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KEY PO INT S

l SARS-CoV-2 induces
robust gene
expression and
functional changes in
platelets.

l Platelet
hyperreactivity may
contribute to COVID-
19 pathophysiology by
increased platelet-
platelet and platelet-
leukocyte interactions.

There is an urgent need to understand the pathogenesis of coronavirus disease 2019
(COVID-19). In particular, thrombotic complications in patients with COVID-19 are common
and contribute to organ failure and mortality. Patients with severe COVID-19 present with
hemostatic abnormalities that mimic disseminated intravascular coagulopathy associated
with sepsis, with the major difference being increased risk of thrombosis rather than
bleeding. However, whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) infection alters platelet function to contribute to the pathophysiology of COVID-19
remains unknown. In this study, we report altered platelet gene expression and functional
responses in patients infected with SARS-CoV-2. RNA sequencing demonstrated distinct
changes in the gene-expression profile of circulating platelets of COVID-19 patients.
Pathway analysis revealed differential gene-expression changes in pathways associated
with protein ubiquitination, antigen presentation, and mitochondrial dysfunction. The
receptor for SARS-CoV-2 binding, angiotensin-converting enzyme 2 (ACE2), was not de-

tected by messenger RNA (mRNA) or protein in platelets. Surprisingly, mRNA from the SARS-CoV-2 N1 gene was
detected in platelets from 2 of 25 COVID-19 patients, suggesting that platelets may take-up SARS-COV-2 mRNA
independent of ACE2. Resting platelets from COVID-19 patients had increased P-selectin expression basally and upon
activation. Circulating platelet-neutrophil, -monocyte, and -T-cell aggregates were all significantly elevated in COVID-
19 patients compared with healthy donors. Furthermore, platelets from COVID-19 patients aggregated faster and
showed increased spreading on both fibrinogen and collagen. The increase in platelet activation and aggregation could
partially be attributed to increased MAPK pathway activation and thromboxane generation. These findings dem-
onstrate that SARS-CoV-2 infection is associated with platelet hyperreactivity, which may contribute to COVID-19
pathophysiology. (Blood. 2020;136(11):1317-1329)

Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is
a novel positive-sense single-stranded RNA betacoronavirus and
the causative pathogen for the ongoing coronavirus disease 2019
(COVID-19) pandemic. Although SARS-CoV-2 infection is asso-
ciated with the development of acute respiratory distress syn-
drome (ARDS), recent reports also describe patients who develop
multiorgan failure and thrombosis, includingmyocardial infarction
and ischemic stroke.1 Patients with cardiovascular risk factors such
as obesity, diabetes, and hypertension are at increased risk for the
development of thrombotic complications with 20% to 30% of
critically ill COVID-19 patients having thrombosis during SARS-
CoV-2 infection.2-4 Although thrombotic complications are com-
mon during SARS-CoV-2 infection, the pathological drivers of
thrombosis in COVID-19 remain unclear.

In addition to their traditional role in thrombosis and hemostasis,
platelets (and their precursor cells megakaryocytes) mediate key
aspects of inflammatory and immune processes.5-10 Similar to
innate immune cells, platelets express a broad array of receptors,
including Toll-like receptors (TLRs), C-type lectin receptors, and
nucleotide-binding and oligomerization domain–like receptors.8

These, and other receptors, are known to help recognize viral
pathogens such as dengue, HIV-1, and influenza.11-15 Once
platelets sense the invading pathogens, they mediate immune
responses indirectly through the release of cytokines and anti-
microbial peptides and directly through interaction with neu-
trophils, monocytes, and lymphocytes to amplify the immune
response.16-19 Because platelet activation often occurs when
platelets respond to invading pathogens, inflammatory and in-
fectious illnesses are frequently associated with a prothrombotic
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response, termed immunothrombosis. Immunothrombosis may
drive adverse immunological and hemostatic processes, thereby
contributing to adverse clinical outcomes such as vascular
thrombosis, organ failure, and death.20 However, whether
platelets contribute to the pathophysiology of SARS-CoV-2 in-
fection, including thrombosis, is unknown.

In this prospective clinical study, we examined platelet gene
expression and functional responses in acutely ill patients with
COVID-19, compared with matched healthy donors. RNA-
sequencing (RNA-seq) analysis from platelets isolated from
SARS-CoV-2–infected patients revealed significant changes in
platelet gene expression, including changes in immune path-
ways. Although platelet ultrastructure was intact, platelets were
hyperreactive during SARS-CoV-2 infection, as evidenced by
increased surface P-selectin expression basally and upon stim-
ulation, and greater formation of circulating platelet-leukocyte
aggregates (PLAs). Platelets from COVID-19 patients also
exhibited increased aggregation, adhesion, and spreading.
These hyperreactive responses were driven partly through in-
creased generation and release of thromboxane A2. Taken
together, our data provide new evidence that platelet gene
expression is altered and functional responses are significantly
increased during SARS-CoV-2 infection. We postulate that these
changes may contribute to thrombotic events in COVID-19
patients.

Methods
For full details on methods, please see supplemental Methods
(available on the Blood Web site).

Study design
Patients acutely ill with SARS-CoV-2 infection (n 5 41) were
recruited from the University of Utah Health Sciences Center in
Salt Lake City. SARS-CoV-2 infection was confirmed by reverse
transcription polymerase chain reaction (PCR; RT-PCR), in ac-
cordance with current standards. We collected acid citrate
dextrose (ACD)-anticoagulated whole blood from patients
hospitalized with COVID-19 from 17 March 17 to 5 June 2020.
All COVID-19 patients were recruited under study protocols
approved by the institutional review board (IRB) of the University
of Utah (IRB# 00102638, 00093575). All patients enrolled in our
study were hospitalized and were enrolled within 72 hours of
hospital or intensive care unit (ICU) admission. Healthy, age-, and
sex-matched donors were enrolled under a separate IRB pro-
tocol (IRB# 0051506). Each study participant or their legal au-
thorized representative gave written informed consent for study
enrollment in accordance with the Declaration of Helsinki. En-
rollment criteria included age .18 years, respiratory symptoms
(cough, shortness of breath) or fever, hospital admission, positive
SARS-CoV-2 testing, and informed consent. We summarize
demographic and illness severity data or Sequential Organ
Failure Assessment (SOFA) scores in Table 1. All COVID-19
patients were hospitalized and were further stratified into non-
ICU and critically ill ICU patients.

Cell isolation, differentiation, and nomenclature
Leukocyte-depleted platelets were isolated as previously de-
scribed from whole blood drawn from SARS-CoV-2–infected
patients and healthy donors.12,21-24

RNA preparation and sequencing
RNA-seq and analysis were performed on total RNA extracted
from platelets isolated from SARS-CoV-2–infected patients and
age- and sex-matched healthy donors, as before.12,21-24 RNA-
seq files were deposited in NCBI short-read archives under
PRJNA634489.

Real-time PCR
For messenger RNA (mRNA) real-time PCR, isolated RNA was
reverse transcribed using Oligo dT and random hexamers as
previously described.12,23,24

Flow cytometry for platelet activation and PLAs
Whole blood flow cytometry for platelet activation and PLAs was
done as previously described.21,25,26

Aggregation
Aggregation was measured using a lumi-aggregometer
(Chrono-Log, Havertown, PA) at 37°C under stirred conditions
as previously described.27,28

Measurement of thromboxane A2 generation
Washed platelets at a concentration of 2 3 108 platelets
per milliliter were stimulated with 2-methylthio-adenosine-
59-diphosphate (2MeSADP) (5 nM, final) for 3.5 minutes. Levels
of the stable analog thromboxane B2 were determined in du-
plicate using a Correlate-EIA thromboxane B2 enzyme immu-
noassay kit (Cayman Chemical) according to the manufacturer’s
instructions.

Western blotting
Protein samples for platelets were prepared, and western
blotting was performed, as previously described12,23,27,28

Confocal and transmission electron microscopy
High-resolution, confocal reflection microscopy was performed
using an Olympus IX81, FV300 (Melville, NY) confocal-scanning
microscope equipped with a 603/1.42 NA oil objective.
For ultrastructural analyses, platelets were adhered to Acylar
coated with poly-L-lysine and fixed in 2.5% glutaraldehyde
in phosphate-buffered saline and processed as previously
described.24

Statistical analyses
Continuous variables from all experiments were assessed for
normality with skewness and kurtosis tests. Data that were
normally distributed were expressed as amean plus or minus the
standard error of the mean. For analyses involving 2 groups, a
parametric 2-tailed Student t test was used. When 3 or more
groups were analyzed, an analysis of variance with a Tukey post
hoc test was performed. When data were not normally distrib-
uted, a Mann-Whitney was used when 2 groups were analyzed; a
Kruskal-Wallis with a Dunn multiple comparison post hoc test
was used for analyses of 3 or more groups. For correlations, we
performed a Spearman correlation. Summary statistics were
used to describe the study cohort and clinical variables were
expressed as the mean plus or minus standard deviation or as a
number and percentage. Statistical analyses were performed by
using GraphPad Prism (version 7; San Diego, CA). A 2-tailed
P value ,.05 was considered statistically significant.
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Results
COVID-19 patient cohort
COVID-19 patients were well matched by age, sex, and race to
healthy donors (Table 1). SARS-CoV-2 virus was uniformly de-
tected by PCR in patients diagnosed with SARS-CoV-2 infection.
Approximately 41% of COVID-19 patients were in the ICU, of
whom 53% required mechanical ventilation due to respiratory
failure. Hospitalized non-ICU and ICU COVID-19 patients had
comorbidities consistent with previously published studies,
including hypertension, diabetes, and obesity.3,29 We ob-
served an ;17% mortality rate among all COVID-19 patients,
consistent with hospitalized mortality rates (13.4%) in COVID-
19 patients in Utah per the Utah Department of Utah as of 8
June 2020.

The human platelet transcriptome is altered during
SARS-CoV-2 infection
We and others have used transcriptomics to provide insights
into how platelets are altered during acute inflammatory and
infectious stressors, including viral pandemic pathogens.12,21,23

To determine whether the platelet transcriptome is altered in
patients during SARS-CoV-2 infection, we performed RNA-seq
on RNA isolated from highly purified platelets from 6 non-ICU
and 4 ICU COVID-19 patients and 5 matched healthy donors
recruited from the greater Salt Lake City area. As shown in
Figure 1A, non-ICU and ICU COVID-19 patients clustered
together, but separately from healthy controls in hierarchical
clustering of transcriptome-wide gene expression, suggesting

systemic alterations in platelet RNA expression. Differential
gene-expression analysis revealed 3090 differentially expressed
genes between non-ICU patients compared with healthy donors
whereas 2256 were differentially expressed in ICU patients
compared with healthy donors (false discovery rate , 0.05)
(Figure 1B-D; supplemental Tables 1 and 2). Only 16 genes
were differentially expressed in a direct comparison between
non-ICU and ICU COVID-19 patients, suggesting minimal
impact of ICU status (supplemental Table 3) on COVID-
19–induced gene changes. Analysis of combined non-ICU
and ICU patients (all COVID-19) compared with healthy do-
nors identified 3325 differentially expressed genes (supple-
mental Figure 1; supplemental Table 4).

Ingenuity pathway analysis using differentially expressed genes
in all COVID-19 vs healthy donors identified enriched pathways
associated with protein ubiquitination, antigen presentation,
and mitochondrial dysfunction in patients infected with COVID-
19 (supplemental Table 5). To further assess the relevance of
mitochondrial pathway–related gene changes, we measured
mitochondrial reactive oxygen species (ROS) and basal phos-
phatidylserine (PS) expression in patient platelets because
platelet PS exposure is a marker of mitochondrial-dependent
platelet apoptosis. COVID-19 patients (both ICU and non-ICU)
had increased basal ROS compared with healthy donors (sup-
plemental Figure 2A-B). However, mitochondrial dysfunction did
not result in increased platelet apoptosis, as PS expression was
not different between COVID-19 patients and healthy donors
(supplemental Figure 2C-D).

Table 1. Clinical characteristics of healthy donors and hospitalized patients with COVID-19

Healthy donors, n 5 17

COVID-19 patients

PNon-ICU, N 5 24 ICU, N 5 17

Mean age (6SD), y 49.9 (626.8) 48.1 (615.9) 62.5 (614.4) .023

Male, % 53 45.8 58.8 .63

Hispanic/Latino, % 12 29.2 47.1 .075

Mean BMI (6SD) 33.6 (69.0) 30.6 (68.8) .31

Diabetes, % 0 25.0 64.7 ,.001

Hypertension, % 0 33.3 47.1 .279

Mean SOFA (6SD) 1.8 (61.1) 4.7 (61.2) ,.001

ARDS, % 8.3 94.1 ,.001

MV, % 0 53 ,.001

Survival to date, % 100 64.7 ,.001

Aspirin, % 12.5 11.8 .95

Hydroxychloroquine, % 16.7 29.4 .34

Remdesivir, % 20.8 23.5 .84

Convalescent plasma, % 0 5.9 .24

Mean WBC (6SD) 6.1 (62.3) 8.2 (62.1) .005

BMI, body mass index; MV, mechanical ventilation; SD, standard deviation; SOFA, Sequential Organ Failure Assessment score; WBC, white blood count.
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We next compared previously published,12,21 platelet RNA-seq
data sets from septic patients and influenza A/H1N1 patients
studied during the 2009 pandemic. Of note, numerous gene
changes were unique for each disease condition (supplemental
Figure 3; supplemental Tables 6-8). However, of the differ-
entially expressed genes that were shared between COVID-19
and sepsis or H1N1, nearly all (.96%) changed in the same
direction, suggesting convergent mechanisms driving these
changes. Accordingly, enrichment analysis indicated distinct
pathway changes in sepsis and H1N1 compared with COVID-
19, but with some pathway changes shared including those
related to antigen presentation and immune regulation (sup-
plemental Tables 5, 9, and 10).

Regarding immune regulation, we previously identified that
interferon-induced transmembrane protein 3 (IFITM3), an an-
tiviral immune protein, was highly expressed in platelets during
influenza A/H1N1 and dengue infection, but absent in platelets
from healthy donors.12 In human megakaryocytes, IFITM3
functions to limit dengue viral infectivity. Interestingly, a variant
in IFITM3 causing an N-terminally truncated protein that is
associated with loss of function and increased viral replication
in vitro, correlates clinically with severe COVID-19.30 RNA-seq
analysis from both non-ICU and ICU COVID-19 patients

revealed IFITM3 as 1 of the top significantly differentially
expressed genes in platelets (Figure 2A; ICU patient shown).
Western blot analysis confirmed that IFITM3 was significantly
upregulated in both non-ICU and ICU patients (Figure 2B).
Because IFITM3 regulates viral infectivity, we further examined
our RNA-seq data set for the presence of angiotensin-
converting enzyme 2 (ACE2), the putative receptor for SARS-
CoV-2binding, in platelets. RNA-seqdemonstratednoexpression
of ACE2 mRNA independent of ICU status (supplemental Tables
1, 2, and 4). Furthermore, we did not detect ACE2 in platelets
either by quantitative real-time PCR in 25 COVID-19 patients (ICU
and non-ICU) and 5 healthy donors or by western blot (Figure
2C-D). We also did not detect ACE2 mRNA in megakaryocytes
cultured from healthy human donors (not shown). Consistent with
this, in the majority of patients with SARS-CoV-2 infection (n5 23
of 25; 92%), the mRNA from the SARS-CoV-2 N1 gene was un-
detectable in isolated platelets. Interestingly, in isolated platelets
from 2 ICU COVID-19 patients, for whom the ACE2 receptor was
not expressed based on real-time PCR (n 5 2 of 25; 8%), we did
detect mRNA expression of the SARS-CoV-2 N1 gene (Figure 2E
and data not shown). Taken together, our data suggest that the
platelet transcriptome is altered during SARS-CoV-2 infection.
These data also demonstrate that human platelets do not express
ACE2 mRNA or protein.
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Figure 1. SARS-CoV-2 infection alters the platelet
transcriptome. RNA-seq was performed on RNA iso-
lated from highly purified platelets from 6 non-ICU and 4
ICU SARS-CoV-2 patients and 5 matched healthy donors
(HD) as described in “Methods”. (A) Hierarchical clus-
tering of samples according to global gene expression
demonstrates non-ICU SARS-CoV-2–infected patients
(red numbers) and ICU (blue numbers) cluster together
whereas healthy donors (gray numbers) segregate to-
gether. (B) Heat map of significantly differentially expressed
platelet transcripts from SARS-CoV-2–infected ICU and non-
ICU patients and healthy control donors. Red indicates in-
creased relative expression, and blue indicates decreased
relative expression. Only coding mRNAs were examined in
this analysis. (C-D) Volcano plot with significantly increased
(red) and decreased (blue) transcripts from non-ICU and ICU
COVID-19 patients.
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Platelet number, size, andmorphology in COVID-19
patients
As COVID-19 alters the platelet transcriptome, we next sought
to determine whether SARS-CoV-2 infection induced changes in
platelet function consistent with the thrombotic phenotype
observed in COVID-19 patients.31-33 Viral and bacterial infections
are commonly associated with thrombocytopenia and alter-
ations in platelet morphology. Therefore, we tested whether
patients with SARS-CoV-2 had changes in platelet count, mean
platelet volume (MPV; a surrogate of platelet size and age), or
their ultrastructure. Non-ICU and ICU COVID-19 patients gen-
erally had a platelet count and MPV in the normal reference

range (Figure 3A-B). Although platelet counts and MPV were
within normal ranges, plasma thrombopoietin (TPO) levels were
significantly elevated in all COVID-19 patients (Figure 3C; sup-
plemental Figure 4). TPO levels significantly correlated with platelet
count in COVID-19 patients (supplemental Figure 4). Although TPO
plasma levels were elevated in all COVID-19 patients, RNA-seq
revealed that c-MPL, the gene encoding the TPO receptor, was
significantly decreased (threefold in COVID-19 patients).

We next examined platelet morphology and ultrastructure
during SARS-CoV-2 infection using a transmission electron mi-
croscope. We analyzed.50 platelets from 4 COVID-19 patients
(3 ICU and 1 non-ICU) and, for comparison, 4 matched healthy
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Figure 2. Platelets from COVID-19 patients express the antiviral protein IFITM3 but not the ACE2 receptor. (A) Integrated Genome Viewer plots demonstrating
expression of IFITM3 from the RNA-seq data set. A representative healthy donor and COVID-19 patient are shown. The height of the bars indicates expression level. (B)
Immunoblot and densitometric quantification of IFITM3 and b-actin expression in platelets isolated from healthy donors (n 5 12) and SARS-CoV-2–infected non-ICU patients
(n 5 7) and COVID-19 ICU patients (n 5 14). (C) RT-PCR analysis of ACE2 was performed on platelets from COVID-19 patients (5 healthy donors and 25 COVID-19 patients).
Representative tracing from 2COVID-19 patients (green and red). HepG2 cells served as a positive control (blue). No reverse transcriptase (RT) served as a negative control (gray).
Reactions were performed in triplicate. (D) Immunoblot and densitometric quantification of ACE2 and b-actin expression in platelets isolated from healthy donors and ICU
COVID-19 patients (n5 4). Leukocytes (white blood cells [WBC]) served as a positive control. (E) RT-PCR analysis of the SARS-CoV-2 N1 gene in platelets from non-ICU and ICU
SARS-CoV-2–infected patients (n 5 25). Representative tracing from 1 COVID-19 patient positive for SARS-CoV-2 mRNA presence (red) and 1 patient with SARS-CoV-2 mRNA
absence (green). mRNA isolated from tracheal aspirates served as a positive control (blue). No reverse transcriptase served as a negative control (gray). Reactions were performed
in triplicate. One PCR band at the correct size was observed in the tracheal aspirates and in the positive platelet samples. The PCR band in the platelet sample was confirmed by
Sanger sequencing to be the N1 gene. ***P , .001. DRN, fluorescence intensity normalized to baseline.
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donors. Representative transmission electron microscope im-
ages are shown in Figure 3D. Platelets from both healthy donors
and COVID-19 patients had similar appearances of the open
canicular system, a and dense granules, mitochondria, and
microtubular coils around the periphery of the platelet. In ad-
dition to examining morphology, we also examined platelets for
the presence of SARS-CoV-2 virus as previous studies have
demonstrated that platelets are capable of internalizing in-
fluenza virus.14 Consistent with our findings that the SARS-CoV-2
N1 gene was undetectable in the vast majority of isolated
platelets (Figure 2E), we did not visually identify SARS-CoV-2
virus particles in these 4 platelets samples.

COVID-19 increases platelet surface P-selectin
expression and circulating PLAs
Previous reports demonstrated that a-granule release and PLA
formation are often increased during acute infections and may
correlate with adverse clinical outcomes.34,35 We therefore next
asked whether platelet P-selectin surface expression, a marker of
platelet activation, was altered during COVID-19. Basal
P-selectin surface expression was modestly, but significantly,
increased in all COVID-19 patients independent of ICU status
(Figure 4A; supplemental Figure 5B), compared with healthy
donors. We also examined plasma levels another a-granule
marker, platelet-derived growth factor (PDGF) AA/BB.36,37

Similar to basal levels of P-selectin expression, PDGF was sig-
nificantly elevated in non-ICU and ICU patients compared with
healthy donors (726.8 6 106.8 ng/mL vs 2540.3 6 347.9 ng/mL
and 1988.36 178.1 ng/mL; P, .05). Basal P-selectin expression
correlated with soluble PDGF (r 5 0.63; P 5 .076).

Activating platelets with low-dose 2MeSADP and PAR1 peptide
(SFLLRNor TRAP) induced significantly greater surface P-selectin
expression in all COVID-19 patients (Figure 4B; supplemental
Figure 5C). Similar results were observed in all COVID-19 patient
platelets treated with higher concentrations of 2MeSADP to
trigger maximal platelet activation (supplemental Figure 5D-E).
No differences between ICU and non-ICU COVID-19 patients
were observed in regards to P-selectin expression. However,
platelet P-selectin expression in response to low-dose 2MeSADP
significantly correlated with illness severity based on SOFA
scores (r 5 0.5296; P 5 .037). As P-selectin is an important
receptor for forming PLAs, we next examined PLAs during SARS-
CoV-2 infection. Platelet-neutrophil, platelet-monocyte, and
platelet–T-cell (CD41 and CD81) aggregates were all signifi-
cantly elevated in all COVID-19 compared with healthy donors
(Figure 4C-F; supplemental Figure 6). Platelet-neutrophil ag-
gregates (PNAs) were higher in ICU patients whereas platelet–
T cell (CD41) aggregates were generally higher in non-ICU
COVID-19 patients. No differences were observed between
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Figure 3. Platelet counts, MPV, and platelet mor-
phology in COVID-19 patients are normal. (A) Platelet
counts and (B) MPV are represented from COVID-19 non-
ICU (red, n 5 17) and ICU (blue, n 5 12) patients. The
reference range provided by ARUP is below the figure and
represented by the shaded region. (C) TPO levels were
measured by enzyme-linked immunosorbent assay (ELISA)
in healthy donors (n5 7) and COVID-19 patients (non-ICU,
n 5 15; ICU, n 5 14,). Blue dots indicate ICU patients
whereas red dots indicate non-ICU patients. (D) Platelets
were isolated from healthy donors (n 5 4; HD; top panel)
and COVID-19 patients (n 5 4; COVID-19; bottom panel)
and adhered to Acylar coated with poly-lysine and imaged
with a JEOL JEM-1011 electron microscope. Digital
images were captured with a side-mounted Advantage
HR CCD camera. Lower power magnifications are pro-
vided on the left with representative images from 2
separate donors or patients on the right at a higher
magnification. Scale bars: black bars 5 1 mm; white bars
5 0.5 mm. *P , .05. K/uL indicates 3103/mL.
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ICU and non-ICUCOVID-19 patients with platelet-monocyte and
platelet-T cell (CD81) aggregates (supplemental Figure 6).

Interestingly, platelet activation through 2MeSADP, SFLLRN
(TRAP), and collagen-related peptide (CRP) resulted in de-
creased PAC-1 binding in all COVID-19 patients independent of
ICU status compared with healthy donors (supplemental Fig-
ure 7). A similar decrease in PAC-1 binding was observed with
high-dose agonists (supplemental Figure 7). The decrease in
PAC-1 binding was not due to changes in aIIb expression as aIIb
expression was similar among healthy donors and all COVID-19
patients (supplemental Figure 8).

Platelet aggregation is increased in COVID-19
patients
As procoagulant responses and clinical thrombosis are increased
in patients with SARS-CoV-2 infection29,38-40 and, because we
observed evidence of increase platelet activation in all COVID-
19 patients (Figure 4; supplemental Figures 5 and 6), we next
assessed platelet aggregation. Platelet aggregation in response
to low-dose agonists (2MeSADP, thrombin, and collagen) was
significantly increased in COVID-19 patients compared with

healthy donors (Figure 5A-B; supplemental Figure 9). The po-
tentiation in aggregation was more pronounced in ICU patients,
especially at lower doses of thrombin and 2MeSADP (supple-
mental Figure 9). At higher doses, this effect was less marked
with 2MeSADP and collagen, inducing significantly greater
platelet aggregation (Figure 5A-B) with similar increases ob-
served in all COVID-19 patients (supplemental Figure 9).
Platelets from non-ICU and ICU COVID-19 patients also
exhibited greater adhesion and spreading on fibrinogen and
collagen (Figure 5C-F). Taken together, these findings indicate
that during clinical infection with SARS-CoV-2, platelets may
circulate, primed to be hyperreactive.

Activation of MAPK-signaling pathway is
upregulated in COVID-19 patient platelets
As platelet aggregation in COVID-19 patients was increased,
especially in critically ill ICU patients, we next examined sig-
naling events downstream of MAPK, a pathway mediating
platelet aggregation. Phosphorylation of ERK1/2, p38, and
eIF4E was significantly upregulated in platelets from critically ill
ICU COVID-19 patients, indicating increased activation of the
MAPK pathway (Figure 6A-B). Previous studies have shown that

BA

0

HD

CO
VID

-1
9

2

4

6

8

10

12

P-
se

le
cti

n 
ex

pr
es

sio
n 

(%
)

*

0
2MeSADP

(1 nM)
TRAP

(2.5 M)

P-
se

le
cti

n 
ex

pr
es

sio
n 

(%
)

CRP
(1 ng/mL))

20

40

60

80

100

HD

COVID-19 Non-ICU

COVID-19 ICU

**

C

0

HD

CO
VID

-1
9

5

10

15

20

25

Pl
at

el
et

 - n
eu

tro
ph

il
ag

gr
eg

at
es

(%
 C

D4
1+

 n
eu

tro
ph

ils
)

***
D

0

HD

CO
VID

-1
9

10

20

30

40

***

Pl
at

el
et

 - m
on

oc
yt

e
ag

gr
eg

at
es

(%
 C

D4
1+

 m
on

oc
yt

es
)

E

0

HD

CO
VID

-1
9

5

10

15

20

*

Pl
at

el
et

 - C
D4

 T-
ce

ll
ag

gr
eg

at
es

(%
 C

D4
1+

 C
D4

 T-
ce

lls
)

F

0

HD

CO
VID

-1
9

10

20

30
*

Pl
at

el
et

 - C
D8

 T-
ce

ll
ag

gr
eg

at
es

(%
 C

D4
1+

 C
D8

 T-
ce

lls
)

Figure 4. COVID-19 alters platelet activation and increases PLAs. (A) Platelet P-selectin expression was measured in whole blood by flow cytometry at baseline in 17 healthy
donors and 5 non-ICU and 12 ICU COVID-19 patients. Blue dots indicate ICU patients; red dots indicate non-ICU patients. (B) P-selectin expression wasmeasured after activation
by platelet agonists. P2Y12 activation was induced by 1 ng/mL 2MeSADP, PAR1 was activated through 2.5mMSFLLRN (TRAP), andGPVI was activated with 1 ng/mL CRP (N5 17-
18 per group). Blue dots indicate ICU patients; red dots indicate non-ICU patients. (C-F) PLAs weremeasured in whole blood by flow cytometry. N5 7 for the healthy donors and
N 5 12-13 for COVID-19 patients. Blue dots indicate ICU patients; red dots indicate non-ICU patients. (C) PNAs were identified as CD66b1CD411 leukocytes. (D) Platelet-
monocyte aggregates were identified as CD141CD411 leukocytes. (E) Platelet-CD4 T-cell aggregates were identified as CD31CD41CD411 leukocytes. (F) Platelet-CD8 T-cell
aggregates were identified as CD31CD81CD411 leukocytes. *P , .05; ***P , .001

PLATELET FUNCTION IN COVID-19 PATIENTS blood® 10 SEPTEMBER 2020 | VOLUME 136, NUMBER 11 1323



increased MAPK signaling promotes thromboxane generation
by regulating cytosolic phospholipase A2 activation.28 There-
fore, we next evaluated platelet cytosolic phospholipase A2
phosphorylation in patients infected with SARS-CoV-2. As shown
in Figure 6C-D, cytosolic phospholipase A2 phosphorylation was

significantly increased in SARS-CoV-2–infected patients both at
baseline and upon activation. Our laboratory and others have
shown that increases in cytosolic phospholipase A2 phosphor-
ylation activate cytosolic phospholipase A2 activity, thereby
upregulating thromboxane production.28 Consistent with these
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previous findings, stimulation with 2MeSADP resulted in increased
thromboxane generation by platelets from COVID-19 ICU patients
(Figure 6E). Platelet hyperreactivity in COVID-19 ICU patients could
be reduced by pretreatment with high-dose aspirin (supplemental
Figure 10). These results demonstrate that increased platelet ac-
tivation (granule release and P-selectin expression) and aggregation
during COVID-19 is due, at least in part, to increased MAPK
pathway activation and thromboxane generation.

Discussion
COVID-19 is most commonly associated with ARDS and hyp-
oxemic respiratory failure. Significant derangements in the co-
agulation cascade have been observed in critically ill COVID-19
patients, including elevated D-dimers, fibrinogen, and von
Willebrand factor levels.29,31,38 Furthermore, thrombosis, including

pulmonary embolism, venous thrombosis, and ischemic stroke,
are common among severely ill patients.39,41-43 Platelets are known
to play a significant role in the development of these thrombotic
complications. In addition, platelets are an important bridge
between the hemostatic system and immune defense, including
viral illness. Whether COVID-19 alters platelet gene expression
and function is unknown. Here, we demonstrate for the first time
that COVID-19 significantly alters platelet gene expression and
triggers robust platelet hyperreactivity.

Previous studies from our group have demonstrated that in-
fectious diseases including dengue, influenza, and sepsis are
associated with dynamic changes in platelet gene expression.12,21

Similar to other infectious diseases, the platelet transcriptome was
significantly altered in COVID-19 patients, as compared with
healthy donors. Interestingly, non-ICU and ICU COVID-19 patients
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had similar changes in gene expression with only 16 genes dif-
ferentially expressed between the 2 cohorts.

Although global transcriptomic changes were similar between both
non-ICU and ICU COVID-19 patients, hundreds of platelet tran-
scripts significantly differentially expressed during COVID-19 were
distinctly different than those transcripts altered during pandemic
influenza A/H1N1 or sepsis. This suggests there may be unique
aspects of COVID-19 on platelets that are distinct from those
changes triggered during sepsis and pandemic influenza A/H1N1.
We highlight that there were also a number of transcripts that were
similarly altered in platelets from patients with COVID-19 and
pandemic influenza A/H1N1. This included the interferon-sensitive
gene IFITM3, which prevents viral entry and replication.44 In-
terestingly, IFITM3 expression was similar among ICU and non-ICU
COVID-19 patients. We recently reported that IFITM3 mRNA and
protein are upregulated in platelets and megakaryocytes during
viral infections, and functionally serve to limit viral infection of host
cells, including megakaryocytes and stem cells.12 Whether upreg-
ulation of IFITM3 in platelets from COVID-19 patients serves to
similarly restrict SARS-CoV-2 viral replication remains unknown at
this time, but may be pursued in future studies.

Recent studies have suggested that viruses such as influenza can
be found inplatelets.14Whether SARS-CoV-2 virus can bind to and
enter platelets has not previously been established. Using com-
plementary transcriptomic and proteomic assays, we were uniformly
unable to detect ACE2, the putative receptor for SARS-CoV-2
viral entry, in platelets or megakaryocytes. Transmission electron
microscopy also revealed the absence of SARS-CoV-2 viral
particles in platelets. We did detect, in a very small number of
COVID-19 patients (n5 2 of 25; 8% both COVID-19 ICU patients),
transcriptional expression of the N1 SARS-CoV-2 gene in isolated
platelets. Both patients had no detectable expression of the ACE2
receptor based on real-time PCR analysis. We were unable to
determine whether SARS-CoV-2 virion particles were also pre-
sent in platelets from these 2 COVID-19 patients as we did not
perform electron microscopy on these patients. Because our
findings indicate that the ACE2 receptor is absent in platelets
and megakaryocytes, if SARS-CoV-2 viral uptake occurs, it
would seemingly need to happen independently of the ACE2
receptor. As platelets express a host of TLRs, including TLR7, it
is possible that SARS-CoV-2 could enter megakaryocytes and
platelets through an alternative mechanism.45-48

Although thrombocytopenia is observed in some COVID-19
patients and correlates with mortality,32,49 patients we recruited
with COVID-19 (ICU and non-ICU) generally had normal platelet
number and size, consistent with at least 1 prior report.40 This is
distinct from other viral infectious diseases including more se-
verely ill influenza patients, as well as dengue and SARS-CoV-
1.33,50-52 Interestingly, over one-half of SARS-CoV-1 patients
present with thrombocytopenia with no change in TPO levels until
the convalescence stage of the disease when TPO levels increase
as well as platelet counts.53 Viral infections are known to modulate
liver production of TPO due to alterations in host cytokine profiles
such as increased tumor growth factor b.54,55 In our study, in-
creased TPO levels in COVID-19 patients without alterations in
platelet counts may reflect the systemic effects present in patients
during infection altering liver production of TPO. Alternatively, we
observed significantly decreased c-MPL RNA levels in COVID-19
patients. Decreased TPO receptor on platelets and megakaryocytes

has been shown to affect circulating TPO levels and may also
explain our observation in COVID-19 patients.56-58

Platelet activation is common during infectious diseases, in-
cluding PS exposure.59,60 Although we validated enrichment of
1 ingenuity pathway analysis pathway (mitochondrial dys-
function) with functional changes demonstrating increased
mitochondrial ROS generation in COVID-19 patients, we did
not observe any increase in resting PS levels. These findings
illustrate 1 difference in platelets during SARS-CoV-2 infection
and other infectious setting, including HIV infection and
sepsis.59,60 Platelets also contain many antiviral and antibac-
terial factors inside their a- and dense granules, which are
secreted by activated platelets.51 Previous studies have ob-
served increased P-selectin expression during viral infection
including influenza.47,61 Increased expression of P-selectin
promotes the formation of PLAs through P-selectin glycopro-
tein ligand-1 (PSGL-1). The formation of PLAs is a very sensitive
marker of in vivo platelet activation during infectious disease,
and we observed increased PLAs in COVID-19 patients.5 PLA
formation, specifically with monocytes, also induces fibrin clot
formation via interactions of PSGL-1 on leukocyte-derived
microparticles with tissue factor on the platelet surface.62

Similar to other critically ill patient populations, circulating
platelet-monocyte aggregates in blood were significantly in-
creased independent of ICU status in COVID-19 patients.26 We
also identified that circulating PNAs were increased in COVID-
19 patients and were higher in ICU patients. The formation of
PNAs recruits neutrophils to damaged lung capillaries.63-65

P-selectin neutralization reduces neutrophil recruitment and in-
hibits the development of acute lung injury in animal models.65

P-selectin blockade is being investigated during SARS-CoV-2
infection andwe speculate that increased PNAsmay contribute to
the acute lung damage and ARDS observed in COVID-19.

Although not as often studied during infectious diseases, in-
creased platelet T-cell interactions may also influence outcomes
during SARS-CoV-2 infections. Previous studies have demon-
strated increased neuroinflammation, commonly reported in
COVID-19, and altered IL-17 and IFNg production when
platelets adhere to CD41 T cells.66,67 In addition to regulating
T-cell inflammatory responses, platelets express major histo-
compatibility class I (MHC-I) and are capable of cross-presenting
antigens to CD81 T cells.68 Viral infections such as dengue are
known to effect platelet MHC expression and proteasome ac-
tivity.69 Increased platelet T-cell interactions may modulate
T-cell reactivity, inflammation, and immune responses during
COVID-19 and warrant further investigation.

We observed increased platelet aggregation in response to
2MesADP, thrombin, and collagen as well as increased adhesion
and spreading of platelets on fibrinogen and collagen during in-
fection with SARS-CoV-2. Critically ill ICU COVID-19 patients had
increased aggregation in response to low-dose agonist compared
with non-ICU patients, suggestingmore severe diseasemay induce
greater platelet hyperreactivity. Increased platelet aggregation has
been observed in other viral illness such as HIV,70 where sub-
threshold concentrations of agonists induce greater platelet ag-
gregation similar to our observations during SARS-CoV-2 activation.
Increased MAPK signaling may be partly responsible for the in-
creased aggregation responses as we observed increase activa-
tion of cytosolic phospholipase A2 and subsequently increased
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thromboxane generation, which enhances platelet aggregation.28

Aspirin pretreatment of platelets from SARS-CoV-2–infected pa-
tients abolishes this hyperactivity (supplemental Figure 10), further
supporting increased thromboxane generation as 1 mechanism
triggering platelet hyperreactivity during COVID-19. Of note,
platelet aggregation was assessed only on COVID-19 patients who
were not on aspirin or other antiplatelet agents. Interestingly,
platelet P-selectin expression in response to low-dose 2MeSADP
significantly correlated with illness severity based on SOFA scores.
A recent report indicated that ADP is a key player in the devel-
opment of microvascular thrombosis in COVID-19 patients.71 As
aspirin reduced platelet hyperactivity in COVID-19 patients, our
findings of platelet activation correlatingwith illness severity further
suggest that antiplatelet therapies may be warranted in treating
COVID-19 patients. Enhanced MAPK signaling could also be re-
sponsible for increased a-granule release and P-selectin expres-
sion observed in COVID-19 patients.72

Increased activation of the MAPK pathway in platelets may be
partly due to increased JAK3, which is known to be upstream of
the MAPK pathway.73,74 RNA-seq analysis demonstrated in-
creased JAK3 mRNA expression, which we subsequently vali-
dated at the protein level (supplemental Figure 11). In addition
to JAK3, we also observed that other upstream regulators of the
MAPK pathway were altered in platelets during COVID-19, in-
cluding signaling by Rho family GTPases (supplemental Table 5).

However, not all aspects of platelet functional responses were
enhanced in COVID-19. Integrin aIIbb3 activation was re-
duced during COVID-19, compared with healthy donors. A
similar finding was previously observed in critically ill influenza
A/H1N1 (which caused the 2009 pandemic) patients, sug-
gesting that reduced integrin activation may be a common
feature of acute viral illness.26 The mechanism behind reduced
integrin aIIbb3 activation (and its significance) remains un-
known. Our flow cytometry analyses indicated that aIIb ex-
pression was similar between COVID-19 patients and controls,
however, suggesting that reduced aIIb receptor density was
not responsible for this finding. We did observe that calpain
mRNA expression was significantly upregulated in platelets
during SARS-CoV-2 infection (supplemental Tables 2 and 4).
As mitochondrial-dependent calpain activation regulates
integrin aIIbb3,75 it is possible that alteredmitochondria function
and increased calpain levels may contribute to our observation of
reduced integrin aIIbb3 activation in COVID-19 patients.

Based on the results of our study, we postulate that increased
platelet reactivity during SARS-CoV-2 infection may contribute to
immunothrombosis during COVID-19 as reported by others.4,31,43

As none of the COVID-19 patients enrolled in our study were
clinically diagnosed with thrombotic complications, we are unable
to examine clinical associations between platelet activation and
thrombosis in our study. Interestingly, platelet counts, MPV,
and markers of platelet activation, including platelet-leukocyte
and plasma PDGF, did not correlate with markers of inflammation
such as IL-6, IL-8, and TNF-a (data not shown). We also posit that
platelets are likely not the sole contributors, as other blood cells
and soluble coagulation factors also mediate injurious inflamma-
tory, immune, and thrombotic responses.

In conclusion, our findings demonstrate that COVID-19 is associ-
ated with substantial alterations in the platelet transcriptome and

proteome, and platelet hyperreactivity. Our data may serve as
foundational to ongoing clinical studies investigating whether tar-
geting platelets during COVID-19 may improve patient outcome.
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