediated by the replacement of astrocyte GLT-1 (Table 1) 
[83]. Disappointingly, human GRPs did not slow the loss 
of intra-spinal GLT-1 protein levels when transplanted in 
mutant SOD1 mice and showed no effect on motor neu-
ron survival [37]. Overall, these data suggest that GLT-1 
expression plays an important role in the potential thera-
peutic effect of astrocytes. It will be interesting to see if 

astrocytes engineered to overexpress GLT-1 show greater 
therapeutic effects (Fig. 3). It is noteworthy that SOD1G93A 
astrocyte-induced motor neuron death seems in part medi-
ated by host microglial activation [80]. In addition, wild-
type rodent GRP transplantation led to the reduction of 
microgliosis, implicating a positive anti-inflammatory 
effect of wild-type astrocytes [37].

Given the numerous examples of astrocyte dysfunction 
in ALS, targeting astrocytes and astrocyte replacement are 
promising therapeutic approaches that have shown positive 
results in fALS animal models (Table  1). The feasibility 
to replace or integrate endogenous astrocytes by trans-
planting GRPs derived from the CNS has been examined; 
however, further pre-clinical studies are needed to avoid 
unexpected pitfalls at the clinical level. In general, human 
primary CNS astrocyte precursors show robust survival, 
efficient differentiation, and lack of tumor formation, fea-
tures that are promising for their translational potential in 
future ALS treatments. It is now important to determine 
the therapeutic profile of astrocytes derived from ESCs 
and iPSCs.

Fig. 3   Transplantations of wild-type or genetically engineered astrocytes, microglia, and T-lymphocytes are feasible and potential future thera-
peutic approaches for ALS
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Another glial cell type, NG2+ cells (marked by the 
nerve-glia factor 2 proteoglycan antibody) might be of 
great importance in the pathogenesis and treatment of ALS. 
NG2+ cells respond rapidly to any disturbances in the CNS 
environment by modifying their morphology and dividing. 
In doing so, they contribute to a changing cellular environ-
ment by producing new oligodendrocytes, astrocytes, and 
neurons [104]. In ALS, NG2+ cells exhibit enhanced prolif-
eration in regions of motor neuron degeneration [105, 106]. 
It was initially reported that a small percentage of NG2+ 
cells differentiated into astrocytes in response to proinflam-
matory cytokine signaling [92]. However, a recent fate-
mapping analysis of NG2+ cells using PDGFαR-CrER 
transgenic mice demonstrated that NG2+ cells remained 
committed to an oligodendrocyte lineage in adult wild-
type mice as well as in symptomatic SOD1G93A fALS 
mice [106]. However, these recently formed oligodendro-
cytes in the fALS mice failed to fully mature and did not 
remyelinate axons. Such myelination defects were found 
also in postmortem spinal cord and motor cortex from ALS 
patients [107]. Importantly, inactivation of mSOD1 spe-
cifically in NG2+ cells delayed disease onset in mice and 
increased their survival, suggesting that oligodendrocytes 
are a potential therapeutic target in ALS [107]. NG2+ cells 
are also modulated in other neurodegenerative diseases, 
including Alzheimer’s and Parkinson disease [108], and 
following stroke and acute CNS trauma. NG2+ cells appear 
to show large lineage plasticity in response to different dis-
orders and injuries [109, 110]. It is therefore possible that 
NG2+ cells could be modulated in vivo to generate cell 
types other than oligodendrocytes that could also be ben-
eficial in ALS.

Microglia

Microglia are resident immune cells in brain and spinal 
cord, originating from hematopoietic stem cells (HSC), 
particularly from precursors of the monocyte/mesoder-
mal lineage. Microglia are heterogeneously distributed in 
the adult brain, constituting between 5 and 12  % of cells 
depending on the region [111]. They represent an impor-
tant component of the inflammatory response in the CNS 
in response to pathogens and injury [112]. In addition, 
microglia influence neurogenesis and synapse formation 
[113, 114]. When microglia are activated in response to 
a pathological change in the CNS, it can result in classi-
cally activated microglia (M1) and alternatively activated 
microglia (M2). M1 microglia are cytotoxic due to their 
release of proinflammatory cytokines, including IL-1β and 
TNFα, and reactive oxygen species (ROS). M2 microglia 
appear protective and release anti-inflammatory cytokines 
and neurotrophins, including IGF-1 [115]. Microglia have 

important functions in the protection and destruction of 
motor neurons [115–117]. There is increasing evidence 
that microglia are key components in ALS motor neuron 
degeneration [25, 117, 118]. mSOD1 motor neurons co-
cultured with wild-type microglia did not develop disease, 
while mSOD1 microglia could induce wild-type motor 
neuron degeneration [16]. While reduction of mSOD1 in 
motor neurons delayed disease onset and early disease pro-
gression, diminished mSOD1 levels in microglia sharply 
slowed later disease progression. Thus, onset and progres-
sion represent distinct disease phases defined by mutant 
actions within different cell types to generate non-cell-
autonomous killing of motor neurons [17, 18]. These find-
ings validate therapies, such as cell replacement targeted 
to non-neuronal cells. In ALS pathology, there is an imbal-
ance between the anti-inflammatory and neuroprotective 
roles of M2 microglia, in which they produce high levels of 
anti-inflammatory cytokines and neurotrophic factors, and 
their M1 cytotoxic responses [112, 115, 117]. fALS mouse 
models have an increased neuroprotective M2 microglial 
response in the initial phase of disease, but a mostly neuro-
toxic M1 response at end-stages [117], with production of 
NO depending on NOX2, pro-inflammatory cytokines (IL-
6, IL12, IL-23, TNFα) and H2O2 ([117]; Fig. 1). Further-
more, in ALS, microglia appear to increase in cell size and 
granularity [30]. It has also been reported that microglia 
abnormally fuse to form multinucleated giant cells in spinal 
cord and brain and in later disease stages microglia showed 
cytoplasmic fragmentation, indicative of cellular dysfunc-
tion and degeneration [119]. Experimentation in fALS mice 
suggests that the replacement of disease-inducing microglia 
with healthy microglia through transplantation could repre-
sent an appealing approach to treat ALS in the future [26].

Microglia neuroprotection appears mainly induced by 
two signaling molecules, fractalkine and CD200, which 
are released from motor neurons. Fractalkine (CX3CL1) 
signaling promotes a dialogue between motor neurons and 
microglia, inducing microglia proliferation and chemotaxis; 
while, a lack of CX3CL1 induces neurotoxicity [120]. The 
cleaved form of this protein is released from motor neurons 
under stress conditions and binds to the fractalkine recep-
tor (CX3CR1), which seems to be expressed by microglia. 
CX3CR1−/− mice show more extensive neuronal degen-
eration than littermate controls, which is associated with 
microglia dysregulation, and studies with these mice con-
firmed the neuroprotective role of the CX3CL1/CX3CR1 
interaction [120]. CX3CR1/GFP bone marrow cells could 
migrate into the CNS after transplantation and acquire posi-
tions close to blood vessels. This migration appeared more 
extensive in fALS mice than in wild-type littermates [121], 
suggesting that motor neuron degeneration (either directly 
or through increased inflammation) can attract cells from 
the outside (Table  2). However, most of the transplanted 
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CXCR1 cells in the spinal cord appeared to associate with 
blood vessels, representing perivascular microglia (the 
cells located between glia and endothelial cells) rather than 
parenchymal microglia [121]. The CX3CR1 cells were 
partially immature at the time of transplantation; thus, the 
host environment could have influenced their differentia-
tion into perivascular microglia rather than parenchymal 
microglia. It may be interesting to further differentiate the 
cells in vitro prior to transplantation to obtain committed 
parenchymal microglia, which are more involved in the 
ALS pathogenesis. CD200 (OX2) signaling also appears 
to play a critical role in ALS pathogenesis [121, 122]. 
This neuronal glycoprotein binds to the CD200 receptor 
(CD200R), which is expressed by all myeloid cells. Micro-
glia in CD200−/− mice undergo morphological changes 
from small cell bodies with numerous ramifications to 
larger cells with shorter processes. In addition, microglia 
switch from anti-inflammatory and neuroprotective to pro-
inflammatory and neurotoxic, releasing ROS (NO2O2-, 
H2O2) and pro-inflammatory cytokines (IL-6; IL-12, IL-23, 
TNFα), further enhancing cell injury and initiating a self-
propagating cycle of cell death ([122, 123]; Fig. 1). These 
modifications are not observed in CX3CR1−/− mice, sug-
gesting different protective roles for CD200/CD200R and 
CX3CL1/CX3CR1 in microglia control. It could be inter-
esting to assess if overexpression of a molecule that inhib-
its microglia activation, such as CXCR1 or CD200R, can 
make donor microglia resistant to the degenerative environ-
ment in ALS.

Microglia can be artificially activated by LPS, which 
induces a switch from a protective to pro-inflammatory 
state with the production of IL-12, TNFα, NO, superoxide 

anions, and peroxynitrite (H2O2), causing motor neuron 
degeneration and exacerbation of disease progression in 
fALS mice [124–126]. These molecules promote interac-
tions between extracellular glutamate and its receptor on 
motor neurons, resulting in higher levels of calcium enter-
ing the cells and inducing cell death cascades [122]. Due 
to the sensitivity of microglia to toxic signals, it must be 
considered that healthy, transplanted microglia may be neg-
atively influenced by the host environment and thus con-
tribute to an increase in pathological events, rather than the 
intended decrease.

A recent study showed that inflammatory monocytes 
were activated and their progressive recruitment to the 
spinal cord correlated with neuronal loss; while, resident 
microglia in the spinal cord decreased with disease pro-
gression. Prior to disease onset, splenic Ly6Chi monocytes 
showed a polarized macrophage phenotype with increased 
levels of chemokine receptor-2. As disease onset neared, 
microglia expressed increased chemokine (C–C motif) 
ligand 2 and other chemotaxis-associated molecules, which 
are involved in the recruitment of monocytes to the CNS by 
spinal cord–derived microglia. Anti-Ly6C mAb treatment 
reduced monocyte recruitment to the spinal cord, slowed 
down neuronal loss, and increased survival, suggesting that 
monocytes and microglia play an important role in ALS 
disease progression [127]. However, it is important to con-
sider that many chimeric mouse ALS studies use whole-
body irradiation as the regimen for bone marrow trans-
plantation, which appears to cause disruptions in the BBB 
and thus could allow blood-derived monocytes to more 
freely enter the CNS and mature into microglia. Analysis 
of microglia progenitor recruitment from the circulation 

Table 2   Recent advancements in bone marrow-derived cell (BMC) transplantation for ALS

Transplanted cells Host Outcome References

Transplantation in rodent

 GFP/Thy1-YFP mice BMCs SOD1G93A mice Delayed disease onset [119]

Increased life span

Decreased loss of motor neurons

 mSOD1G93A mouse BMCs PU.1−/− mice No clinical signs of ALS [19]

 Wild-type mouse BMCs mSOD1G93A/PU.1−/− mice Benefits on disease course and survival [17]

 Wild-type mouse BMCs Myelo-ablated SOD1G93A mice No benefit on disease progression [112]

 BMCs SOD1G93A/CD4−/− mice Increased SOD1G93A life-span [20]

 c-kit+ BMCs SOD1G93A mice Reduced neuron loss and microgliosis [111]

Increased expression of GLT1

Benefit on disease course

 mSOD1 c-kit+ cells SOD1G93A mice Increased neuron loss and microgliosis

No benefit on disease course

Transplantation in humans

 HLA-matched HSCs Six ALS patients  
(after total body irradiation)

Variable grade of engraftment in spinal cord [113]

No benefit on disease course
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into the CNS using chimeric mice, obtained by parabio-
sis, indicated that recruitment from the periphery was very 
limited, even in mSOD mice [128]. While the parabiotic 
model could underestimate the recruitment of circulating 
microglia precursors to the CNS it is still a striking finding, 
which could indicate that circulating monocytes are being 
given a greater importance in ALS disease pathogenesis 
than they deserve. Several studies indicate that endogenous 
microglia proliferation in the lesioned CNS with intact 
BBB could account for increased Iba1+ cells [128–130]. 
Furthermore, microglia engraftment in the CNS, after 
bone-marrow transplantation, appeared to require condi-
tioning of the brain with for example irradiation, if the BBB 
remained intact [130]. While there are several reports sug-
gesting that the BBB shows disruption in ALS [131–133], 
the studies mentioned above indicate that transplantation of 
monocytes/microglia might require additional conditioning 
of patients for optimal recruitment and engraftment.

In vitro analysis, using COS-7 cells [134] and motor 
neuron-like NSC-34 cells [135] has shown that mSOD1 
can be secreted, and in vivo analysis appears to support 
these observations [134], but extracellular mSOD1 alone 
does not appear to be directly toxic to motor neurons [126]. 
However, mSOD1 induces morphological and functional 
activation of microglia and when motor neurons are co-cul-
tured with microglia, extracellular mSOD1 injures motor 
neurons. This activation of microglia by mSOD1 appears 
mediated through Toll-like receptor 2 (TLR-2), TLR-4, 
and CD14 [126]. Indeed, blocking CD14 results in reduced 
production of pro-inflammatory cytokines and free radicals 
and an increase in IGF-1 release from mSOD1G93A micro-
glia. Furthermore, microglia-mediated motor neuron toxic-
ity is reduced in the presence of antibodies against TLR-2 
and TLR-4, co-receptors of CD14 [126]. Expression of 
CD14 (as well as CD68) is increased in the spinal cords 
of ALS patients and in mSOD1 mouse models [118, 136], 
indicating that mSOD1 activation of microglia through 
CD14 could take place in vivo. These data seem to define 
a possible mechanism where extracellular mSOD1 pro-
tein acts in a LPS-like fashion and links to CD14, which 
in turn activates a pro-inflammatory cascade mediated by 
TLR2 and TLR4, reducing the action of neurotrophic fac-
tors. Thus, CD14 could be a possible molecular target for 
ex vivo genetic modification prior to cell transplantation to 
increase the therapeutic impact of microglia/hematopoietic 
cell transplantation.

The effects of microglia cell replacement by bone 
marrow-derived cells in ALS rodent models have been 
studied extensively with promising results. Transplanta-
tion of mSOD1G93A microglia into PU.1−/− mice, which 
lack macrophages, neutrophils, T- and B-lymphocytes, 
and microglia, did not induce motor neuron degenera-
tion, confirming that mSOD1 in microglia alone is not 

sufficient to initiate disease ([17, 18, 35]; Table 2). When 
PU.1−/− mice were bred with SOD1G93A fALS mice and 
transplanted with wild-type bone marrow, motor neuron 
loss was slowed and disease duration prolonged compared 
with untransplanted mSOD1G93A mice or mice receiv-
ing mSOD1G93A cells ([126]; Table  2). The author also 
observed that transplanted cells differentiated mostly into 
microglia, while there were no identifiable astrocytes 
[126]. Consequently, the lack of mSOD1 in microglia 
may contribute to motor neuron protection and transplant-
ing wild-type microglia could be beneficial to patients. 
Another important observation is that neuroprotection is 
not due only to microglia in the spinal cord; peripheral 
engraftment could also be important [126].

Once transplanted, bone marrow stem cells are able to 
generate mature CNS microglia that increase neuroprotec-
tive functions [26, 27, 122]. However, the extent of endog-
enous microglia replaced can depend on the transplantation 
protocol. Not surprisingly, there seems to be a correlation 
between the number of transplanted cells and therapeutic 
benefit [26, 27, 37, 83, 122]. On the other hand, differences 
in effects could also depend on technical aspects of the 
protocols, including the effect of irradiation in facilitating 
the migration of cells by BBB disruption and the cellular 
subtype composition of heterogeneous bone marrow trans-
plants. For instance, a marked positive effect was observed 
when a specific c-kit+ bone marrow population was trans-
planted into SOD1G93A mice ([137]; Table 2). Transplant-
ing unmodified bone marrow–derived cells into 70-day-old 
SOD1G93A mice resulted in spinal cord engraftment but 
had no effect on mouse survival ([26, 138]; Table 2). These 
results are comparable to data obtained in a clinical study 
based on HSCs intravenously administered into irradiated 
sALS patients. In that study, transplanted HSCs infiltrated 
areas characterized by damaged cells and neuroinflamma-
tion, acquiring an immunomodulatory cellular phenotype, 
but ALS patients did not show any clinical benefits ([139]; 
Table  2). Postmortem analysis showed large variations in 
engraftment, with a satisfactory degree of engraftment in 
some patients and no transplanted cells in others [139]. The 
majority of engrafted donor cells were macrophage-mono-
cytes (CD68 positive), which localized to the lateral spi-
nal motor columns. A low percent were leukocytes (CD45 
positive) or CD8+ T cells, particularly around blood ves-
sels [139]. Based on current data, insufficient engraftment 
is likely a key reason for the lack of benefit in transplanted 
patients. Pre-selection and enrichment of specific cellu-
lar populations with expected therapeutic benefits prior to 
transplantation and optimizing cell survival post-transplan-
tation is of great clinical interest. A better understanding of 
the mechanisms involved when transplanted HSCs lead to 
a delay in disease in ALS mice could further clarify factors 
needed for graft benefit.
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Based on the microglia transplantation approaches 
described (Table 2), it is appealing to hypothesize that bone 
marrow or hematopoietic cells could be modified ex vivo 
to express factors important for modulating an inflamma-
tory response (such as IL-4, IGF-1, BDNF, GDNF) and/
or blocking TLR/CD14 and then transplanted into ALS 
patients, taking advantage of the cells ability to migrate in 
the CNS (Fig.  3). In addition, it could also be interesting 
to modify the miRNA profile of these cells because they 
appear to play an essential role in the regulation of immune 
function [140]. The inflammatory miRNA signature in 
human ALS monocytes appears identical to that observed 
in SOD1G93A mice, providing a correlation between mouse 
models and human disease [127]. This profile may be 
helpful as a biomarker of disease progression, but also 
to increase the therapeutic potential of these cells after 
transplantation. It will be very interesting to evaluate if 
microglia replacement, through modified cell transplanta-
tion, could positively influence the dysfunctional dialogue 
between host motor neurons and microglia.

T‑lymphocytes

T-lymphocytes play important roles in the non-cell autono-
mous mechanism that characterizes motor neuron damage 
in ALS. Therefore, in addition to astrocytes and microglial 
cell replacement, the transplantation of T lymphocytes may 
help normalize the delicate balance between neuroprotec-
tion and neurotoxicity. T lymphocytes are a type of white 
blood cell. They are produced in the bone marrow, com-
plete their differentiation, mature in the thymus, and play 
a central role in cell-mediated immunity. They can be dis-
tinguished from other lymphocytes, including B cells and 
natural killer cells, by the presence of the T cell receptor 
(TCR) on their cell surface. There are several subsets of 
T-lymphocytes, each with a unique function. T-helper cells 
or CD4+ T-cells, express the CD4 protein on their surface 
and become activated when the TCR and CD4 bind to a 
peptide:major histocompatibility complex (MHC) II on 
antigen-presenting cells (APCs). The antigens presented 
are derived from extracellular proteins that are endocy-
tosed, cleaved, bound to the MHC II in the cytosol, and 
finally presented on the cell surface. Once CD4+ T-lympho-
cytes are activated, they rapidly divide and start secreting a 
number of cytokines and induce maturation of B cells into 
antibody-producing plasma cells and memory B cells; in 
addition, they activate cytotoxic CD8+ T-lymphocytes and 
macrophages. CD8+ T-lymphocytes (or cytotoxic T-cells) 
destroy virally infected cells and cancer cells and are also 
implicated in transplant rejection. The CD8+ T-cells rec-
ognize intracellularly produced antigens presented by the 
MHC I, which is present on all nucleated cells in the body. 

When CD8+ T-lymphocytes become activated, they prolif-
erate and differentiate into memory T cells and effector T 
cells, which secrete perforins and granzymes that are detri-
mental to the cells presenting antigens through MHC I.

In human autopsy material from ALS patients, there is 
significant accumulation of CD4+ and CD8+ T-lympho-
cytes in the spinal cord along with activated microglia, 
astrocytes, and deposits of IgG, presumably produced by 
plasma cells ([24, 33, 141, 142]; Fig.  1). These findings 
provide pertinent information about immune reactions at 
the end-stage of disease. To understand the role of immune 
cells, including T-lymphocytes, in earlier events, prior to 
onset, at onset, and during disease progression, studies in 
animal models of ALS are of vital importance. Interest-
ingly, in SOD1G93A ALS mice there was massive infiltra-
tion of CD4+ and CD8+ T-cells in the spinal cord just fol-
lowing the onset of symptoms [30, 143], indicating that 
T-lymphocytes are involved in earlier disease events. There 
was also striking microglial activation at the same time 
point ([18, 35, 143]; Fig. 1). Furthermore, deposits of IgG, 
IgM, and complement were detected in the sciatic nerves 
of SOD1G93A mice along with macrophage accumulation 
[144].

Transplantation of bone marrow that contained red 
blood cells, platelets, and white blood cells including T 
and B cells in SOD1G93A mice delayed the time of onset 
and increased life span, indicating that one or more of 
the cells present in bone marrow were beneficial in ALS 
([144]; Table 2). To understand the contribution of T-lym-
phocytes to disease, SOD1G93A mice were bred with mice 
lacking functional T-lymphocytes. Interestingly, breed-
ing SOD1G93A mice with recombinant-activating gene 2 
(RAG2−/−) knock-out mice, which lack functional T-and 
B-lymphocytes, did not affect disease onset, but decreased 
the life-span and disease duration of the ALS mice, sug-
gesting that T or B lymphocytes contribute to protection 
[27]. To better understand the involvement of B or CD4 
T-lymphocytes in disease, SOD1G93A mice were bred with 
CD4 knockout (CD4−/−) mice lacking surface expression 
of CD4, but with unaltered myeloid cells and CD8+ T- and 
B-lymphocytes. The resulting SOD1G93A/CD4−/− mice did 
not have an altered disease onset, but had a shorter sur-
vival span and disease duration analogous to SOD1G93A/
RAG2−/− mice, indicating that CD4+ T cells were respon-
sible for the prolonged disease duration and survival in 
SOD1G93A mice. Interestingly, SOD1G93A/RAG2−/−and 
SOD1G93A/CD4−/−mice showed less activation of micro-
glia at the end-stage compared to SOD1G93A/RAG2+/−or 
SOD1G93A/CD4+/− mice, even though their survival time 
was shorter. However, mRNA levels of neurotrophic fac-
tors, including IGF-I, GDNF, BDNF, and anti-inflammatory 
factors were decreased in the spinal cords of SOD1G93A/
RAG2−/−and SOD1G93A/CD4−/−mice, as were the levels 
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of CX3CR1 and several glutamate receptors. Bone marrow 
transplants restored the levels of these substances, indicat-
ing that the presence of CD4 T-lymphocytes alter micro-
glial and astroglial activation in ALS and may support 
motor neuron protection by modulating the glial balance 
between trophism and cytotoxicity [27]. This is consistent 
with previous findings demonstrating that T-lymphocytes 
can modulate microglial activation and provide neuropro-
tection in acute models of neuronal injury [145–148] and 
shows that controlled immune activation could be benefi-
cial for regenerative processes. T-cells also brought about a 
neuroprotective response in spinal cord microglia [27, 30, 
143]. Since a large population of motor neurons and axons 
remain intact at symptom onset, the role of the immune 
system might be to protect these remaining neurons from 
degeneration. Interestingly, in Parkinson disease CD4+ T 
lymphocyte infiltration appears deleterious, as shown in a 
model where dopamine neuron degeneration in response 
to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydro-
pyridine required T lymphocyte infiltration, and seemed to 
involve a Fas/Fas-ligand-dependent mechanism [149].

Recently, studies have shown that regulatory CD4(+)
CD25(high) T lymphocytes (Tregs) and cytotoxic CD4(+)
CD25(−) T lymphocytes (Teffs) have distinct roles in the 
pathology of ALS [125]. mSOD1 Tregs co-cultured with 
mSOD1 adult microglia repressed cytotoxic microglial fac-
tors such as NOX2 and iNOS through an IL-4-mediated 
mechanism. On the other hand, Teffs were only modestly 
effective in repressing microglia toxicity [28, 150]. The 
roles of these cellular types appear to differ during the dif-
ferent stages of pathology. During the earlier, stable dis-
ease phase, the numbers of Tregs increased, specifically 
those that were IL-4+, IL-10+, or TGF-β+. Tregs isolated 
from this disease stage inhibited Teff proliferation through 
the combined action of IL-4, IL-10, and TGF-β. On the 
other hand, during the rapidly progressing, later disease 
phase, the number of mSOD1 Tregs diminished, while the 
proliferation of mSOD1 Teffs increased and was not sup-
pressed by IL-4, IL-10, and TGF-β. Consequently, mSOD1 
Tregs contributed to slowing down the progression phase 
in ALS mice and may offer a novel therapeutic option for 
ALS patients in the stable disease phase [28, 29]. Without 
ex vivo activation, the passive transfer of mutated SOD1 
Tregs from early disease ALS mice into ALS mice was 
more immunotherapeutic than the passive transfer of wild-
type CD4+ T cells. The stable disease phase was extended 
by 88 % and prolonged survival was observed [27]. These 
effects could be mediated by the augmented secretion of 
IL-4 from mutant SOD1 Tregs, that directly suppressed 
the toxic properties of microglia. The data obtained in ALS 
mice models are consistent with data from the ALS patient 
population with the numbers of Tregs inversely correlat-
ing with disease progression rates [28, 29]. The identical 

findings in mouse and human ALS suggest that increas-
ing the levels of regulatory T lymphocytes in ALS patients 
at early stages may have potential therapeutic value, and 
could aid in stabilizing patients for longer periods of time.

What is causing the activation of T-lymphocytes during 
the progression of disease in ALS? Some possibilities are 
events within motor neurons, microglia, and astrocytes or 
antigen-presentation on APCs. Interestingly, components 
(C1qa, C1qb, C1qc) of the classical complement pathway 
were induced in or closely surrounding motor neurons in 
response to overexpression of disease-causing mSOD1. The 
C1q induction occurred prior to the appearance of obvious 
clinical symptoms or major neuroinflammation and could 
contribute to neurodegeneration [151]. C1q is a secreted 
extracellular polypeptide, which can bind antibody aggre-
gates. It is the main initiating factor for the classical com-
plement system, which is used to clear/lyse pathogens in 
injured or degenerating cells [151]. Motor neurons overex-
pressing mSOD1 secreted a proportion of the mSOD1 pro-
tein [134], which might be recognized by the C1q-induced 
complement system and mark the motor neurons for attack 
by immune cells. Furthermore, this secreted mSOD1 could 
be taken up by APCs presented by the MHC II on their sur-
face and subsequently cause the activation and proliferation 
of CD4+ T-cells. This can also cause the activation of B 
cells and differentiation into plasma cells, producing large 
quantities of antibodies against mSOD1 and other mis-
folded proteins that would deposit in tissues causing further 
damage. Interestingly, the complement system also impacts 
T-cell immunity during the induction, effector, and con-
traction phases of an immune response. These modulatory 
effects of complement on T-cell responses were mediated 
by inducing specific signaling events in the T-cell itself and 
indirectly through alterations of APCs [152]. Moreover, 
the complement system is involved in an adaptive response 
in B and T cell immunity and required for cell-mediated 
immunity elicited through CD4+ T-lymphocyte producing 
interferon gamma as an effector molecule (a Th1 response).

Importantly, expanding the T-lymphocyte population 
by transplanting Tregs may offer further protection in ALS 
and could provide a novel therapeutic target. Additional 
T-lymphocytes could modify the dysfunctional interaction 
between host astrocytes, microglia, and motor neurons. 
Engineering T-lymphocytes to express factors important 
for modulating an inflammatory response (such as IL-4, 
IL-10, and TGF-β), to express neurotrophic factors (BDNF, 
GDNF, IGF-1), or to silence pro-inflammatory factors such 
as TNF-α and especially Nox2 could even further stimulate 
neuroprotection (Fig. 3).

Recently, it was demonstrated that neuronal stem 
cell (NSC) transplantation could ameliorate pathologi-
cal mechanisms in the mutant SOD1G93A mouse model 
of ALS. These cells appeared to produce trophic factors, 
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preserve neuromuscular function, and reduce astroglio-
sis and inflammation [153]. A phase I clinical trial was 
initiated at Emory University in 2010 to assess the 
safety and tolerability of intraspinal injections of fetal 
human spinal cord-derived NSCs in 18 ALS patients 
(http://www.alsconsortium.org/trial.php?id=12; [154]). 
According to an initial report from this trial, all patients tol-
erated the treatment without any long-term complications 
related to the surgical procedure or stem cell transplanta-
tion. There was no evidence of acceleration of disease fol-
lowing stem cell injections. It is possible that some patients 
may have slowed their lower limb progression, but a larger 
trial needs to be conducted to properly evaluate this [154]. 
Subsequently, a phase II clinical trial using fetal-derived 
spinal cord NSC in 15 ALS patients to assess safety and 
benefits, to be conducted at Emory University, was just 
approved by the USA Food and Drug Administration (htt
p://www.neuralstem.com/cell-therapy-for-als). Patients 
will receive multiple injections in the cervical spinal cord 
with the goal of preserving respiratory motor neuron pools. 
Concomitantly, a phase I clinical trial using NSCs derived 
from fetal cortices, genetically engineered to overexpressed 
the trophic factor glial cell line-derived neurotrophic factor 
(GDNF) [155], will be conducted through California’s stem 
cell agency (http://www.cirm.ca.gov/our-funding/awards/
progenitor-cells-secreting-gdnf-treatment-als). The trans-
plantation of SOD1G93A fALS rats using a similar approach 
protected the integrity of motor neuron cell bodies, but 
failed to preserve neuromuscular junctions or increase the 
life-span of the animals [155].

Conclusions

At this time, no cure or efficacious treatments are available 
for ALS and the major pathogenic mechanisms underlying 
the selective motor neuron degeneration are still largely 
unknown. While initiation of motor neuron degeneration 
appears cell-intrinsic, other cell types including astrocytes, 
microglia, and T-lymphocytes are key components in the 
disease progression of ALS, and cell transplantation could 
more effectively be targeted at  replacing these cell types 
rather than motor neurons.

These cellular populations have shown therapeu-
tic potential, particularly in moderating inflammatory 
responses after transplantation into fALS mouse models, 
and may present new avenues for the treatment of this 
disorder (Fig. 3). For treatments, it would be beneficial to 
have a cellular source that can replicate in vitro to generate 
large numbers of cells and can then be coaxed into gener-
ating specific cell types, without forming tumors, in vivo. 
After transplantation, these cells should migrate to sites 
of motor neuron degeneration and replace the host’s toxic 

support cells in close proximity to motor neurons and pro-
mote motor neuron survival and function. To optimize the 
therapeutic benefit of such cellular transplantation aimed 
at preventing further neurodegeneration, but without res-
toration of motor neuron numbers, it needs to be initiated 
as early as possible in the disease course. Furthermore, to 
increase the therapeutic impact of cellular therapy, genetic 
modifications of donor cells may be necessary. If trans-
planted cells could migrate longer distances into appropri-
ate sites, their therapeutic potential would greatly increase 
in this multifocal disease. Furthermore, donor cells need an 
enhanced resistance to the toxic disease environment they 
will encounter. Finally, transplanted cells should have an 
improved ability to promote motor neuron protection, by 
either secreting protective factors or sequestering toxic sub-
stances from the surroundings.

Recent advances in stem cell approaches have led to 
the generation of unlimited numbers of cells, including 
neurons, astrocytes, and microglia, both heterologous 
and autologous. However, patient-specific cells should 
be treated with some caution, since these likely main-
tain disease predisposition  after reprogramming and, 
thus, could be toxic. In terms of heterologous transplan-
tation, it might be necessary to use immunosuppression 
to avoid transplant rejection. Such treatment would have 
effects on neuroinflammation and adaptive immunity 
triggered by the disease itself, which could affect the 
disease outcome. However, clinical trials from Parkin-
son disease using fetal dopamine neurons have shown 
that transplanted cells can survive in the brain without 
immunosuppression [156]. Thus, it is likely that also in 
ALS, immunosuppression can be omitted, or at least kept 
to a minimum, should this be beneficial for the patient. 
To facilitate a safe and practical application in humans, 
intrathecal or systemic injections should be assessed 
and implemented in pre-clinical models. In the future, 
an ideal cell therapy could include the transplantation 
of combinations of cellular subtypes, motor neurons, 
immune cells, or astrocytes, with the aim of addressing 
both the autonomous and non-autonomous cellular com-
ponents for an effective ALS therapy.
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