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Abstract: Sexual reproduction in flowering plants involves intimate contact and continuous interactions
between the growing pollen tube and the female reproductive structures. These interactions can trigger
responses in distal regions of the flower well ahead of fertilization. While pollination-induced petal
senescence has been studied extensively, less is known about how pollination is perceived at a distance
in the ovary, and how specific this response is to various pollen genotypes. To address this question,
we performed a global transcriptomic analysis in the ovary of a wild potato species, Solanum chacoense,
at various time points following compatible, incompatible, and heterospecific pollinations. In all cases,
pollen tube penetration in the stigma was initially perceived as a wounding aggression. Then, as the pollen
tubes grew in the style, a growing number of genes became specific to each pollen genotype. Functional
classification analyses revealed sharp differences in the response to compatible and heterospecific
pollinations. For instance, the former induced reactive oxygen species (ROS)-related genes while the
latter affected genes associated to ethylene signaling. In contrast, incompatible pollination remained
more akin to a wound response. Our analysis reveals that every pollination type produces a specific
molecular signature generating diversified and specific responses at a distance in the ovary in preparation
for fertilization.

Keywords: long distance signaling; pollen–pistil interactions; pollen-associated molecular signatures;
postmating isolation barriers

1. Introduction

In Angiosperms, sexual reproduction is initiated by pollen landing on the stigma papillae.
After hydration, pollen grains produce a pollen tube (PT) that grows through the internal tissue
of the carpel, guided by physical as well as chemotropic cues originating from both the style and
the ovary to finally deliver its two sperm cells to the female gametophyte [1]. One sperm cell fuses
with the egg cell forming the zygote while the second sperm cell fuses with the central cell to form
the endosperm that surrounds and provides nutrients to the developing embryo. From the onset of
pollen grains landing on a receptive stigma surface until effective fertilization, multiple interactions
are initiated and a complex and intricate cross talk between the pollen and the pistil is established [2].
The decision to accept or reject the pollen starts with pollen capture and adhesion, followed by pollen
hydration and germination. At this stage, pollen grains might already be rejected, as found in species
expressing sporophytic self-compatibility (SI), like in the Brassicaceae family [3]. In species expressing
gametophytic SI systems, like in the Papaveraceae and in the Solanaceae, PT recognition and rejection
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occurs either soon after pollen germination [4] or later on during PT growth in the transmitting tissue
of the style [5], respectively. Being highly specialized structures, pollen [6–10], stigma/style [11–14],
ovary [15–19] as well as individual cells within the ovule [20,21] express a specific transcriptome.
During pollen–pistil interactions, continuous intimate contact and concomitant signal exchanges are
bound to further modulate these transcriptomes. Since the first large-scale report of pistil-induced
gene expression in the PT by Qin et al. in 2009 [22], several studies have investigated transcriptional
changes taking place in pollinated pistils in the context of compatible [23–25], incompatible [26–28],
and interspecific crosses [29–33].

In the abovementioned studies, the modulated genes were isolated from the tissues in direct
contact, however there is still the question of what goes on in distal structures before PTs reach the
ovary. Long-distance signaling during plant reproduction was described almost 150 years ago with the
discovery of pollination-induced ovule maturation in orchid species [34–36], which was later found to
be associated with interorgan ethylene signaling [37,38]. Pollination was also shown to be required
to complete female gametophyte development in other species such as almond [39], maize [40], and
tobacco [41]. Moreover, pollination is known to trigger several other physiological responses in the
flower [42], including petal senescence in orchids [43] and Petunia [44], or changes in floral scent,
for example in thistles [45]. Again, ethylene was identified or suggested as the mediator of this
long-distance signaling [42].

Such responses in distal organs require the modulation of genes at a distance following pollination,
well before PTs reach the ovules. Indeed, several studies revealed that pollination induces the expression
of ethylene biosynthesis genes in the flowers of orchids [38,46], tomato [47], and tobacco [41]. Moreover,
Lantin et al. [48] showed that the SPP2 gene from the wild potato species Solanum chacoense, which
encodes a dioxygenase, is activated at a distance in the ovary by both compatible pollination and stigma
wounding. This first observation on a single gene prompted us to expand the analysis and explore
the global transcriptional response of S. chacoense ovaries to pollination. Although comprehensive
transcriptomic studies were performed recently on pollination-induced responses in corollas [49,50],
no large-scale study has yet addressed the specific issue of long-distance communication between
growing PTs and ovules.

In this work, we set out to understand how precisely the ovary can interpret pollination from a
distance in preparation for fertilization, and how specific this response is to various pollination types.
To address these questions, we have used a global transcriptomic approach to monitor gene expression
profiles in S. chacoense ovaries at different times following conspecific compatible (CCP), conspecific
incompatible (CIP), and heterospecific compatible (HCP) pollinations as well as from stigma wounding
and touch treatments.

2. Results and Discussion

2.1. Experimental Design

We used an ovule cDNA microarray consisting of 7741 sequences representing 6374 unigenes [19]
to globally analyze the ovule transcriptomic response following pollination. The microarray included
cDNAs from various developmental stages, from unpollinated ovules (UOs) to fertilized ovules until
late torpedo stage embryos, sequenced in the form of expressed sequence tags (ESTs) [51].

Since gametophytic SI is an important PT rejection mechanism in our model species, involving
pollination-induced regulation of pistil transcripts [52–54], we chose to compare the effect of CCP
and CIP on gene expression in the ovary. Moreover, the existence of cross-incompatibility barriers
affecting pollen–pistil interactions in wild potatoes [55] led us to include a HCP condition in our
study. To minimize incongruity problems, we chose to perform HCP with pollen from a closely related
self-incompatible species, S. microdontum, which was previously shown to make fertile hybrids with
S. chacoense [56]. Finally, to investigate the possible relationship between PT perception and wound or
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mechanical stress, we also included a stigma wounding (W) and a touch (T) condition in our design,
the latter involving mock pollinations made with inert zirconia/silica microbeads.

To choose the best time points for the analysis, PT growth kinetics were monitored in vivo
(Figure 1). The three PT types germinated equally and had undistinguishable growth until 12 h
after pollination (HAP), where they all reached ∼2 mm in length. To determine if the ovary could
accurately discriminate between pollination types before any visible difference in PT growth, 6 HAP
was chosen as the first time point. Then, after growing slowly (∼170 µm h−1) until they emerged
from the stigma 12 HAP, CCP PTs dramatically sped up (∼330 µm h−1) to finally exit the style around
30 HAP. This biphasic growth pattern is characteristic for species that shed bicellular pollen (containing
a vegetative and a generative cell) like solanaceous species [57]. The first phase, termed the autotrophic
phase, is characterized by a period of slow growth where PTs rely on their stored reserves. Next,
the heterotrophic phase is characterized by a faster growth rate, the pollen being fed by nutrient made
available from the stylar transmitting tissue. In S. chacoense, PTs normally reach the first available
ovules a few hours later to effect fertilization [58].

Interestingly, CIP and HCP PTs displayed a steady but slower monophasic growth pattern.
CIP PTs were all stopped by the SI reaction before they reached mid-style, whereas HCP PTs faced
suboptimal growth in the heterospecific style, which is often described as incongruity [59]. A control
pollination in S. microdontum (Figure 1, light gray line) confirmed that HCP PTs grow faster in their
conspecific pistils. Since most CIP PTs were already arrested 24 HAP while CCP PTs had not yet
reached the ovary, this was chosen as the second reference time point. Finally, in case interorgan
signaling needed more time to be detected, a late time point, 48 HAP, was also selected to determine
late pollination effects, especially for CIP and HCP. The same time points (6, 24, and 48 h) were used to
examine transcript regulation after the wounding and touch treatments.
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Figure 1. Pollen tube (PT) growth kinetics after conspecific compatible (CCP), conspecific incompatible
(CIP), and heterospecific compatible (HCP) pollinations. PT length was measured after aniline blue
staining of S. chacoense G4 pistils pollinated with S. chacoense G4 (CIP, red) and V22 (CCP, blue),
as well as S. microdontum (HCP, green). The light gray line represents PT kinetics after intraspecific
S. microdontum pollination.

2.2. Expression Profiling of Pollination-Responsive Genes

For each time point in each pollination condition, four ovule samples were collected from a large
number of plants grown in the same greenhouse. After RNA extraction and cDNA library construction,
half of these biological replicates were labeled with Cy3 and the other half with Cy5 to account for the
possibility of dye bias. Following the procedure used by Tebbji et al. [19], competitive hybridizations
were made against the same pooled control obtained from different UO replicates. To confirm the
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reliability of this approach, six additional control hybridizations were made with individual UO
replicates against the pooled control (Dataset S1a).

The exploratory nature of our study led us to opt for relaxed criteria to select regulated
genes: Transcripts showing a greater than ±1.5-fold expression difference between test and control
hybridizations with P ≤ 0.05 were retained for further analysis (Dataset S1b–h). In the end, 1441 ovary
transcripts showed a significant change in abundance in at least one pollination condition, with 163, 598,
and 1184 of them regulated 6, 24, and 48 HAP, respectively (Figure 2). To investigate how regulated
transcripts behaved across the different conditions under study, we employed a dual approach
involving k-means hierarchical clustering (Figure 3, Dataset S1i) and Venn diagrams comparing
pollinations at each time-point (Figure 4) and vice versa (Figure 5). Statistics about correlations and
coregulations between conditions are shown in Figure S1 and Table S1, respectively.
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Figure 2. Hierarchical clustering analysis of regulated genes. Each row represents a gene and each
column represents a condition. At each time point, the analysis was performed using genes regulated
in at least one pollination condition. Euclidean distances between expression ratios in CCP, CIP and
HCP vs. unpollinated ovule (UO) were used in a hierarchial clustering analysis based on Ward’s
method. Expression ratios in stigma wounding (W) and touch (T) conditions vs. UO were then added
to the heatmap.

Several analyses were performed to better understand the potential functions of regulated
transcripts (Dataset S2). First, we proceeded with BLASTn and BLASTx searches against the National
Center for Biotechnology Information (NCBI) RefSeq database to find potential homologs in other
species and give descriptions to our transcripts (Dataset S3), and then performed a functional
classification into GO (Gene Ontology) categories and subsequent enrichment analyses (Datasets S4
and S5). Finally, we used the closest BLASTx hit of each EST to perform a variety of in silico predictions,
in particular putative transcription factors (Figures 6 and S2, Table S2) and secreted proteins (Figures 7
and S3, Table S3), as well as metabolic enzymes (Table S4).
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Figure 3. Transcription expression profiles in the 25 clusters obtained by k-means clustering.
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Figure 5. Overlap between time points. Venn diagrams showing the overlap between lists of genes
modulated 6, 24 and 48 HAP after CCP, CIP, and HCP.

2.3. Early Response to Pollination

At 6 HAP, all pollination types had germinated equally and PTs had reached ∼1.5 mm. In all,
163 ovary transcripts showed a statistically significant change in abundance 6 h after CCP, CIP, or HCP
(Figure 4a). As can be seen in Figure 2a, the three pollination types induced a globally similar response
in the ovary, with significant overlaps between regulated genes (Table S1a–c). Interestingly, pollination
responses were also highly correlated to the stigma wounding condition with R2 coefficents ranging
from 0.80 to 0.93 (Figure S1), but remained clearly distinct from a simple touch response (R2 ≤ 0.05),
suggesting that the early response following pollination corresponds to the perception of a wounding
aggression, due to PT penetration and growth in the stigma.

Functional categories significantly enriched in common and coregulated transcripts included
defense-related GO-terms such as “defense response to fungus” (Dataset S4a–g). Interestingly, at 24
and 48 HAP, this category remained enriched only in transcripts regulated by CIP or HCP, but not
CCP (clusters 4 and 18 on Figure 3; Dataset S5d and r), suggesting that the response to CIP and HCP
remains more akin to a defense response than CCP at later time points. The GO enrichment analysis
also revealed that the non-specific response to pollination 6 HAP was correlated to the modulation
of signaling-related categories such as “auxin transport” and “cellular response to reactive oxygen
species”. Moreover, transcription factors predicted to belong to ERF and ARF families were also
regulated 6 HAP (Figure 6, Table S2a), pointing to a possible involvement of phytohormones in the
mediation of early ovary responses to pollination.

In S. chacoense, the ovule secretome was shown to consitute a dynamic microenvironnement in
preparation for terminal pollen–pistil interactions [60]. Therefore, we investigated the presence of
transcripts predicted to encode secreted proteins (SPs) in our dataset (Figure 7, Table S3). Interestingly,
they represented 31 to 40% of the transcripts regulated 6 HAP, while they accounted for only 7.5%
of non-regulated transcripts, which represents a significant enrichment (Table S3a). An example
of SPs induced 6 HAP were xyloglucan endotransglucosylase/hydrolases (XTHs), a group of cell
wall-loosening enzymes previously reported to play a role during host invasion by parasitic plant
haustoria [61]. Besides XTHs, 15, 11, and 3 cysteine-rich proteins (CRPs) were modulated by CCP, CIP,
and HCP, respectively (Figure 7). This peculiar category of small, secreted, rapidly evolving proteins,
with ≥6 cysteines and a mature size ≤150 aa, was shown to be involved in several species-specific
pollen–pistil interactions [62]. Here, CRPs exhibited a statistically significant enrichment 6 HAP,
representing up to 13% of transcripts induced by pollination, and only 0.8% of not regulated
transcripts (Table S3a). Interestingly, different CRP families exhibited distinct regulation patterns:
lipid-transfer proteins (LTPs) were induced by pollination, while other families such as γ-thionins and
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metallocarboxypeptidase inhibitors (MCPIs) were repressed. LTPs were previously shown to control
PT adhesion and pre-ovular guidance in the pistil [63], while thionin-like proteins were reported to
be embryo sac-dependent CRPs with potential roles in PT-ovule interactions [64]. MCPIs, on the
other hand, are known to be ovary and fruit development regulators in tomato plants [65]. All this
underlines that the early pollination signal participates in the dynamic remodelling of the ovule
secretome, affecting proteins susceptible to play key roles for ovary development and functionality.

Finally, even though the three pollination types produced a globally similar response in the
ovary 6 HAP, specific profiles already started to be visible, with 52, 22, and 13 transcripts specifically
regulated in CCP, CIP, and HCP, respectively (Figure 4a). Moreover, transcripts up-regulated in both
conspecific pollinations (CCP and CIP) were specifically enriched in several proteins similar to known
regulators of ovule specification and development: ARGONAUTE 4 proteins [66], as well as the
AGAMOUS-LIKE 11 [67] and AUXIN RESPONSE FACTOR 5 [68] transcription factors (Dataset S4d).
This points to a possible role of conspecific pollination as a signal triggering ovule and female
gametophyte development, possibly mediated by ethylene and auxin, as demonstrated previously in
other species [38–41].
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Figure 6. Transcription factor (TF) predictions on regulated genes. For each time point and each
pollination condition, proportion of up- (top) and down-regulated (bottom) genes predicted to encode
transcription factors belonging to different families, as identified by the PlantTFDB prediction tool.
Corresponding data on non-regulated (NR) transcripts is shown as a reference. ARF: auxin response
factor; BBR: barley b recombinant; BPC: BASIC PENTACYSTEINE1; bZIP: basic region/leucine
zipper motif; EIL: ETHYLENE-INSENSITIVE 3-like; ERF: ethylene-responsive element binding factor;
MADS: MCM1, AGAMOUS, DEFICIENS, and SRF; MIKC: MADS-box, intervening, keratin-like, and
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Figure 7. Secretion predictions on regulated genes. For each time point and each pollination condition,
proportion of up- (top) and down-regulated (bottom) genes predicted to encode proteins possessing
a secretory signal peptide. Among them, cysteine-rich proteins (CRPs, red) and other non-membrane
secreted proteins (Other SPs, gray), predicted GPI-anchored proteins (GPI-anch., yellow), putative
receptor-like proteins and receptor-like kinases (RLPs/RLKs, green), and other membrane-bound
secreted proteins (Other MPs, blue). Corresponding data on non-regulated (NR) transcripts is shown as
a reference.

2.4. Pollination Response after Completion of the SI Reaction

At the second time point, 24 HAP, the majority of CIP PTs had ceased growth, while HCP and CCP
PTs had reached around one and two thirds of the style’s length, respectively (Figure 1). Compared to
6 HAP, an amplification of the ovary response to both compatible pollinations was visible, with 354
and 285 transcripts modulated in CCP and HCP, respectively (Figure 4b) and a very limited overlap
with early responses (Figures 5a–c and S1). Moreover, a larger proportion of those transcripts became
specific to CCP (76% or 269/354) and HCP (69% or 196/285). Even though 58 transcripts appeared
in the overlap between CCP and HCP on Figure 4b, the majority of them (57%) had in fact opposite
regulations (Table S1d). All this suggests that the two pollination types are now perceived as distinct
events by the ovary, as confirmed by the low correlation coefficient on Figure S1 (R2 = 0.03).

This is further supported by the analysis of enriched functional categories. Among them,
phytohormone-related GO terms exhibited contrasted responses after CCP and HCP. In particular,
categories related to signaling mediated by the diffusible hormone ethylene were enriched in
transcripts up-regulated by HCP and down-regulated by CCP (Dataset S4l). GO-terms “response to
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ethylene” and “ethylene metabolic process” were also significantly over-represented in cluster 4 on
Figure 3 (Dataset S5d), while putative ERF/EIL transcription factors shared a consistent enrichment
profile (Figure 6, Table S2b), which suggests that ethylene is a key mediator of pollination-specific,
long-distance signaling in the pistil. In line with this, previous studies revealed the existence of
post-pollination ethylene bursts (PPEBs) occuring in the stigma/style of other solanaceous species
such as Petunia [69] and tobacco [70,71], whose timing and/or intensity could vary according to the
pollination type.

More recently, additional roles were discovered for ethylene signaling in the context of ovule and
PT function. While pollination-induced ethylene accumulation in immature tobacco flowers was shown
to be correlated to female gametophyte maturation [41], ethylene was also demonstrated to control
PT elongation in Arabidopsis by affecting the organization of actin microfilaments [72]. Furthermore,
the over-accumulation of the ethylene signal-transducing protein ETHYLENE INSENSITIVE 3 (EIN3)
in synergid cells was shown to lead to PT attraction defects in Arabidopsis [73]. Here, cluster 8,
which gathers transcripts specifically down 24 and 48 h after CCP (Figure 3), included two EIN3-like
proteins that remained stable after CIP and HCP (Dataset S3d). This suggests that the differential
ethylene response in CCP vs. HCP might allow the ovary to get specifically prepared for compatible
PT guidance.

Besides ethylene, genes up-regulated in HCP and down-regulated in CCP were also enriched
in the GO-term “response to abscisic acid” (Dataset S4l), while “response to gibberellin” was
over-represented in cluster 9, consisting of transcripts specifically down in CCP (Dataset S5i). On the
other hand, transcripts up-regulated by CCP and/or down-regulated by HCP were enriched in
categories related to auxin, brassinosteroids, and jasmonic acid (Dataset S4j and m, Dataset S5r and t).
This denotes the existence of a complex cross-talk between phytohormone signaling pathways
coordinating the ovary response to pollination.

In contrast, GO-terms associated with the response to reactive oxygen species (ROS) were over-
represented in genes specifically up-regulated by CCP (Dataset S4h), as confirmed by the clustering
analysis (Figure 3, clusters 14 and 22; Dataset S5n and v). Interestingly, besides being key players
of rapid long-distance signaling [74], ROS are known to control pollen germination [75,76] and PT
growth [77–79]. We could therefore hypothesize that ROS may convey the CCP signal at a distance,
or be part of the ovule response to a different CCP signal. Interestingly, ovule-emitted ROS were
shown to control PT rupture, with no influence however, on the pollination status [80]. Further work
is therefore required to better understand how CCP-induced modulation of ROS-related genes affects
ovule function in preparation for interactions restricted to conspecific PTs.

As demonstrated by metabolic pathway (Table S4b) and GO (Dataset S5t) enrichment analyses,
enzymes of the secondary metabolism, especially those involved in anthocyanin, flavone, and favonol
biosynthesis, were over-represented in transcripts from cluster 20, which were up-regulated by CCP
and down-regulated by HCP (Figure 3). Flavonoids, have been extensively studied as messenger
molecules during pollination, especially for the control of pollen germination [81]. Interestingly,
flavonoids were also shown to play a key role for the maintenance of ROS homeostasis in the context
of PT growth [82]. All this suggests that CCP-induced flavonoid production by the ovary could
be a mechanism favoring conspecific PT growth in the pistil, in preparation for species-preferential
pollen–ovule interactions.

Moreover, cluster 18 (Figure 3) contained a γ-aminobutyric acid (GABA) transaminase, an enzyme
responsible for the control of γ-aminobutyric acid (GABA), which was specifically down-regulated
after HCP while it remained stable after CCP (Dataset S3d). GABA is a key signaling compound
controlling PT elongation [83] and known to form a gradient in the pistil, with increasing concentrations
from the stigma to the ovule, whose disruption impairs proper PT directional growth [84]. Therefore,
HCP-induced disruption of pistil GABA levels could constitute another mechanism facilitating the
rejection of heterospecific pollen.
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In contrast to the ample, antagonistic ovary response to CCP and HCP, the number of transcripts
regulated by CIP 24 HAP remained stable compared to 6 HAP (89 vs. 88, Figure 4b). Interestingly,
transcipts specifically regulated by CIP were enriched in GO-terms such as “gene silencing”, “DNA
packaging”, and “chromating remodeling” (Dataset S4i), pointing to a possible epigenetic modulation
of gene expression in the ovary as a consequence of self-pollination.

2.5. Fertilization and Late Pollination Responses

In S. chacoense, as in many Solanum species, conspecific fertilization takes place from 36 HAP
until 48 HAP as determined by aniline blue staining of the PTs that had reached the ovules
(data not shown) and by the fertilization-induced activation of ribosomal proteins [85]. As expected,
the highest number of ovule-modulated genes, 1018, were isolated 48 HAP from a fully compatible
pollination (CCP) that lead to fertilization, thus including a large number of genes regulated
immediately following fertilization (Figure 4c). Among them, 253 (25%) were already regulated
before fertilization 6 or 24 HAP, suggesting a dual role for these genes before and after fertilization,
during pollination and early embryogenesis (Figure 5a and Table S1g). Remaining genes were
particularly present in clusters 5–10 (down-regulation) and 14–16 (up-regulation) and were, as expected,
enriched in functional categories related to cell proliferation and gene expression (Dataset S4o,
Dataset S5e–j and n–p) underlining that CCP induced the reprogramming of ovule transcriptome
toward embryo development.

In contrast, only 147 genes were modulated by CIP. Although only a limited increase was observed
in the total number of genes modulated between 24 and 48 HAP in CIP (going up from 89 to 147),
the nature of the modulated genes was strikingly different with 74% (109/147) genes specifically
expressed 48 HAP (Figure 5b and Table S1h). In fact, as can be seen on Figure 2c, this modulation of
the ovule response to CIP 48 HAP still closely resembles a wound response, as confirmed by the high
statistical correlation between the two conditions (R2 = 0.70, Figure S1).

Compared to CCP, only 166 genes were modulated in HCP at 48 HAP, an important reduction
from 24 HAP (Figure 4c). Among them, no ribosomal protein genes were up-regulated (out of the 65
available on the microarray), indicating that fertilization had yet taken place (Dataset S3c). This was
confirmed by aniline blue staining of S. microdontum PTs 48 HAP, showing that most of the tubes had
only travelled 60% of the style’s length (Figure 1). Interestingly, 77% of the HCP genes regulated at
48 HAP (128 out of 166) were common with the ones expressed 24 HAP, a situation not observed in
other pollination types where little overlap was observed between successive time points (Figure 5a–c,
Table S1g–i). This is further confirmed by the high statistical correlation between HCP responses 24
and 48 HAP (R2 = 0.83, Figure S1). Importantly, responses to mid-style CCP PTs (24 HAP) and HCP
PTs (48 HAP) exhibit a very low correlation coefficient (R2 = 0.01), confirming that the late response to
HCP is not simply a non-specific response to PTs located in the central region of the style. In terms of
functional annotations, the categories enriched 48 h after HCP mostly overlap those enriched 24 HAP
and discussed in the previous section (Datasets S4 and S5). All this shows that HCP is perceived by
the ovary as a single, continuous signal, that is clearly distinct from CCP.

3. Conclusions

The present study shows that, after being all initially perceived as a wounding aggression,
each pollination type produced its own transcriptomic signature at a distance in the ovary, in a way
that may prepare subsequent species–preferential pollen–ovule interactions (Figure 8). We have shown
that ROS and ethylene are potential messengers acting at a distance to convey the presence of CCP and
HCP PTs, respectively. But how could distinct pollination types elicit such antagonistic long-distance
responses in the pistil? A recent study revealed that pollination triggers the expression of three pollinic
MYB transcription factors, whose mutation causes significant changes in the post-pollination pistil
transcriptome. Interestingly, those MYBs were shown to control the expression of rapidly evolving
thionin-like CRPs that are secreted by the growing PTs in the pistil, and suspected to control proper PT
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reception by the ovule [24]. Such divergent PT-secreted proteins could serve as initial signals specific
to each pollination type, allowing the pistil to discriminate between CCP, CIP, and HCP PTs.

6 HAP
Early response

24 HAP
Intermediate
response

48 HAP
Late response

Wound
effect

Specificity

Figure 8. Outline of the at a distance ovary response following pollination. Early pollination response,
irrespective of the pollination type, is akin to a wound response. As the PT grow, each pollination
type is then recognized as distinct and produce a highly specific transcriptomic signature in the ovary,
before PT arrival.

4. Materials and Methods

4.1. Plant Material and Pollination Conditions

Self-incompatible Solanum chacoense and S. microdontum accessions (2n = 2x = 24) obtained
from the NRSP-6 US Potato Genebank (Sturgeon Bay, WI, USA) were glasshouse-grown with a 16 h
light/8 h dark cycle. The S. chacoense G4 genotype (S12S14 SI alleles) was used as the female progenitor.
S. chacoense pollen from G4 and V22 (S11S13) genotypes was used for CIP and CCP, respectively.
HCP was performed with pollen from S. microdontum PI500041 accession.

Wounding treatments were performed by slightly crushing the upper region of the style with small
forceps, as described previously [48]. Touch treatments consisted in mock pollinations accomplished
by gently touching the stigmas with sterile 100 µm zirconia/silica beads (BioSpec Products Inc.,
Bartlesville, OK, USA).

4.2. Pollen Tube Growth Assay and Aniline Blue Staining

Flowers were collected from 6 to 96 h after pollination. Pistils were dissected and fixed overnight
in FAA (ethanol 50%, water 35% glacial acetic acid 10%, formalin 5%, washed twice with water and
then softened in 2 M NaOH for 24 h at room temperature. After rinsing, pistils were stained with 0.1%
aniline blue in K3PO4 buffer (pH 7.5) and slightly squashed between a slide and coverslip. Pictures
were taken on a Zeiss Axio Observer.Z1 fluorescence microscope equipped with an AxioCam HRm
camera (Carl Zeiss Canada, Canada) and analyzed with ImageJ (https://imagej.nih.gov/ij).

4.3. RNA Isolation and Microarray Experimental Design

Ovules were collected 6, 24, and 48 h after each treatment and used for RNA extraction and probe
preparation. RNA from UOs served as controls. Four independent biological replicates were produced
for each time point. To estimate reproducibility and to produce control data for statistical analyses,
a large number of UOs were isolated and separated in seven independent control groups. RNA from
randomly selected pairs of controls was hybridized on six microarrays. Microarray experiments and
data analysis were performed as described previously [19]. The data discussed in this publication
have been deposited in NCBI’s Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov) and are
accessible through GEO Series accession number GSE21957 [86].

https://imagej.nih.gov/ij
http://www.ncbi.nlm.nih.gov
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4.4. Differential Expression Analaysis

Transcripts with a significant expression fold-change in CCP, CIP, HCP, W or T vs. UO (≥1.5 or
≤−1.5; P ≤ 0.05, Welch’s t-test) were considered to be regulated. To draw the heatmaps (Figure 2),
a hierarchical clustering analysis was performed at each time point using genes regulated in at least one
pollination condition. Euclidean distances between CCP, CIP, and HCP vs. UO expression ratios were
used to connect transcripts based on Ward’s method [87]. Expression ratios in W and T vs. UO were
then added to the heatmaps. Clusters presented on Figure 3 were obtained by a similar hierarchical
clustering analysis applied to Pearson’s correlation coefficients of UO, CCP, CIP, and HCP vs. UO
expression ratios at all time points, based on Ward’s method. Dendrograms were then split into clusters
using k-means clustering with k = 25. Figure S1 presents pairwise squared correlation coefficients
(R2) of CCP, CIP, HCP, W, and T vs. UO expression values obtained by linear least-squares regression
analysis.

4.5. Sequence Annotation

ESTs were compared to the NCBI refseq_rna and refseq_protein databases v. 87 [88] using
BLASTn and BLASTx v. 2.2.29+, respectively [89]. Descriptions were then manually assigned to each
EST based on the most similar hits. Automated functional classification into Gene Ontology (GO)
categories was performed with Blast2GO v. 5.2.5 [90]. The best BLASTx hits for each EST were used for
transcription factor predictions with the PlantTFDB v. 4.0 prediction tool [91], enzyme code retrieval
and metabolic pathway assignment based on the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database v. 90.0 [92], and signal peptide predictions with SignalP v. 4.1 [93]. Proteins predicted to
contain a signal peptide were further checked for the presence of transmembrane helices (TMH) with
TMHMM v. 2.0 [94].

Proteins with one predicted TMH were submitted to HMMER v. 3.1b2 (http://hmmer.org/) to
check for the presence of kinase domains (KDs; motifs Pkinase and Pkinase_Tyr) and leucine-rich repeats
(LRRs; motifs LRR_1, LRR_2, LRR_4, LRR_5, LRR_6, LRR_8, LRR_9, LRRNT, and LRRNT_2) defined in
the Pfam database v. 32.0 [95]. Among them, those with at least one KD and one LRR were classified as
potential LRR receptor-like kinases (LRR-RLKs); those with at least one KD but no LRR were tagged as
potential RLKs; remaining proteins with one TMH were considered as potential receptor-like proteins
(RLPs). Proteins with two or more predicted TMHs were tagged as other membrane proteins.

Proteins that were not predicted to have a TMH were inspected for the presence of predicted
of glycosylphosphatidylinositol (GPI) anchors with the PredGPI program [96]. Remaining proteins
were split into cysteine-rich proteins (6 cysteines or more, mature part smaller than 150 aa) and other
secreted proteins with KAPPA v. 1.0 [97].

Enrichment analyses based on all those predictions were made using Fisher’s exact tests.
A prediction was considered enriched in a given condition when P ≤ 0.05.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/8/6/185/s1,
Figure S1: Heatmap describing pairwise correlation coefficients of expression ratios between samples, Figure S2:
Graphical summary of in silico transcription factor predictions made in each cluster, Figure S3: Graphical summary
of in silico predictions made on secreted proteins in each cluster, Table S1: Number and proportion of genes
regulated after each treatment, along with coregulation statistics across conditions and time points, Table S2:
Summary of in silico transcription factor predictions made on genes modulated at a distance by pollination, with
comparative enrichment analyses across conditions and clusters, Table S3: Summary of in silico signal peptide
and subsequent predictions made on genes modulated at a distance by pollination, with comparative enrichment
analyses across conditions and clusters, Table S4: Summary of in silico metabolic pathway predictions made
on genes modulated at a distance by pollination, with comparative enrichment analyses across conditions and
clusters, Dataset S1: Detailed view of microarray data, differential expression analysis, and k-means clustering
results, Dataset S2: Detailed view of in silico annotations made on genes on the microarray: BLAST results,
GO functional classification, enzyme and transcription factor predictions, and predictions on secreted proteins,
Dataset S3: Detailed view of differential expression data for ovary genes modulated by pollination, Dataset S4:
Statistical analysis on GO functional categories enriched in each pollination condition, Dataset S5: Statistical
analysis on GO functional categories enriched in each cluster.

http://hmmer.org/
http://www.mdpi.com/2223-7747/8/6/185/s1
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