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Abstract

In recent years, microRNAs (miRNAs) are attracting an increasing amount of

researchers’ attention, as accumulating studies show that miRNAs play important

roles in various basic biological processes and that dysregulation of miRNAs is con-

nected with diverse human diseases, particularly cancers. However, the experimental

methods to identify associations between miRNAs and diseases remain costly and

laborious. In this study, we developed a computational method named Network Dis-

tance Analysis for MiRNA-Disease Association prediction (NDAMDA) which could

effectively predict potential miRNA-disease associations. The highlight of this

method was the use of not only the direct network distance between 2 miRNAs (dis-

eases) but also their respective mean network distances to all other miRNAs (dis-

eases) in the network. The model’s reliable performance was certified by the AUC of

0.8920 in global leave-one-out cross-validation (LOOCV), 0.8062 in local LOOCV

and the average AUCs of 0.8935 � 0.0009 in fivefold cross-validation. Moreover,

we applied NDAMDA to 3 different case studies to predict potential miRNAs related

to breast neoplasms, lymphoma, oesophageal neoplasms, prostate neoplasms and

hepatocellular carcinoma. Results showed that 86%, 72%, 86%, 86% and 84% of the

top 50 predicted miRNAs were supported by experimental association evidence.

Therefore, NDAMDA is a reliable method for predicting disease-related miRNAs.
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1 | INTRODUCTION

MicroRNAs (miRNAs) are a class of non-coding RNAs which play

regulatory roles in gene expressions by binding to the complemen-

tary regions of messenger transcripts to repress their translation or

regulate degradation.1-3 Asince the lin-4 and let-7 were discovered

in Caenorhabditis elegans,4 over 30 000 mature miRNAs have been

found from 206 species.5 Furthermore, accumulating evidence

shows that miRNA constitutes one of the most important compo-

nents of cells and is involved in nearly all biological processes,

including cell growth,6 immune reaction,7 cell proliferation and dif-

ferentiation,8,9 cell development,6 cell cycle regulation,10 inflamma-

tion,11 apoptosis 12 and stress response.6,13 It is also reported that

the abnormality of miRNAs is connected with various human dis-

eases, particularly cancers.14,15 Identifying disease-related miRNAs is

an important biomedical research field, which benefits the under-

standing of disease pathogenesis at the molecular level and the

design of molecular tools for disease diagnosis, treatment and

prevention.
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In parallel with much efforts being made to identify novel miR-

NAs, the research community is also interested in predicting and val-

idating miRNAs’ associations with diseases. Using experimental

methods to uncover such associations is typically costly and time-

consuming. Fortunately, taking the advantage of vast biological data

for miRNAs, computational methods can be an efficient complement

to experimental studies. By far, existing computational methods can

be broadly divided into 2 categories: (i) those constructing networks

and applying the corresponding network-based algorithms and (ii)

those utilizing machine learning.

Inspired by the idea that functionally similar miRNAs tend to be

related with phenotypically similar diseases, Jiang et al16 constructed

a scoring system based on a discrete hypergeometric probability dis-

tribution. This method was not particularly satisfying because 2 miR-

NAs may be functionally related when their target genes, instead of

overlapping significantly, reside in the same cellular pathways or

functional modules. Some researchers developed their methods by

involving other functional elements. For example, Mork et al17 com-

bined miRNA-protein and protein-disease associations and proposed

a novel model named miRNA-protein-disease (miRPD). This method

took proteins into consideration, but finding enough miRNAs and

diseases associated with the same proteins for the analysis was a

difficult task. Shi et al18 presented a method to identify miRNA-dis-

ease associations based on the assumption that a disease tends to

be associated with miRNAs whose target genes also have associa-

tions with this disease. They carried out a random walk analysis on a

protein-protein interaction (PPI) network, and the analysis took into

account the global network distance measure and the functional

links between miRNAs’ targets and disease genes. However, the

methods mentioned above had two common drawbacks: the high

false-positives and false-negatives in miRNA-target interactions and

the incompletion of the disease-gene association network.

To overcome such drawbacks, researchers developed computa-

tional models without relying on miRNA-target interactions. Chen

et al19 put forward RWRMDA, the first global network similarity-

based model, to capture the associations between miRNAs and dis-

eases. Although the model was based on random walk that made full

use of global network information, it was not applicable to new dis-

eases without any known related miRNAs. Chen et al20 proposed

another global ranking model called WBSMDA, which utilized Gaus-

sian interaction profile kernel similarity for diseases and miRNAs. As

an upgrade to RWRMDA, WBSMDA could be implemented for dis-

eases without any known related miRNAs. However, WBSMDA

might cause bias to miRNAs with more known associated diseases

and its scores needed to be integrated more reasonably. Xuan et al21

presented HDMP based on weighted k most similar neighbours and

the miRNA functional similarity. For a specific disease, the relevance

score of a miRNA was calculated by summing all subscores of the

miRNA’s k neighbours. The subscore of a neighbour was calculated

by multiplying the functional similarity between the miRNA and the

neighbour with the weight of the neighbour; the assignment of

weight was based on the neighbour’s miRNA family or cluster. The

members in the same miRNA family or cluster were assigned higher

weights because they were usually transcribed together and there-

fore were more likely to be associated with similar diseases. How-

ever, this method also had some limitations: on one hand, HDMP

could not be applied to the new diseases which did not have any

known related miRNAs; on the other hand, HDMP did not make full

use of global network similarity information. Pasquier et al22 pro-

posed a method named MiRAI which represented distributional

information on miRNAs and diseases in a high-dimensional vector

space and reduced dimensions with the help of singular value

decomposition (SVD). The association score for a miRNA-disease

pair was measured by the cosine similarity between the miRNA vec-

tor in the miRNA space and the disease vector in the disease space.

However, the prediction accuracy of MiRAI was low because the

model had the data sparsity problem.

Besides, several computational models had adopted machine

learning methods to uncover associations between miRNAs and dis-

eases. Under the assumption that miRNAs involved in a specific

tumour phenotype will exhibit aberrant regulation of their target

genes, Xu et al23 introduced an approach based on the miRNA-tar-

get-dysregulated network (MTDN) to prioritize disease-related miR-

NAs. MTDN was constructed by assembling all significant miRNA-

target pairs which were identified by miRNA expression profiles in

tumour and non-tumour tissues. For each miRNA in MTDN, 4 topo-

logical features were computed and changes in miRNA expression

were captured. Then, a support vector machine (SVM) classifier was

built to identify positive miRNA-disease associations. Nevertheless,

negative associations needed for training the model were hard to

obtain and the prediction of supervised classifier such as SVM could

be inaccurate. To address this problem, Chen et al24 proposed a

semi-supervised method named RLSMDA. It was developed under

the framework of regularized least squares and the basic hypothesis

that functionally related miRNAs tend to be related to phenotypically

similar diseases. Compared with previous methods, RLSMDA could

identify related miRNAs for diseases without any known associated

miRNAs. Furthermore, only positive disease-miRNA association sam-

ples were needed to train RLSMDA, and therefore, the model over-

came the difficulties in obtaining negative samples faced by several

previous studies. But the room for improvement was how to choose

the best parameters. Similar to the process of random work, Chen

et al25 presented another iterative model named HGIMDA to find

the optimal solutions based on global network similarity information.

A heterogeneous graph was constructed from various disease simi-

larity measures, diverse miRNA similarity measures and the known

miRNA-disease associations. To calculate the association score

between a miRNA and a disease, an iterative process was carried

out on the heterogeneous graph, summarizing all paths between the

miRNA and the disease with the length equal to 3. Xuan et al26

developed MIDP to predict potential miRNA candidates for the dis-

eases with known related miRNAs and MIDPE for the diseases with-

out any known related miRNAs. It is worth mentioning that the

negative effect of noisy data could be decreased by restarting the

walk. Chen et al27 further raised RBMMMDA which was the first

computational approach for multiple types of miRNA-disease
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association prediction. Based on this model, we could obtain not

only new miRNA-disease associations but also their corresponding

association types. Recently, Li et al28 raised MCMDA based on the

observation that the miRNA-disease association matrix was low-rank.

They filled the candidate samples without known associations with

zero and then iteratively updated them with the predictive scores.

As mentioned above, the existing methods have different limita-

tions. For example, miRNA-target interactions and disease-genes

associations used in some methods are inaccurate or incomplete.

Furthermore, many methods could not be applied to disease with-

out any known related miRNAs and many methods were con-

structed without optimal parameter. Therefore, new effective

computational methods are in urgent need. Based on the assump-

tion that functional similar miRNAs tend to be associated with simi-

lar diseases and vice versa, we developed the model of Network

Distance Analysis for MiRNA-Disease Association prediction

(NDAMDA). MiRNA-disease associations, miRNA functional similar-

ity network, disease semantic similarity network and Gaussian inter-

action profile kernel similarity network were integrated in

NDAMDA to uncover the potential disease-miRNA associations. To

evaluate the effectiveness of NDAMDA, global and local leave-one-

out cross-validation (LOOCV) as well as fivefold cross-validation

was introduced. The AUCs of global and local LOOCV were

respectively 0.8920 and 0.8062, and the model obtained the aver-

age AUC of 0.8935 � 0.0009 in fivefold cross-validation. Besides,

we accessed NDAMDA in case studies of breast neoplasms, lym-

phoma and oesophageal neoplasms with the validation databases of

dbDEMC 29 and miR2Disease.30 As a result, 43, 36 and 43 of the

top 50 candidate miRNAs for these 3 diseases were respectively

confirmed by experimental discoveries in recent years. We further

evaluated the applicability of our method to the diseases without

any known related miRNAs. Prostate neoplasms was taken as the

investigated diseases, and its known associated miRNAs for the

investigated disease were removed from the training dataset. We

found that 43 of the top 50 candidate miRNAs for prostate neo-

plasms were verified by experimental discoveries. Finally, we

obtained 42 confirmed miRNAs in the top 50 candidate miRNAs

for hepatocellular carcinoma based on the previous version of

HMDD, further suggesting that this model have a good perfor-

mance on different input dataset.

2 | MATERIALS AND METHODS

2.1 | Human miRNA-disease associations

We downloaded the latest data of human miRNA-disease from the

HMDD database v2.0,31 which included 5430 experimentally verified

human miRNA-diseases associations, and it involved 383 diseases

and 495 miRNAs. Here, we introduced matrix Y 2 Rnm 9 nd to

express those associations in a mathematic way and entity Y i; jð Þ
equalled 1 if miRNA m ið Þ was confirmed to be related to disease

d jð Þ, and otherwise 0. In addition, we used nm and nd to denote the

number of miRNAs and diseases, respectively.

2.2 | MiRNA functional similarity

Based on the assumption that functionally similar miRNAs tend to

be associated with phenotypically similar diseases, Wang et al32 have

calculated the miRNA functional similarity score and we downloaded

them from http://www.cuilab.cn/files/images/cuilab/misim.zip. We

kept the scores in the matrix FS, where the entity FS m ið Þ;m jð Þð Þ rep-
resented the functional similarity between miRNA m ið Þ and m jð Þ.

2.3 | Disease semantic similarity model 1

We described each disease as a directed acyclic graph (DAG) with the

help of the disease MeSH descriptors downloaded from the National

Library of Medicine (http://www.nlm.nih.gov).33 Taking disease d ið Þ as
an example, we used DAG d ið Þ; T d ið Þð Þ; E d ið Þð Þð Þ to represent it, where

T d ið Þð Þ was the node set consisted of node D itself and its ancestor

nodes, E d ið Þð Þ was the corresponding edge set composed of the direct

edges from parent nodes to child nodes. Therefore, summing all the

contributions from ancestor diseases and disease d ið Þ itself, we could

calculate the semantic value of disease d ið Þ as follows:

DV d ið Þð Þ ¼
X

d2T d ið Þð Þ
Dd ið Þ dð Þ (1)

Dd ið Þ dð Þ ¼ 1; if d ¼ d ið Þ
Dd ið Þ dð Þ ¼ max D�Dd ið Þ d0ð Þjd0 2 children of d

� �
; if d 6¼ d ið Þ

�
(2)

where Δ was the semantic contribution factor. Their own contribu-

tion to the semantic value of disease d ið Þ was defined as 1; the con-

tribution decreased as the distance between d ið Þ and other diseases

increased. Therefore, disease terms in the same layer had the same

contribution to the semantic value of disease d ið Þ. We reasoned that

2 diseases sharing larger part of their DAGs were considered to have

greater semantic similarity. Here, we defined semantic similarity

between d ið Þ and d jð Þ as follows:

SS1 d ið Þ; d jð Þð Þ ¼
P

t2T d ið Þð Þ\T d jð Þð Þ Dd ið Þ tð Þ þ Dd jð Þ tð Þ� �
DV d ið Þð Þ þDV d jð Þð Þ (3)

2.4 | Disease semantic similarity model 2

The disease semantic similarity model was unsatisfying in considering

that 2 diseases which located in the same layer of DAG(d ið Þ) might

appear in different number of disease DAGs. It is obvious that the

one appeared more commonly was less specific. Therefore, we

developed disease semantic similarity model 2 to complement the

old one. We defined the contribution of disease t in DAG(d ið Þ) to
the semantic value of disease a as follows:

D�
d ið Þ tð Þ ¼ �log

the amount of DAGs including t
the amount of diseases

� �
(4)

Based on the assumption that 2 diseases sharing larger part of

their DAGs are considered to have stronger semantic similarity, we

summed all the contributions from ancestor diseases and itself to

determine the semantic value DV of disease d ið Þ in the similar way

as model 1.
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DV d ið Þð Þ ¼
X

t2D d ið Þð Þ
D�
d ið Þ tð Þ (5)

where D d ið Þð Þ was the node set in DAG d ið Þð Þ. The disease semantic

similarity matrix SS2 was given by

SS2 d ið Þ; d jð Þð Þ ¼
P

t2T d ið Þð Þ\T d jð Þð Þ D�
d ið Þ tð Þ þ D�

d jð Þ tð Þ
	 


DV d ið Þð Þ þDV d jð Þð Þ (6)

where DV d ið Þð Þ and DV d jð Þð Þ were the semantic value of d ið Þ and

d jð Þ, respectively.

2.5 | Gaussian interaction profile kernel similarity
for diseases

Using the topologic information of known miRNA-disease associa-

tion network, we proposed Gaussian interaction profile kernel simi-

larity for diseases based on the assumption that functional similar

miRNAs tend to be associated with similar diseases. Here, we used

the vector IP to represent the interaction profiles of diseases, and IP

was calculated based on the associated information between the dis-

ease and each miRNA, that is, the ith row of the adjacency matrix Y.

Then, Gaussian kernel similarity between disease d ið Þ and d jð Þ was

defined based on their interaction profiles as follows:

KSd d ið Þ; d jð Þð Þ ¼ exp �cdjjIP d ið Þð Þ � IP d jð Þð Þjj2
	 


(7)

where parameter cd was used to control the kernel bandwidth and

calculated as follows.

cd ¼ c0d 1=nd
Xnd
k¼1

����IP d kð Þð Þ����2
0
@

1
A,

(8)

where c0d was the original adjustment coefficient and KSd d ið Þ; d jð Þð Þ
was the Gaussian interaction profile kernel similarity between dis-

ease d ið Þ and d jð Þ.

2.6 | Gaussian interaction profile kernel similarity
for miRNAs

Gaussian interaction profile kernel similarity matrix of miRNA could

be calculated in a similar way:

KSm m ið Þ;m jð Þð Þ ¼ exp �cm
����IP m ið Þð Þ � IP m jð Þð Þ����2	 


(9)

cm ¼ c0m
1
nm

Xnm
k¼1

����IP m kð Þð Þ����2
 !,

(10)

KSm m ið Þ;m jð Þð Þ was the Gaussian interaction profile kernel simi-

larity between miRNA m ið Þ and m jð Þ.

2.7 | Integrated similarity for miRNAs and diseases

Here, integrated miRNA similarity matrix Sm and integrated disease simi-

larity matrix Sd were constructed based on miRNA functional similarity,

disease semantic similarity and Gaussian interaction profile kernel simi-

larity. For miRNA pairs and disease pairs that did not have similarity, we

used KSm and KSd to respectively represent the similarity between

them. In addition, we used FS to represent the similarity for miRNA

pairs that had functional similarity; we used the average of SS1 and SS2

to represent the similarity for disease pairs that had semantic similarity.

Sm m ið Þ;m jð Þð Þ ¼ FS m ið Þ;m jð Þð Þ;m ið Þ andm jð Þ have functional similarity
KSm m ið Þ;m jð Þð Þ;otherwise

�
(11)

Sd d ið Þ;d jð Þð Þ ¼
SS1 d ið Þ;d jð Þð Þþ
SS2 d ið Þ;d jð Þð Þ

2 ;d ið Þ and d jð Þ have semantic similarity
KSd d ið Þ;d jð Þð Þ ;otherwise

8><
>:

(12)

2.8 | NDAMDA

We developed NDAMDA which was constituted by 3 steps: (I) net-

work distance computation and adjustment (II) calculation of the

confidence (III) score conversion (See Figure 1).

2.9 | Network distance computation and
adjustment for miRNAs

We could obtain the similarities from our previous work between

two miRNAs directly, for example, we could extract functional simi-

larity between m ið Þ and m jð Þ as FS i; jð Þ, then, the raw network dis-

tance between two miRNAs with a link in the network was defined

as D = 1/FS, such that a smaller D (shorter distance) would corre-

spond to a higher functional similarity. To those miRNAs without

direct links, we used Gaussian interaction profile kernel similarity to

fill it. In summary, the raw distance was determined as D = 1/Sm. To

develop a comprehensive network, we considered both the distance

between two miRNAs and their respective mean network distances

to all other miRNAs, and the adjusted distance was defined as

Dmadj
ij ¼ Dijffiffiffiffiffiffiffiffiffi

ri�rj
p where ri and rj were the mean distance for m ið Þ and

m jð Þ; respectively, in raw network.

2.10 | Network distance computation and
adjustment for diseases

Similar to computation and adjustment for miRNAs, the scores

obtained from disease semantic similarity model 1 and disease

semantic similarity model 2 were used to construct the raw network

of diseases, and distance between two diseases was defined as

D = 1/Sd after incorporating Gaussian interaction profile kernel simi-

larity to enhance our network. We calculated the adjusted distance

as: Ddadjij ¼ Dijffiffiffiffiffiffiffiffiffi
ri�rj

p , where ri and rj were the mean distance for d ið Þ
and d jð Þ; respectively, in raw network.

2.11 | Calculation of the confidence in miRNAs

We reasoned that, for a specific disease in the network, a related

miRNA was closer to other related miRNAs than random miRNAs.
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Therefore, we introduced the confidence Cm ið Þ in miRNA m ið Þ as

follows:

Cm ið Þ ¼
Pnm

j¼1 Dmadj
ij

nm
�
PR

j¼1 Dm
adj
ij

R
(13)

where R was richness of the given disease indicating the total num-

ber of known related miRNAs, and Dmadj
ij was the adjusted network

distance between m ið Þ and m jð Þ. It could be concluded that a larger

Cm ið Þ would suggest that the investigated miRNA had relatively

shorter distance (stronger functional interaction) to known related

miRNAs than to random miRNAs; the miRNA was therefore more

likely to be associated with the investigated disease.

2.12 | Calculation of the confidence to pick the
diseases regulated by specific miRNA

Similarly, given a specific miRNA, we reasoned that a regulated dis-

ease deserves a stronger integrated similarity than with random dis-

eases. Here, we introduced the confidence in d ið Þ, Cd ið Þ, defined as

follows:

Cd ið Þ ¼
Pnd

j¼1 Dd
adj
ij

nd
�
PR

j¼1 Dd
adj
ij

R
(14)

A larger Cd ið Þ could suggest that the disease under investigation

was more likely to be associated with the given miRNA.

2.13 | Score conversion

For a given disease, the confidence in specific miRNA could be com-

pared with each other, with higher confidence indicating higher proba-

bility to be an associated miRNA. However, they could not be directly

compared across diseases, because the richness varied greatly from dis-

ease to disease. For example, disease A had 20 known related miRNAs

and the investigated miRNA was ranked 205th and disease B had 200

known related miRNAs and the second miRNA we investigated was

ranked 205th as well. It was obvious that the second pair was more

likely to associate with each other and was more likely to be an associ-

ated miRNA. Similarly, it was unreasonable to compare confidence

across miRNAs. Therefore, a score conversion procedure would be

needed to convert the confidence into probabilities. For a given disease,

we firstly sorted all miRNAs in a descending order of confidence calcu-

lated by NDAMDA. Then, at each Cm(i), we computed the correspond-

ing precision defined as Precision = R/H, where R and H were the

richness of given disease (total number of known related miRNAs) and

the number of all miRNAs with higher or equal rank to Cm(i), respec-

tively. In a similar manner, score conversion for a given miRNA was

applied on Cd ið Þ after sorting all diseases in a descending order.

F IGURE 1 The flow chart of NDAMDA includes 3 steps: (I) network distance computation and adjustment (II) calculation of the confidence
(III) score conversion. For details about each step, refer to the Materials and Method section
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Finally, we integrated two converted scores by averaging them,

yielding the final score:

P m ið Þ; d jð Þð Þ ¼
Prd jð Þ

m ið Þ þ Prm ið Þ
d jð Þ

2
(15)

where P m ið Þ; d jð Þð Þ was the final score between miRNA m ið Þ and dis-

ease d jð Þ. Prd jð Þ
m ið Þ was the precision of Cm ið Þ when given disease d jð Þ;

and Prm ið Þ
d jð Þ was the precision of Cd jð Þ when given miRNA m ið Þ.

3 | RESULT

3.1 | Performance evaluation

We implemented local and global LOOCV to evaluate the predic-

tion accuracy of NDAMDA and 6 previous computational models:

WBSMDA,20 RLSMDA,24 MCMDA,28 HDMP,21 RWRMDA 19 and

MiRAI.22 In LOOCV, each known association was used as the

validation sample and the remaining known associations were

regarded as the training samples. The miRNA-disease pairs with-

out any known association evidence were considered as candi-

date samples. The known miRNA-disease associations were

obtained from the HMDD v2.0 database.31 The association

scores of all miRNA-disease pairs would be returned by

NDAMDA. In global LOOCV, the score of the validation sample

was compared with all the candidate samples, while in local

LOOCV, the score was compared with candidate samples for the

investigated disease.

In fivefold cross-validation, the known miRNA-disease associa-

tions were randomly partitioned into 5 equally sized subsets. Each

subset was retained as the validation set in turn, and the remain-

ing 4 subsets were used as the training set. Still, the miRNA-dis-

ease pairs without known association evidence were regarded as

the candidate samples. Then, the score of each sample in the vali-

dation set was ranked against the scores of all the candidate sam-

ples. This procedure was repeated 100 times to better estimate

the mean and variance of NDAMDA’s prediction accuracy. This

repetition reduced the error in performance estimation as the

result of fivefold cross-validation depended on how the associa-

tions were partitioned.

In both LOOCV and fivefold cross-validation, the model would

be deemed to make a correct prediction for a validation sample, if

its rank exceeded a given threshold. Furthermore, we drew receiver

operating characteristics (ROC) curve by plotting the true-positive

rate (TPR) against the false-positive rate (FPR) at various thresholds.

The true-positive rate is also known as sensitivity which represents

the percentage of the validation samples ranked higher than the

threshold. The false-positive is calculated as (1-specificity), where

specificity denotes the percentage of candidate miRNA-disease pairs

ranked lower than the threshold. We calculated the area under the

ROC curve (AUC) to evaluate the prediction ability of NDAMDA.

AUC = 1 indicates the model has perfect prediction performance;

AUC = 0.5 implies the model has random performance.

The performance comparison in local and global LOOCV is

shown in Figure 2. RWRMDA was not included in global LOOCV,

F IGURE 2 AUC of global LOOCV (left) compared with HGIMDA, RLSMDA, HDMP and WBSMDA; AUC of local LOOCV (right) compared
with MCMDA, RLSMDA, HDMP, WBSMDA and MiRAI. As a result, NDAMDA achieved AUCs of 0.8920 and 0.8062 in the global and local
LOOCV, which exceed all the previous classical models. LOOCV, leave-one-out cross-validation
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because it was a local method, unable to uncover potentially associ-

ated miRNAs for all diseases simultaneously. In addition, global

LOOCV was not applicable to for MiRAI, because the association

score for a miRNA-disease pair calculated by the model was highly

positively correlated with the number of known associated miRNAs

for the disease. This means that the association scores for different

diseases were not comparable. The cross-validation results showed

that in global LOOCV, the AUCs of NDAMDA, MCMDA, RLSMDA,

HDMP, WBSMDA were 0.8920, 0.8749, 0.8426, 0.8366 and

0.8030, respectively; in local LOOCV, NDAMDA, MCMDA,

RLSMDA, HDMP, WBSMDA, RWRMDA and MiRAI achieved AUCs

of 0.8062, 0.7718, 0.6953, 0.7702, 0.8031, 0.7891 and 0.6299,

respectively. In addition, the average AUC of NDAMDA

(0.8935 � 0.0009) exceeded the average AUCs of MCMDA

(0.8767 � 0.0011), RLSMDA (0.8569 � 0.0020), HDMP (0.8342 �
0.0010) and WBSMDA (0.8185 � 0.0009), indicating the superior

performance of NDAMDA.

3.2 | Case studies

To demonstrate the sound prediction accuracy of our method, we

further carried out 3 types of case studies on 5 important diseases.

In the first type of case studies, the top 10 and top 50 predicted

miRNAs for the investigated diseases were validated by another two

miRNA-disease databases, namely dbDEMC 29 and miR2Disease.30

Breast cancer is the most commonly diagnosed in females. With

more than 1 million new incidences every year, breast cancer is

ranked as the second most frequent cancer type when considering

both sexes together.34 Incidence rates are high in most of the devel-

oped areas, and more than half of the cases are in industrialized

countries.35 It is the leading cause of death in females aged 20-59.36

With the rapid development of high-throughput sequencing tech-

nologies, researchers have identified plenty of miRNAs associated

with breast cancer. For example, higher levels of circulating miR-122

specifically predicted metastatic recurrence in patients with stage II-

III breast cancer.37 Besides, miR-155 was up-regulated greater than

twofold in breast cancer compared with normal adjacent tissue

(NAT),38 while a decreased level of serum miR-155 was found after

surgery and 4 cycles of chemotherapy.39 Here, we implemented

NDAMDA to identify potentially related miRNAs for brest neo-

plasms. As a result, 9 of the top 10 and 42 of the top 50 predicted

miRNAs were verified by experimental literatures from dbDEMC and

miR2Disease (See Table 1).

Oesophageal cancer is the eighth most common cancer world-

wide (accounting for about 500 000 new cases every year) and the

sixth most common cause of death by cancers (with 400 000 deaths

each year).34 Moreover, cancer in the oesophagus is usually 3-4

times more common among males than females and has a very low

5-year survival rate: only 16% in the United States and 10% in Eur-

ope.35 Squamous cell carcinoma and adenocarcinoma, the two main

types of oesophageal cancer, are mainly caused by overweight, obe-

sity and chronic gastro-oesophageal reflux disease (GERD).40

Researchers have identified several miRNAs associated with

oesophagus cancer. For instance, using real-time RT-PCR, a research

group studied miRNA-21 levels in serum samples from patients with

oesophageal squamous cell carcinomas (ESCC); they found that the

patients’ serum concentration of miRNA-21 was remarkably higher

than that of healthy controls and that a significant reduction in the

concentration was observed in patients when applied surgery or

chemotherapy.41,42 Another research group noticed that the expres-

sion of exosomal miR-21 was up-regulated in serum from patients

with ESCC compared with serum from patients with benign

TABLE 1 The top 50 predicted miRNAs associated with breast
neoplasms by sorting the association probabilities calculated by
NDAMDA

miRNA Evidence miRNA Evidence

hsa-mir-16 dbdemc hsa-mir-181 Unconfirmed

hsa-mir-1247 Unconfirmed hsa-mir-181c Dbdemc

hsa-mir-345 dbdemc hsa-mir-100 Dbdemc

hsa-mir-143 dbdemc;miR2

Disease

hsa-let-7c Dbdemc

hsa-mir-215 dbdemc hsa-mir-1302 Unconfirmed

hsa-mir-150 dbdemc hsa-mir-107 Dbdemc

hsa-mir-15a dbdemc hsa-mir-503 Dbdemc

hsa-mir-15b dbdemc hsa-mir-483 Dbdemc

hsa-mir-10b dbdemc;miR2

Disease

hsa-mir-33a Unconfirmed

hsa-mir-141 dbdemc;miR2

Disease

hsa-mir-422a Dbdemc

hsa-mir-21 dbdemc;miR2

Disease

hsa-mir-200c dbdemc;miR2

Disease

hsa-mir-198 dbdemc hsa-mir-20a miR2Disease

hsa-mir-590 dbdemc hsa-mir-133a Dbdemc

hsa-mir-200a dbdemc;miR2

!Disease

hsa-mir-498 Dbdemc

hsa-mir-29a dbdemc hsa-mir-145 dbdemc;miR2

Disease

hsa-mir-26b dbdemc hsa-mir-200b dbdemc;miR2

Disease

hsa-mir-675 Unconfirmed hsa-let-7d dbdemc;miR2

Disease

hsa-mir-221 dbdemc;miR2

Disease

hsa-let-7b Dbdemc

hsa-mir-765 dbdemc hsa-mir-942 Unconfirmed

hsa-let-7a dbdemc;miR2

Disease

hsa-mir-518a Dbdemc

hsa-mir-29b dbdemc;miR2

Disease

hsa-mir-181b dbdemc;miR2

Disease

hsa-mir-17 miR2Disease hsa-mir-99b Dbdemc

hsa-mir-195 dbdemc;miR2

Disease

hsa-mir-125a dbdemc;miR2

Disease

hsa-mir-1 dbdemc hsa-mir-27b Dbdemc

hsa-mir-103b Unconfirmed hsa-let-7 g Dbdemc

The first column records top 1-25 related miRNAs. The second column

records the top 26-50 related miRNAs.
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diseases.43 Among the top 10 and 50 potential oesophageal cancer-

related miRNAs, respectively, 8 and 43 miRNA-disease-predicted

associations were supported by database evidence (See Table 2).

Lymphoma cancer begins in cells of the immune system and can be

divided into two main categories: Hodgkin lymphoma and non-Hodgkin

lymphoma, which accounts for 90 per cent of all lymphomas.44,45

Hodgkin lymphoma can be identified by the presence of a type of cell

called the Reed-Sternberg cell, and non-Hodgkin consists of a large,

multiple group of cancers of immune system cells.46,47 Recently,

researcher found that the expression of miR-21 in plasma of patient

with lymphoma group significantly correlated with their serum LDH

level and the higher expressions of miR-21, miR-155 and miR-210 in

plasma of patients with lymphoma were significantly higher.48 It was

also reported that miR-203, miR-218, miR-181a, miR19a and miR17

were found to be associated with lymphoma: the former 3 miRNAs

functioned as tumour suppressors, and the latter two were found to

up-regulate oncogenes for lymphoma.49 This finding coincided with the

generally accepted idea that canine lymphoma is a common

spontaneous tumour with great similarities to human lymphoma.50 Sim-

ilarly, we used dbDEMC and miR2Disease to validate the potentially

associated miRNAs for lymphoma, and 9 of the top 10 and 36 of the

top 50 candidate miRNAs were examined by two databases (See

Table 3).

In addition to the above 3 cancers, we used NDAMDA to priori-

tize candidate miRNAs for all diseases in HMDD v2.0 and the results

are included in Table S1.

To assess the ability of NDAMDA in predicting potentially

related miRNAs for diseases without any known associated miRNAs,

we carried out another case study on prostate cancer. Its associated

miRNAs were removed from the training set, and the rest known

miRNA-disease associations were used to train NDAMDA. In this

manner, potentially related miRNAs for prostate cancer were uncov-

ered only using the information of other diseases-related miRNAs

TABLE 2 The top 50 predicted miRNAs associated with
oesophageal neoplasms by sorting the association probabilities
calculated by NDAMDA

miRNA Evidence miRNA Evidence

hsa-mir-146a dbdemc hsa-mir-765 Dbdemc

hsa-mir-133b dbdemc hsa-mir-29b Dbdemc

hsa-mir-1247 Unconfirmed hsa-mir-195 Dbdemc

hsa-mir-205 dbdemc;miR2

Disease

hsa-let-7a Dbdemc

hsa-mir-152 dbdemc hsa-mir-17 Dbdemc

hsa-mir-345 dbdemc hsa-mir-1 Dbdemc

hsa-mir-143 dbdemc hsa-mir-181 Unconfirmed

hsa-mir-215 dbdemc hsa-mir-103b Unconfirmed

hsa-mir-148b dbdemc hsa-mir-181c dbdemc

hsa-mir-449b Unconfirmed hsa-mir-100 dbdemc

hsa-mir-15a dbdemc hsa-mir-1302 Unconfirmed

hsa-mir-150 dbdemc hsa-mir-483 dbdemc

hsa-mir-140 dbdemc hsa-let-7c dbdemc

hsa-mir-10b dbdemc hsa-mir-20a dbdemc

hsa-mir-1972 Unconfirmed hsa-mir-422a dbdemc

hsa-mir-15b dbdemc hsa-mir-145 dbdemc

hsa-mir-21 dbdemc;miR2 Disease hsa-mir-200b dbdemc

hsa-mir-198 dbdemc hsa-mir-107 dbdemc;miR2

Disease

hsa-mir-141 dbdemc hsa-let-7b dbdemc

hsa-mir-590 dbdemc hsa-mir-133a dbdemc

hsa-mir-200a dbdemc hsa-mir-200c dbdemc

hsa-mir-29a dbdemc hsa-let-7d dbdemc

hsa-mir-26b dbdemc hsa-mir-498 dbdemc

hsa-mir-675 Unconfirmed hsa-mir-503 dbdemc

hsa-mir-221 dbdemc hsa-mir-181b dbdemc

The first column records top 1-25 related miRNAs. The second column

records the top 26-50 related miRNAs.

TABLE 3 The top 50 predicted miRNAs associated with
lymphoma by sorting the association probabilities calculated by
NDAMDA

miRNA Evidence miRNA Evidence

hsa-mir-1247 Unconfirmed hsa-mir-133a dbdemc

hsa-mir-215 dbdemc hsa-mir-151 miR2Disease

hsa-mir-15b dbdemc hsa-mir-376c Unconfirmed

hsa-mir-10b dbdemc hsa-mir-181d dbdemc

hsa-mir-21 dbdemc;miR2

Disease

hsa-mir-23a dbdemc

hsa-mir-200a dbdemc hsa-mir-659 Unconfirmed

hsa-let-7a dbdemc hsa-let-7d dbdemc

hsa-mir-26b dbdemc hsa-mir-422a dbdemc

hsa-mir-221 dbdemc;miR2

Disease

hsa-mir-10a dbdemc;miR2

Disease

hsa-mir-17 dbdemc;miR2

Disease

hsa-mir-483 Unconfirmed

hsa-mir-33a dbdemc hsa-mir-149 dbdemc;miR2

Disease

hsa-mir-195 dbdemc hsa-mir-193b Unconfirmed

hsa-mir-503 dbdemc hsa-mir-301b Unconfirmed

hsa-mir-130a dbdemc hsa-mir-1323 Unconfirmed

hsa-mir-103b Unconfirmed hsa-let-7b dbdemc

hsa-mir-1 dbdemc hsa-mir-20a dbdemc;miR2

Disease

hsa-mir-181c dbdemc hsa-mir-26a dbdemc

hsa-mir-107 dbdemc hsa-let-7 g dbdemc

hsa-let-7c dbdemc hsa-mir-31 dbdemc

hsa-mir-29b dbdemc hsa-mir-181b dbdemc

hsa-mir-498 Unconfirmed hsa-mir-410 Unconfirmed

hsa-mir-200c dbdemc hsa-mir-125a dbdemc

hsa-mir-1302 Unconfirmed hsa-mir-200b dbdemc

hsa-mir-942 Unconfirmed hsa-mir-204 dbdemc

hsa-mir-518a Unconfirmed hsa-mir-433 Unconfirmed

The first column records top 1-25 related miRNAs. The second column

records the top 26-50 related miRNAs.
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and the similarity measures. Subsequently, the top 50 prediction out-

comes were confirmed with HMDD v2.0, dbDEMC and miR2Di-

sease. As shown in Table 4, 8 of the top 10, 18 of the top 20 and

43 of the top 50 candidate miRNAs were verified.

In the final case study, we fitted our model with the miRNA-dis-

ease association dataset from HMDD v1.0, the old version of the

HMDD database. This case study was meant to demonstrate

NDAMDA’s robust prediction ability to various datasets. Hepatocel-

lular carcinoma was chosen as the investigated disease; its poten-

tially associated miRNAs were identified by NDAMDA and validated

against HMDD v2.0, dbDEMC and miR2Disease. As a result, 42 of

the top 50 candidates were confirmed by experimental evidence

from the databases (See Table 5). Taking the 1st candidate miR-155

as an example, it inhibited HBV infection in human hepatoma cells

through enhancing innate antiviral immunity; the ectopic expression

of miR-155 up-regulated the expression of several IFN-inducible

antiviral genes in human hepatoma cells.51

4 | DISCUSSIONS

The experimental methods for identifying disease-miRNA associations

are expensive and time-consuming. Encouragingly, plenty of computa-

tional methods for predicting disease-related miRNAs have been pro-

posed in recent years. To predict potentially related miRNAs for

diseases at a higher accuracy than previous methods, we developed a

network analysis-based method named NDAMDA for prioritizing

potentially disease-related miRNAs. The model achieved sound predic-

tion performance throughout global and local LOOCV, fivefold cross-

validation and 3 types of case studies on 5 major human diseases.

Therefore, NDAMDA would be a useful resource for researches to dis-

cover associations between diseases and miRNAs.

In our work, the case studies were based on cancers. The hall-

marks of cancer are one of the most widely acknowledged organiz-

ing principles for research on cancer, and currently, ten hallmarks

have been identified to represent the acquired capabilities that dis-

tinguish cancer from normal tissue.52 These hallmarks are (1) self-

sufficiency in growth signals; (2) insensitivity to antigrowth signals;

(3) evading apoptosis; (4) limitless replicative potential; (5) sustained

angiogenesis; (6) tissue invasion and metastasis; (7) abnormal meta-

bolic pathways; (8) evading the immune system; (9) chromosome

abnormalities and unstable DNA; and (10) inflammation.52 Associa-

tion between cancer hallmarks and genes has been indicated by the

literatures.52-54 For example, in our work, miR-155 obtained the

highest score in the fifth case study on hepatocellular carcinoma;

according to the data from NanoString’s Hallmarks of Cancer

Panel collection (https://www.nanostring.com/), two of the miRNA’s

gene targets, MUS81 and FLT1, have been found to be associated

with Hallmark (9) and Hallmark (5), respectively. Other examples

include miR-16, miR-1247 and miR-21, which had the highest scores

in the first, third and fourth case studies, respectively. APP, ATG12

and ATF2 are the common targets for these 3 miRNAs and have

been identified to be associated with Hallmark (10). In future work,

TABLE 4 The top 50 predicted miRNAs associated with prostate
neoplasms by sorting the association probabilities calculated by
NDAMDA

miRNA Evidence miRNA Evidence

hsa-mir-21 dbdemc;miR2

Disease

hsa-mir-31 dbdemc;miR2

Disease

hsa-mir-155 dbdemc hsa-mir-199a dbdemc;miR2

Disease

hsa-mir-146a miR2Disease hsa-mir-9 dbdemc

hsa-mir-125b dbdemc;miR2

Disease;

HMDD

hsa-mir-181a dbdemc;miR2

Disease

hsa-mir-17 miR2Disease hsa-mir-133a dbdemc

hsa-mir-20a miR2Disease hsa-mir-210 miR2Disease

hsa-mir-34a dbdemc;miR2

Disease

hsa-let-7b dbdemc;miR2

Disease

hsa-mir-145 dbdemc;miR2

Disease;

HMDD

hsa-mir-200a dbdemc

hsa-mir-221 dbdemc;miR2

Disease

hsa-mir-200c dbdemc

hsa-mir-18a Unconfirmed hsa-mir-181b dbdemc;miR2

Disease

hsa-mir-16 dbdemc;miR2

Disease

hsa-mir-142 Unconfirmed

hsa-mir-92a Unconfirmed hsa-mir-150 dbdemc

hsa-mir-126 dbdemc;miR2

Disease

hsa-mir-34c dbdemc

hsa-mir-19b dbdemc;miR2

Disease

hsa-let-7c dbdemc;miR2

Disease

hsa-mir-15a dbdemc;miR2

Disease

hsa-mir-146b Unconfirmed

hsa-mir-19a dbdemc hsa-mir-122 Unconfirmed

hsa-mir-29a dbdemc;miR2

Disease

hsa-mir-106b dbdemc

hsa-mir-1 dbdemc hsa-mir-182 dbdemc;miR2

Disease

hsa-mir-222 dbdemc;miR2

Disease

hsa-let-7d dbdemc;miR2

Disease

hsa-mir-143 dbdemc;miR2

Disease

hsa-mir-141 miR2Disease

hsa-mir-29b dbdemc;miR2

Disease

hsa-let-7e dbdemc

hsa-let-7a dbdemc;miR2

Disease

hsa-mir-133b dbdemc

hsa-mir-200b Unconfirmed hsa-mir-214 dbdemc;miR2

Disease

hsa-mir-223 dbdemc;miR2

Disease

hsa-mir-203 Unconfirmed

hsa-mir-29c dbdemc hsa-mir-30a miR2Disease

The disease’s associated miRNAs were removed from the training set,

and the rest known miRNA-disease associations were used to train

NDAMDA. Subsequently, the top 50 prediction outcomes were con-

firmed with HMDD v2.0, dbDEMC and miR2Disease. The first column

records top 1-25 related miRNAs. The second column records the top

26-50 related miRNAs.
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we would consider to involve the information of cancer hallmark-

gene associations in our analysis and examine whether this informa-

tion could enhance the accuracy of our algorithm.

The reliable performance of NDAMDA could be attributed to

several factors as follows. Firstly, heterogeneous datasets (disease-

miRNA associations from HMDD, miRNA functional similarity, dis-

ease semantic similarity and Gaussian interaction profile kernel simi-

larity for diseases and miRNAs) were integrated to construct the

informative network for prediction. Secondly, we used the adjusted

network distance and the algorithm for calculating the confidence in

a specific miRNA and the confidence in a specific disease. Finally,

we used a score conversion procedure that considered the variation

in the number of related miRNAs for different diseases.

Yet, there still exist limitations in NDAMDA. Firstly, more known

miRNA-disease associations are necessary for building a more accu-

rate adjacency network and improving the performance of

NDAMDA. Secondly, the model might cause bias to miRNAs with

more known related diseases, as it was based on the assumption

that the functional similar miRNAs are more likely to be connected

with similar diseases. Thirdly, NDAMDA might be not applicable to

the diseases whose associated miRNAs tend to distribute randomly

in the network, and how to integrate two scores to calculate the

final score in a more reasonable way should be studied in future.

Finally, although NDAMDA exhibited a commendable predictive per-

formance with the currently available 5430 associations between

495 miRNAs and 383 diseases from HMDD v2.0, this association

dataset was still limited; it contained a large amount of unlabelled

data and only a very small amount (2.86%) of labelled data, which

negatively affected the prediction accuracy. As experimental

research continues, more miRNA-disease associations were expected

to be biologically verified in future. With an improved association

dataset, our model would be able to uncover disease-related miRNAs

at an even higher accuracy.
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