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Proteases target many substrates, triggering changes in distinct biological processes correlated with cell migration, EMT/EndMT
and fibrosis. Extracellular protease activity, demonstrated by secreted and membrane-bound protease forms, leads to ECM
degradation, activation of other proteases (i.e., proteolysis of nonactive zymogens), decomposition of cell-cell junctions, release
of sequestered growth factors (TGF-β and VEGF), activation of signal proteins and receptors, degradation of inflammatory
inhibitors or inflammation-related proteins, and changes in cell mechanosensing and motility. Intracellular proteases, mainly
caspases and cathepsins, modulate lysosome activity and signal transduction pathways. Herein, we discuss the current
knowledge on the multidimensional impact of proteases on the development of fibrosis.

1. Introduction

Epithelial and endothelial cells establish close cell-cell
contacts with a certain cell polarity, forming through desmo-
somes and tight and adherens junctions a solid barrier that
maintains organism homeostasis. The development of fibro-
sis, a pathological process characterized by the increased
production and deposition of extracellular matrix (ECM)
components and vast accumulation of myofibroblasts, is
closely related with ongoing epithelial or endothelial to
mesenchymal transition (EMT or EndMT) [1]. During
EMT/EndMT, cells lose their origin markers, polarity, and
cell-cell connections and gain promigratory phenotypes
accompanied by acquisition of mesenchymal markers
[2–4]. EMT-obtained spindle-shaped mesenchymal-like
cells pose high-migratory abilities. They may infiltrate into
inflammatory tissue using mesenchymal or mixed mesen-
chymal (an amoeboid type of migration) based on protease-
mediated degradation of ECM. Migration may be defined
as organized cell movement in specific directions, either on
top of other cells or ligands (2D) or through complex micro-
environments, typically in three-dimensional (3D) fibrillar
networks, triggered by certain factors [5]. 2D cell migration

is characterized by a series of events that always begin with
a back-to-front polarization in response to extracellular
signals. The efficacy of 2D cell motility relies on highly coor-
dinated dynamic assembly and disassembly cycles of adhe-
sion sites from the front to the rear of the cell. The major
cell surface receptors for cell adhesion to ECM structures
belong to the integrin family, while the majority of proteases
that are known to be involved in migration act directly or
indirectly on integrin deactivation. This can occur either by
direct cleavage of integrin extracellular domains or by
proteolysis of ECM proteins that are integrin ligands [6–8].
However, during 3D migration, through the base of the
membrane, cell layers and ECM cells form specialized
structures called invadosomes that blend adhesive properties
with proteolytic abilities, allowing cells to infiltrate the tissue
[9–11]. Invadosomes can be divided into podosomes (short-
lived, punctate, ring-shaped structures) and invadopodia
(larger, longer lasting protrusions) [9, 12–18]. Independently
of invadosome type, the main principle of operation remains
similar. At the initial stage, a structure is formed by adhesion
to ECM components via many receptors, mainly integrins,
followed by clustering into phosphatidylinositol (3,4)-
bisphosphate-enriched areas of the membrane. Next,
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phosphorylation of several proteins mediated by Src, Tks5,
and Grb2 activates the Arp2/3 complex that leads to elon-
gation and formation of columnar actin structures. Simul-
taneously, proteolysis of ECM components by both cell
membrane-bound and cell membrane-secreted proteases
begins in close vicinity of already formed adhesion hot-
spot. Degradation of ECM components results in
decreased adhesion, forcing invadosomes’ furtherer elonga-
tion of columnar structures toward increased ECM rigid-
ity. Adhesion to its deeper layers shifts degradation of
ECM components further, and by the constant and
dynamic reformation of invadosomes, leading cells to cross
anatomical boundaries [19, 20]. However, protease
involvement in the development of EMT/EndMT and
fibrosis is limited not only to ECM degradation. In gen-
eral, the contribution of protease activity to fibrosis can
be exerted both intracellularly and extracellularly [21].
Extracellular protease activity, demonstrated by secreted
and membrane-bound protease forms, is very composed
and leads to the activation of other proteases (i.e., proteol-
ysis of nonactive zymogens), decomposition of cell-cell
junctions, release of sequestered growth factors (TGF-β and
VEGF), activation of signal proteins and receptors, degrada-
tion of inflammatory inhibitors or inflammation-related pro-
teins, and changes in cell mechanosensing and motility.
Intracellular proteases modulate lysosome activity and signal
transduction pathways [21]. All in all, proteases target many
substrates, thus inflicting changes in distinct biological
processes correlated with cell migration, EMT/EndMT and
fibrosis (Figure 1).

Even though for more than last two decades matrix
metalloproteinases (MMPs) were considered to be the major

targets for therapies focused on termination of cell migration
(treatment of cancer and inflammation related to fibrosis or
arthritis), MMP inhibitors failed to be clinically worthy, as
a broad range of MMP inhibition led to severe side effects
[22]. Currently, better understanding of the biological role
of MMPs and their complex substrate network, consisting
of not only ECM components but also cell surface receptors
(i.e., integrin), cell-cell contact proteins, chemokines, and
signal molecules, allowed for the assumption that other pro-
teases may be more effective as therapeutic targets during cell
migration-related disease [1, 8, 22]. Therefore, in this manu-
script, we focused on proteases, other than MMPs, which are
involved in the progression of EMT/EndMT and fibrosis, as
they may become new markers and targets for antifibrotic
therapy. We revived a group of proteases that we identified
in microvascular endothelial cells (HMEC-1) treated with
TGF-β2 Table 1. TGF-β2 is a potent EMT or EndMT
inducer, often used as a model of naturally ongoing mesen-
chymal transition [2–4, 23, 24].

2. Cathepsins

Cathepsins (from the Greek kathepsein—to digest) are a fam-
ily of proteolytic enzymes expressed in all organisms from
plants to humans. They are active in slightly acidic environ-
ments, and all 15 members of human cathepsins can be cat-
egorized according to their localization as intracellular
(lysosomal) and extracellular cathepsins and structurally by
the catalytic active site residue: serine (cathepsins A and G),
aspartate (cathepsins D and E), or cysteine (cathepsins B,
C, F, H, K, L, O, S, V, X, and W) [25].

EMT/EndMT

Protease

Fibrosis

Protease
activation

Cell junction
decomposition

Notch 1 ICD

Snail

ECM degradation

Inflammation

Receptor maturation

GSK-3�훽TGF-�훽VEGF

Wnt AKT

Figure 1: The involvement of proteases in divergent processes leading to mesenchymal transition and fibrosis. Proteolytic activity leads to cell
junction decomposition and ECM degradation with liberation of sequestered growth factors such as TGF or VEGF that increase leukocytes
infiltration and prolong inflammation. Furthermore, other proteases, for example, MMP from inactive zymogens and receptors from
immature receptor protein are activated. Wnt and Akt signaling sustain EMT program. TGF-β or Notch 1-related signaling upregulates
the expression of Snail transcription factor that in turn, triggers EMT program. All processes result in scar tissue accumulation and fibrosis.
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The activity of cathepsins is closely related with autoph-
agy process. Autophagy is involved in control and coordina-
tion of inflammatory response and may play either
profibrotic or antifibrotic role [26]. The inhibition of autoph-
agy suppressed fibronectin accumulation and apoptosis,
while the enhancement of autophagy increased TGF-β1-
induced cell death in the mouse renal fibrosis model of uni-
lateral ureteral obstruction (UUO) [27]. However, in the
same UUO model, valproic acid- (VPA-) induced autophagy
attenuated fibrotic tissue formation [28]. The antifibrotic role
of autophagy was also reported during pulmonary fibrosis,
since pretreatment with rapamycin (autophagy inducer)
decreased the bleomycin-mediated fibrosis observed in
mice [29]. In human cirrhosis liver, the increased level of
cathepsin D was observed to colocalize with autophagy
marker—microtubule-associated protein 1 light chain 3B
(LC3B) and lysosome-associated membrane protein-1
[30]. Cirrhotic tissue present increased number of autop-
hagosomes in comparison to normal one [30], nonetheless
the number of autophagosomes was decreased in the
mouse lungs after bleomycin exposure [29]. Moreover,
recent findings suggest that cathepsins D, B, and L regu-
late the process of autophagy and lysosome-mediated
protein degradation [31, 32].

To invade surrounding tissue during EMT, fibroblasts
and myofibroblasts acquired from epithelial cells use the
mesenchymal type of migration based on the adhesion struc-
tures such as invadosomes. Cysteine cathepsins B, X, S, L, and
H, whose substrates are fibronectin, laminin, and collagen
types I and IV, were reported to be involved in ECM degra-
dation in cortacti-rich protrusion—podosomes formed in
3D Matrigel by macrophages [33] and in v-Src-transformed
mouse fibroblasts [34]. Cathepsins not only degrade collagen
but also, as recently suggested, take part in repression of
expression of collagens III and IV by fibroblasts in a TLR2/
NF-κB-related manner [35]. This mechanism is believed to
be responsible for prolonged wound healing and increased

inflammation of damaged tissue. Moreover, cell motility
was correlated with cysteine cathepsin activity. Cathepsin
inhibitors CA-074, AMS-36, and LHVS significantly
decrease the ability of macrophage invasion [33].

Cells during ECM decomposition can internalize its com-
ponents such as collagen, through endocytosis followed by
cathepsin degradation in the lysosomes, thus allowing faster
cell infiltration into tissue and forcing other cells to exceed
collagen production and secretion. Aberrant ECM remodel-
ing can directly lead to fibrosis and other pathological states,
such as osteoarthritis and cancer [21]. Degradation of ECM
components by cathepsins does not only remove physiologi-
cal barriers for migration but also releases sequestered profi-
brotic growth factors, such as TGF-β, VEGF, or PDGF [1].
These factors increase inflammation, leading in turn to
fibrosis [21].

Moreover, cathepsins B, L, and S secreted from epithe-
lial pulmonary cells are involved in the degradation of
defensins (β-defensin family), antibacterial catalytic
proteins, lactoferrins, and surfactant protein A (SP-A),
decreasing antimicrobiological activity during microbiolog-
ical infection, prolonging inflammation, and thus inflicting
lung fibrosis [22, 36–38]. The activities of cathepsins B, L,
and S are increased in bronchoalveolar lavage (BAL) fluid
in patients with cystic fibrosis (CF). These cathepsins have
been reported to cleave and inactivate antiprotease secretory
leukoprotease inhibitor (SLIP) of neutrophil-derived elastase,
shifting delicate protease/antiprotease equilibrium toward
proteolytic activity and increasing neutrophil extracellular
trap (NET) formation and activity [39, 40]. Proteolytic activ-
ity may also be elevated by cathepsin L that is believed to
activate pro-urokinase-type plasminogen activator (pro-
uPA) to its active form (uPA) [41]. Moreover, cathepsin S
expression is regulated by the IRF-1 transcription factor that
is suppressed by miR-31 [38]. Downregulation of miR-31 is
closely related with ongoing EMT, resulting in increased
cathepsin expression correlated with epithelial cells acquiring
mesenchymal phenotypes [42]. Intracellularly, profibrotic
protease activity is not only limited to cathepsins, and
caspases represent the another important group.

3. Caspases

Caspases (also known as cysteine-aspartic proteases, cysteine
aspartases, or cysteine-dependent aspartate-directed prote-
ases) are the family of intracellular proteases that cleave sub-
strates in a highly specific manner after the Asp residue in
short tetrapeptide (X-X-X-Asp) motifs [43]. The effect of cas-
pases during fibrosis is related to signal transduction path-
ways. The caspase cascade is an executioner of apoptosis
with apoptotic signal transduction via caspase-8 (FasL-
dependent pathway) or caspase-9 (FasL-independent path-
way) and activation of effector caspase-3, caspase-6, and
caspase-7. The importance of apoptosis in fibrosis is uncer-
tain and may also represent an important aberration in fibro-
sis. Fibroblasts derived from fibrotic lung tissue (in idiopathic
pulmonary fibrosis (IPF)) are more resistant to apoptosis,
shifting the delicate balance toward ECM deposition.
Reduced fibroblast sensitivity to apoptosis is correlated with

Table 1: The increase in protease level in microvascular endothelial
cells (HMEC-1) during EndMT.

Protease name Cell lysates Cell medium

Presenilin xxxx ----

Neprilysin (CD10) xxx ----

Cathepsin C xxx x

Cathepsin S xxx x

Cathepsin V xx ----

Cathepsin X/Z/P xx ----

uPA xx x

DPPIV (CD26) ---- xx

Proteases are the main enzymes implicated in ECM organization and
remodeling. To examine the role of the proteases, other than MMPs,
during EndMT in microvascular endothelial cells, we compered the
protease protein profile in HMEC-1 versus HMEC-1 treated with TGF-β
for 24 h using the proteome profiler antibody array (R&D System,
ARY025). In our experiments, we analysed both cell lysates and cell
medium to establish protease expression and secretion level, respectively. x
indicates upregulation intensity. “----” indicates no changes in intensity
between HMEC-1 and HMEC-1 treated with TGF-β.
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prostaglandin (PG) E2 deficiency. Fibrotic lung fibroblasts
are both resistant to apoptosis and produce less PGE2 in
response to FasL than control fibroblasts. This observation
indicates that the alterations in both the apoptotic and non-
apoptotic functions of Fas signaling are important in the
pathogenesis of IPF [44]. On the other hand, epithelial cells
during fibrosis are characterized by higher apoptosis, increas-
ing tissue damage by deposition of postfibrotic nonfunctional
tissue in lung epithelial cells, alveolar macrophages, and
infiltrating inflammatory cells in mouse bleomycin-induced
pneumopathy model, as well as in hepatocytes during liver
fibrosis [1, 45–47]. Moreover, caspases create cross talk
between autophagy and apoptosis [48]. Since autophagy is
consider as a strategy for cell survival via the self-
degradation of proteins or organelles during nutrient depri-
vation, thus caspase-mediated inhibition of autophagy is
often related as proapoptotic [49, 50]. Caspases cleave several
human proteins from Atg family (autophagy related) [51],
that is, hAtg3 is cleaved by caspase-3, caspase-6, and
caspase-8 and hAtg6 (Beclin 1) by caspase-3 and caspase-6,
while hAtg9, hAtg7, and hAtg4 homologues are cleaved by
caspase-3 that result in autophagy inhibition and increased
apoptosis [50, 52, 53]. Furthermore, caspase-1, caspase-4,
and caspase-5 take part in the activation of proinflammatory
necrotic cell death called pyroptosis that occurs primarily in
macrophages, monocytes, and dendritic cells (DCs), as well
as in various other cell types such as T cells [54, 55]. Similar
to apoptosis, pyroptosis involves caspase-mediated cleavage.
Upon proinflammatory signals, canonical (via caspase-1) or
noncanonical (via caspase-4 and caspase-5) pathways lead
to gasdermin G cleavage that promotes the formation of
membrane pores [56, 57]. Proinflammatory properties of
pyroptosis is related not only to the release of cytosolic
content but also to the processing and release of proinflam-
matory and profibrotic IL-1β and IL-18, which have strong
activity in promoting vasodilation and extravasation of
immune response cells, the generation of IL-17-producing
T helper cell (Th17) and the production of interferon-γ
(IFN-γ) by NK (natural killer) and Th1 cells [54]. Further-
more, IL-1β activates Snail through NF-κB, enhancing
TGF-β2-induced EndMT in vitro in HUVEC [58] and
TGF-β1-induced EMT in human bronchial epithelial cells
and human primary mesothelial cells prolonging inflam-
mation [59, 60].

4. Neutrophil Elastase

Neutrophil elastase (NE), also known as leukocyte elastase,
lysosomal elastase, or medullasin, belongs to a family of ser-
ine proteases. It consists of 218 amino acid residues and, its
molecular weight is 29–33 kDa. NE shares approximately
55% sequence similarity to human proteinase 3 and approx-
imately 35% to cathepsin G [61, 62]. Neutrophil elastase is
stored in primary azurophilic granules, and during ongoing
inflammatory processes, it is released by neutrophils to the
extracellular milieu [40, 62]. As neutrophils are the first leu-
kocytes to appear at the site of wounded or infected tissue,
the primary function of NE is to provide protection against
microbiological infection [1, 63]. Neutrophil extracellular

traps (NET) composed of extruded DNA in the form of
decondensed chromatin coated with antimicrobial proteins,
such as defensins and neutrophil elastase, entrap and utilize
microbiological threads [64, 65]. In the early phase
(15min), NET are induced via autophagy or via both autoph-
agy and reactive oxygen species (ROS) [66]. Thus, the activity
and level of NEs are closely related to ongoing inflammation,
and according to many reports, NE levels have been highly
elevated in BAL fluid of CF patients [40]. Furthermore, this
elastase induces autophagy through the upregulation of pla-
cental growth factor (PGF) which in turn promotes lung epi-
thelial cell apoptosis and pulmonary emphysema. PGF and
its downstream MAPK8 and MAPK14 signaling pathways
are potential therapeutic targets for the treatment of emphy-
sema and chronic obstructive pulmonary disease (COPD)
[67]. The degradation of SLIP (i.e., by cathepsins) enhances
NE proteolytic abilities resulting in increased fibrosis, by
the destruction of epithelial and endothelial cell matrixes
and prolonged inflammation. Active NE cleaves interstitial
collagen type III (α1 chain Ala-Gly-Ile779/∗/Thr780-Gly-
Arg); however, it shows no collagenolytic abilities toward
fibrillar collagen type III [68]. Moreover, other ECM compo-
nents, such as heparan sulfate proteoglycan, were reported to
be substrates for NE [63, 69]. For many years, neutrophil
elastase has been known to prolong inflammation by the deg-
radation of complements and the release of the strong neu-
trophil chemoattractant, component C5a [70], as well as by
the upregulation of leukocyte-recruiting interleukin IL-8
expression in surrounding cells [71]. The elevated level of IL-
8 is not only responsible for leukocyte recruitment but might
also trigger EMT, leading directly to fibrosis. Furthermore,
IL-8 increases proliferation and survival of fibrosis-related
EMT-derived fibroblasts and myofibroblasts by raising the
levels of Bcl-xL:Bcl-xS and Bcl-2:Bax ratios [1, 71–73].

5. Neprilysin

Neutral endopeptidase, also known as neprilysin (NEP),
CD10, membrane metalloendopeptidase (MME), enkephali-
nase, or common acute lymphoblastic leukemia antigen
(CALLA), is a zinc-dependent type II integral membrane
peptidase EC 3.4.24.11. NEP intra- and extracellularly
degrades a variety of proteins, including bradykinin, adreno-
medullin, endothelin-1, enkephalins, angiotensin II, sub-
stance P (SP), or neurotensin [74, 75] and is expressed in
many different organs, including the lung, kidney, prostate,
intestine, and brain. Its molecular mass differs between 90
and 110 kDa and is based on tissue-specific glycosylation
[74, 76]. The upregulation of NEP correlates with ongoing
EMT as tumor cells with significant expression of EMT
markers, such as vimentin and α-smooth muscle actin
(αSMA), and S100 proteins show increased levels of CD10
on the cell surface (94% atypical fibroxanthoma, 50% of
squamous cell carcinoma, and 33% of spindle cell/desmo-
plastic melanomas) [77, 78]. Some recent data suggest
ADAM-17-dependent exosome-based release of soluble, cir-
culating NEP [79]. Furthermore, soluble NEP is believed to
be a poor therapeutic prognostic for patients with fibrosis-
related heart failure (HF), as was observed in a group of
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patients with HF who were followed through more than 4
years of treatment [80]. Moreover, due to the degradation
of vasodilatory peptides (i.e., bradykinin, adrenomedullin,
endothelin-1, and angiotensin II), which leads to the dysreg-
ulation of natriuresis vasodilatation, high expression of CD10
is correlated with the loss of heart and kidney function,
caused by ongoing fibrosis. Therefore, the combined inhi-
bition of NEP and angiotensin receptors by LCZ696 (con-
sisting of NEP inhibitor prodrug AHU337 that is cleaved
into the active form LBQ657 and valsartan, an angiotensin
II receptor antagonist) has been implemented as poten-
tially antifibrotic therapy during heart and kidney fibrosis
[80–83]. Furthermore, LCZ696 attenuates angiotensin-II-
mediated renal cellular collagen synthesis and fibrosis
development [82]. On the other hand, CD10-mediated
SP degradation is believed to be involved in inhibition of
skin inflammation, also demonstrating certain antifibrotic
properties [84].

6. Presenilin-1

Presenilins are transmembrane proteases that in humans are
represented by two homologs, presenilin-1 (PS-1) and
presenilin-2 (PS-2), encoded by two gens, PSEN1 and PSEN2,
respectively [85]. The sequence of PS-1 consists of nine trans-
membrane helices (transmembrane domains—TMs), con-
nected either by short or long loops, located on both sides
of the cell membrane [86, 87]. Presenilin-1 is one of 4 core
components of the γ-secretase protein complex along with
nicastrin (NCT), presenilin enhancer 2 (PEN2), and anterior
pharynx-defective 1 (APH1). PS-1 forms its catalytic (pro-
teolytic) subunit, providing the degradation of many cell
membrane-associated proteins, mainly adhesion or junction
proteins, including CD44, N-cadherin, E-cadherin, and
nectin-1 [86]. Furthermore, overexpression and activity of
PS-1 associated with γ-secretase are critically involved in
acquiring and the maintenance of mesenchymal phenotypes
achieved by EMT. The inhibition of its activity by DAPT, a γ-
secretase inhibitor, results in downregulation of EMT-related
proteins, such as Snail, αSMA, Notch 1, COX2, and cyclin
D1, and inhibition of cell mesenchymal transition and motil-
ity [88]. PS-1 cleaves membrane-bound E-cadherin, disas-
sembles the adherent junctions, and releases pro-oncogenic
and profibrotic soluble, N-terminal 80 kDa fragment known
as sE-CAD that in turn, through the sustained activation of
the AKT pathway, triggers EMT [89, 90]. Furthermore, the
cleaved C-terminal 33 kDa intracellular fragment disassoci-
ates and releases β-catenin that was sequestered in the E-
cadherin/β-catenin complex. Released into the cytosol, free
β-catenin translocates to the nucleus and activates Wnt
signaling pathways, upregulates Snail expression, and trig-
gers EMT [88, 91, 92]. However, the results from the
study related to Alzheimer’s disease progression indicate
that PS-1 serves additional γ-secretase-independent roles
in Wnt signaling, as well as in lysosomal function and
autophagy [93–96]. PS-1 acts as a pro-EMT, also by the
maturation and activation of the transcription regulator
Notch. Its activation appears to be by proteolysis in the S3
cleavage site of the Notch 1 membrane receptor and the

release of the Notch 1 intracellular domain (Notch 1/ICD
or NICD) [97, 98]. Next, Notch 1/ICD directly upregulates
Snail (Snail-1) and Slug (Snail-2) expression, respectively,
by interaction with its promoter. Moreover, NICD mediates
the induction of the HIF-1α factor that might upregulate
the expression of lysyl oxidase which stabilizes Snail-1
protein [99–102].

7. Urokinase

The urokinase plasminogen activator (uPA) is a serine
protease that binds to its cell surface receptor (urokinase
plasminogen activator receptor (uPAR)) and, after activa-
tion, is mediated by its proteolytic abilities and many
biological activities (plasminogen activation, ECM remod-
eling, growth factors activation, and intracellular signaling
initiation) [103, 104]. Urokinase structure consists of three
conserved domains: (1) a growth factor-like domain (GFD,
residues 1–49), (2) a kringle domain (residues 50–131),
forming modular amino-terminal fragments (ATF by
which uPA binds to uPAR) linked by the “connecting pep-
tide” (CP, residues 132–158), and (3) a serine protease
domain (residues 159–411) [103, 104]. The upregulation
of uPA and its activity occurs during EMT and EMT-
related fibrosis; however, its role is yet not clearly under-
stood [105, 106]. First of all, extracellularly bounded to
its receptor, uPA cleaves plasminogen and releases active,
multipotent serine protease plasmin that in turn, mediates
ECM degradation and by proteolytic cleavage of latency-
associated peptide activation of TGF-β as well as MMPs
from inactive zymogens [107–110]. Simultaneous silencing
of uPA and MMP9 resulted in decreased ECM degrada-
tion and cell migration increasing adhesive capacity of
the MDA-MB-231 breast cancer cells. Furthermore, the
EMT-obtained mesenchymal phenotype was reversed,
presenting significant downregulation of EMT-related pro-
teins Snail and vimentin, with a simultaneous increase of
epithelial phenotype marker E-cadherin protein [111].
Binding of uPA to uPAR in some certain cell types, by
its intrinsic chemotactic activity, triggers signal cascades
leading to increase cell motility [108].

The activities of uPA/plasmin and plasmin-dependent
MMPs rely mostly on the activity of a potent inhibitor of
uPA, plasminogen activator inhibitor-1 (PAI-1). Thus, by
impairing the plasminogen activating systems, PAI-1 is
involved in cellular proteolytic degradation of ECM proteins
and the maintenance of tissue homeostasis. Whether PAI-1 is
a mediator or inhibitor of fibrosis is still controversial [107].
Multiple studies using models of liver, lung, and kidney fibro-
sis suggest that PAI-1 deficiency or the inhibition of PAI-1
activity attenuates fibrosis. Nevertheless, homozygous defi-
ciency of PAI-1 promotes age-dependent spontaneous car-
diac fibrosis in mice, suggesting a protective role for PAI-1
in the heart [112].

8. Dipeptidyl Peptidase-4

Dipeptidyl peptidase-4 (DPPIV, adenosine deaminase com-
plexing protein 2 (ADCP2), CD26) is a multifunctional

5Mediators of Inflammation



serine peptidase that selectively removes the N-terminal
dipeptide from peptides with proline or alanine in the second
position [113]. DPPIV belongs to subfamily 9b that has a
unique catalytic triad in the order of Ser, Asp, and His located
in an α/β-hydrolase fold compared to the chymotrypsin cat-
alytic triad of His, Asp, and Ser [114]. The main noncatalytic
physiological function of CD26 is T cell activation by interac-
tion with adenosine deaminase (ADA), caveolin-1, CARMA-
1, CD45, mannose-6-phosphate/insulin growth factor-II
receptor (M6P/IGFII-R), and C-X-C motif receptor 4
(CXC-R4). Furthermore, DPPIV also modulates the bioac-
tivity of several chemokines [114], regulates plasma levels
of the insulinotropic, glucagon-like peptide-1 hormone
[115], and interacts with ECM proteins fibronectin and

collagen [113]. CD26 is anchored on T lymphocytes and
many endothelial and epithelial cells; however, active
soluble form sCD26 (or sDPPIV) has also been reported
to be present in several biological fluids (such as serum,
plasma, semen, urine, synovial, and cerebrospinal fluids)
[116–118]. Furthermore, in vitro studies showed sCD26
in cell medium obtained from cervical cancer cells and
keratinocytes [116, 117].

Profibrotic abilities of CD26 are mainly correlated with
prolonged inflammation and leukocyte maturation, as well
as with increased cell migration. DPPIV is responsible for gel-
atin binding and ECM degradation in adhesion hotspots.
DPPIV was found to colocalize with fibroblast activation pro-
tein α (FAP), matrix metalloproteinase (MMP2 and MMP9),
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Figure 2: Extracellular protease activity during mesenchymal transition and fibrosis, as a potential therapeutic target. (1) Cell-cell junction
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urokinase plasminogen activator, and type II transmem-
brane serine protease, forming gelatinolytic machinery in
invadopodia-like protrusions [119]. Monoclonal antibodies
against the gelatin-binding domain of DPP4 blocked its
ECM degradation abilities, leading to decreased migration
and invasion of HUVECs [119]. However, the inhibition

of CD26 activity by sitagliptin resulted in increased migra-
tion of SiHa cells [116], suggesting that its proteolytic abilities
against ECMmay be insufficient [116]. Moreover, the inhibi-
tion of CD26 activity by a variety of inhibitors decreases
fibrosis and fibrosis-related syndromes (i.e., DA-1229) and
exerted its renoprotective effect by decreasing macrophage
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Figure 3: Intracellular protease activity during mesenchymal transition and fibrosis. (1) Snail1 upregulation via Notch 1 intracellular domain
signaling pathway triggered by presenilin-1. (2) Caspase-mediated cell death via pyroptosis (necrosis) or apoptosis. (3) Cathepsin-mediated
degradation of ECM components in lysosymes.
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infiltration into the kidney, thus preventing the ongoing
inflammation and renal fibrosis, in mouse models. How-
ever, this mechanism remains elusive and is not well
understood [120].

9. Therapeutic Implications

Fibrotic process results in extensive alteration of the structure
and function of the certain organs; thus, clinical trials of
fibrosis treatment are being conducted in many leading
research facilities [121]. Antifibrotic therapies can be divided
into nonpharmacological and pharmacological [121].
Because fibrosis is irreversible, nonpharmacological fibrosis
therapies are based mainly on surgical restoration of organ
function, either by removal of nonfunctional fibrotic scar
tissue or by transplantation of whole organs, for example,
lung transplantation in progressive pulmonary disease
[121] or cystic fibrosis [122]. On the other hand, pharmaco-
logical therapies targeting many distinct molecular mecha-
nisms involved in fibrosis development and progression
comprise the suppression of inflammatory response by corti-
costeroids [123, 124], inhibition of TGF-β, TNF, PDGF,
VEGFR, and FGFR signaling pathway, and collagen fibrils
formation by tyrosine kinase inhibitor—nintedanib as well
as by pyridone derivative—pirfenidone [125–127] in idio-
pathic pulmonary fibrosis. Furthermore, pirfenidone is being
tested in other fibrosis-related disease like nonalcoholic stea-
tohepatitis leading to cirrhosis [128], skin fibrosis (model of
sclerodermatous chronic graft-versus-host disease) [129],
and postsurgical excessive scarring [130]. Over the last few
years, antiproteolytic approach in antifibrotic therapies was
restricted mainly to matrix metalloproteinases activity; how-
ever, broad range MMP inhibitors like marimastat and
prinomastat failed clinical tests, as they led to severe side
effects [21, 22]. Furthermore, the role of MMPs is very com-
plicated, as during early stages of fibrosis activity of MMP-2
and MMP-9 play profibrotic function (allowing fast accumu-
lation of fibroblasts and leukocytes) [1] that shifts, in late
stages of fibrosis, toward antifibrotic, during the degradation
of massive amounts of deposited ECM as shown in skin
fibrosis and keloids treatment [1, 131, 132]. It emerged over
the last decade that proteases involved in blood coagulation
are potential targets for therapeutic interventions in treating
several fibrotic disorders. As coagulation factors seem to
exert their profibrotic properties through the activation of
protease-activated receptors (PARs), targeting PARs may be
a more efficient (and safe) approach for limiting fibrosis.
Recently, it was shown that the inhibition of PAR-2 may offer
promise for potential therapy in idiopathic pulmonary fibro-
sis [133]. The airways of cystic fibrosis (CF) patients are
characterized by neutrophils that release high amounts of
elastase overwhelming the local antiprotease protection.
Based on this protease/antiprotease imbalance concept, the
therapeutic approaches have been developed to inhibit the
elastolytic activity, including small synthetic chemical
inhibitors and natural inhibitors of free elastase. The
inhalation of alpha1-proteinase inhibitor (alpha1-PI), which
inhibits NE activity, has been proposed as a therapeutic strat-
egy in CF [134, 135]. The inhaled alpha-1 hydrophobic

chromatography process (HC), an aerosolized alpha1-PI for-
mulation, was tested. A 3-week phase 2a study confirmed
that alpha-1 HC inhalation was safe and well tolerated in
patient with CF [136]. Likewise, a small molecule NE inhibi-
tor, KRP-109, inhibited mucin degradation in CF patients
decreasing profibrotic protease/antiprotease imbalance.
[137]. Early stages of antiapoptotic approach to antifibrotic
therapy showed that inhibitor of caspases, emricasan (IDN-
6556), by its caspase-3 and caspase-8 activity inhibition,
decreased liver fibrosis in a murine model of nonalcoholic
steatohepatitis [138]. However, further data needs to be
obtained, as FK506, a generally applied immunosuppressant
in organ transplantation and promotor of nerve regenera-
tion, reduced scar formation after sciatic nerve injury in rats
by inducing fibroblast apoptosis [139]. Although, several
cathepsin inhibitors (e.g., CA-074Me and pepstatin A)
proved antifibrotic properties in models of rat and murine
kidney fibrosis [140, 141], and nothing is currently known
about the clinical disposition of any of the cathepsin inhibi-
tors discovered so far. This point suggests that there is still
a lot of work to do in the design of stable, pharmacologi-
cally active compounds to be able to specifically regulate
the in vivo activity of cathepsins [142]. Nevertheless, new
clinical targets may emerge from the discovery of many,
so far unknown, profibrotic functions of proteases.

10. Conclusion

Fibrosis is a very complex pathological organism response,
causing massive and uncontrolled deposition of scar tissue
in the affected organs such as the heart, liver, kidney, lungs,
or skin. Furthermore, fibrotic tissue does not show properties
of the tissue it originates from, leading to systematic loss of
organ function and death [1]. Fibrosis might be triggered
by a variety of different factors from physical, chemical, or
mechanical irritation through disrupted, uncontrolled tissue
regeneration and prolonged inflammation due to autoim-
mune or cancer-associated signaling. Although triggering
mechanisms may differ, ongoing fibrosis appears to develop
according to similar mechanisms, resembling molecular
mechanisms of wound healing and is sometimes referred to
as unhealed wounds [143–145]. During the first crucial steps,
cells migrate toward fibrotic-unhealed wounds through solid
barriers composed of ECM and epithelial or/and endothelial
cells. This process is strictly correlated with the degradation
and processing of ECM and adherent junction proteins. Even
though three classes of matrix-degrading enzymes could be
responsible for invadosome-correlated motility (MMPs,
cathepsin cysteine proteases, and serine proteases), zinc-
dependent matrix metalloproteinases (MMP2, MMP9, and
MMP14) were mainly considered as the key proteases
involved in this process [10, 146]. However, recent data and
the failure of inhibition of MMPs as therapeutic approaches
suggest that many other proteases are involved in invado-
some activity (either by ECM degradation, MMP activation
or ECM adhesion, and complex stabilization) or may par-
tially take over the role of MMPs. Unfortunately, a biology
of invadosome formation, as well as activation and protease
involvement, is yet not fully understood, leaving more
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questions than answers [146]. Furthermore, increased migra-
tion of cells ongoing EMT/EndMT, correlated with invado-
some activity, is not the only critical role of proteases in
fibrosis development. During the processing of ECM, many
sequestered cytokines and growth factors, such as TGF-β or
TNF-α, are released, leading to Snail upregulation and EMT
[24, 91, 147]. Moreover, interleukins and growth factors,
involved in leukocyte recruitment and activation, lead to pro-
longed inflammation that expose affected tissue to profibrotic
factors, cell damage and ECM secretion, and effectively
increase the chances of massive scar tissue deposition [1, 63,
148, 149]. Extracellular and intracellular profibrotic activities
of reviewed proteases are summarized in Figures 2 and 3.

The upregulation of non-MMP proteases is curtailed
during fibrosis development, suggesting their potential role
as markers and therapeutic targets; however, they need to
be further investigated.
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