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A unique pattern of cortical connectivity
characterizes patients with attention deficit
disorders: a large electroencephalographic
coherence study
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Abstract

Background: Attentional disorders (ADD) feature decreased attention span, impulsivity, and over-activity interfering
with successful lives. Childhood onset ADD frequently persists to adulthood. Etiology may be hereditary or disease
associated. Prevalence is 5% but recognition may be ‘overshadowed’ by comorbidities (brain injury, mood disorder)
thereby escaping formal recognition. Blinded diagnosis by MRI has failed. ADD may not itself manifest a single
anatomical pattern of brain abnormality but may reflect multiple, unique responses to numerous and diverse
etiologies. Alternatively, a stable ADD-specific brain pattern may be better detected by brain physiology. EEG
coherence, measuring cortical connectivity, is used to explore this possibility.

Methods: Participants: Ages 2 to 22 years; 347 ADD and 619 neurotypical controls (CON). Following artifact reduction,
principal components analysis (PCA) identifies coherence factors with unique loading patterns. Discriminant function
analysis (DFA) determines discrimination success differentiating ADD from CON. Split-half and jackknife analyses estimate
prospective diagnostic success. Coherence factor loading constitutes an ADD-specific pattern or ‘connectome’.

Results: PCA identified 40 factors explaining 50% of total variance. DFA on CON versus ADD groups utilizing all factors
was highly significant (p≤0.0001). ADD subjects were separated into medication and comorbidity subgroups. DFA
(stepping allowed) based on CON versus ADD without comorbidities or medication treatment successfully classified the
correspondingly held out ADD subjects in every instance. Ten randomly generated split-half replications of the entire
population demonstrated high-average classification success for each of the left out test-sets (overall: CON, 83.65%; ADD,
90.07%). Higher success was obtained with more restricted age sub-samples using jackknifing: 2-8 year olds (CON, 90.0%;
ADD, 90.6%); 8-14 year olds (CON, 96.8%; ADD 95.9%); and 14-20 year-olds (CON, 100.0%; ADD, 97.1%). The connectome
manifested decreased and increased coherence. Patterns were complex and bi-hemispheric; typically reported front-back
and left-right loading patterns were not observed. Subtemporal electrodes (seldom utilized) were prominently involved.

Conclusions: Results demonstrate a stable coherence connectome differentiating ADD from CON subjects including
subgroups with and without comorbidities and/or medications. This functional ‘connectome’, constitutes a diagnostic
ADD phenotype. Split-half replications support potential for EEG-based ADD diagnosis, with increased accuracy using
limited age ranges. Repeated studies could assist recognition of physiological change from interventions
(pharmacological, behavioral).
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Background
Definitions and demographics
Attention deficit/hyperactivity disorder (ADHD) is a
common childhood neurodevelopmental disorder [1],
often persisting into adulthood [2, 3]. It is typically char-
acterized by persisting patterns of pervasive inattention,
impulsivity, and/or hyperactivity that frequently interfere
with normal development. ADHD is often associated
with functional impairments that may affect learning
and academic success, interpersonal behavior, and/or
overall performance [4–6].
Psychostimulant medications constitute the mainstay

of ADHD treatment [7]. Fueled by the possibilities for
rare but serious complications from medication [8],
operant conditioning of frontal electroencephalogram
(EEG) spectral content [9] is sometimes utilized as an al-
ternative therapeutic strategy. However, the long-term
efficacy of such EEG ‘neurofeedback’ therapy has not
been accepted universally [10–12].
Polanczyk et al. [13] have clarified the often contra-

dictory ADHD prevalence estimates by a thorough
meta-analysis. This group demonstrated that, since the
mid-1980s, the ADHD prevalence appears to have been
stable at just above 5%. The many studies included in
the meta-analysis demonstrated a seemingly progres-
sively increasing incidence rate over the years – yet the
analysis also showed that it resulted from the varied
methodologies used in selection and identification of
subjects with ADHD. For example, telephone surveys of
physicians and parents resulted in much higher ADHD
prevalence estimates [14] than those based upon stricter
selection criteria. Additionally, the disparity in diagnostic
criteria contributed to the apparently conflicting inci-
dence reports, depending on defining ADHD/ADD as a
disease versus as a symptom complex coexistent with
another disease. For example, the DSM-IV disallowed a
diagnosis of ADHD if the symptoms were “… better
accounted for by another mental disorder” [15].
Implicit in the distinction between disease and symp-

tom is the reasonable assumption that research results
based upon subjects with ADHD without co-existing
disease (ADHD-pure) would likely differ from results
obtained from those with attention issues that are part
of a larger clinical issue (ADHD-plus). The current study
included representatives of both ADHD-pure and
ADHD-plus categories in order to investigate neuro-
physiological differences and similarities.

Neuroanatomical and neuro-functional differences in
ADHD
A great many neuroimaging studies carried out during
the past two decades have shown a multiplicity of struc-
tural, functional, and network differences in the brains
of children and adults diagnosed with ADHD as

compared to neurotypical controls. Most of these differ-
ences have focused on brain regions thought to sub-
serve cognitive, motor, and attention functions. Various
meta-analyses and reviews have provided comprehensive
descriptions of the differences [16–18].

Structural MRI
Structural MRI studies using region of interest methods
or automated voxel-based morphometry methods to com-
pare children, adolescents, or adults with ADHD to neu-
rotypically developing controls have found that overall
cerebral and cerebellar volume is reduced by approxi-
mately 4–5% [19, 20] and regional volume is reduced in
the prefrontal cortex, specifically orbitofrontal, superior
frontal and dorso-lateral prefrontal cortices, as well as in
the posterior and anterior cingulate cortex gyri, precentral
gyrus, occipital cortex, limbic system (specifically the
bilateral hippocampus and amygdala), basal ganglia
(specifically the dorsal striatum and globus pallidus), cor-
pus callosum (in particular, the splenium), and cerebellum
(in particular, the posterior inferior vermis) [16, 21–25].
Moreover, whole and regional brain cortical gray mat-

ter thickness has been found to be reduced [22, 26, 27].
Specifically reduced are the bilateral dorso-lateral pre-
frontal and orbital frontal cortices, anterior and poster-
ior cingulate cortices, and the temporo-occipito-parietal
junction [27, 28]. The rate of cortical thinning in these
regions appears to have a direct association with inatten-
tion and an inverse association with the severity of
hyperactivity and impulsiveness [29]. Furthermore, re-
ductions in anterior cingulate cortex gray matter volume
were correlated with selective inattention scores and
changes in the networks within and between the
prefrontal cortices, and the striatum and cerebellum
were correlated with cognitive impairments such as
distractibility, forgetfulness, impulsivity, poor planning,
and locomotor hyperactivity in children and adults with
ADHD [21, 30, 31].
Employing diffusion tensor imaging, Yoncheva et al.

[32] found that the greatest ADHD differences in adults
and children were primarily limited to the ‘mode of
anisotropy’, which is sensitive to crossing fibers.

Functional MRI
Functional MRI studies have found abnormal connect-
ivity patterns across several brain regions in ADHD, par-
ticularly the frontal cortex. In children or adults with
ADHD, abnormal patterns of functional activation have
been found in the orbital, dorso-lateral and mesial re-
gions of the prefrontal cortex as well as in premotor and
motor regions, the orbital frontal cortex, which is associ-
ated with social inhibition and impulse control [33], the
dorso-lateral prefrontal cortex, which is associated with
planning, working memory and attention processes [34],
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and in the bilateral inferior prefrontal cortices. More-
over, reduced functional connectivity has been found be-
tween right inferior fronto-frontal, fronto-striatal, and
fronto-parietal neural networks specifically during a stop
and switch task [35].
Functional activation is significantly decreased in mul-

tiple brain regions in ADHD during several cognitive per-
formance tasks and in resting-state [16, 36, 37]. These
regions include the cingulo-fronto-parietal network in-
volving its fronto-striatal and fronto-parietal pathways, as
well as in the dorso-lateral and ventrolateral prefrontal
cortex, and in the superior parietal cortex. During atten-
tion tasks studies, Bush [16] also found hypoactivation of
the dorsal anterior cingulate cortex (dACC), which is
strongly associated with the processes of attention, target
detection, novelty detection, response selection, response
inhibition, error detection, and motivation [33]. During
the resting state decreased connectivity was found be-
tween the dACC-posterior cingulate [38, 39] and dACC
[40, 41], and between thalamus and basal ganglia areas (in
particular, putamen) [42], while increased connectivity
was found between the dACC and the bilateral thalamus,
bilateral cerebellum, and bilateral insula [43].
During a visual sustained attention task, Li [44]

reported significantly reduced regional activations in the
bilateral thalami (in particular, the pulvinar nuclei),
significantly decreased functional connectivity between
bilateral pulvinar and right prefrontal regions, and
significantly increased connectivity between the right
pulvinar and the bilateral occipital regions. In ADHD
subjects studies have found significantly decreased func-
tional connectivity among the brain regions that form
the default mode network (the network of brain regions
that is more active during rest than during tasks de-
manding sensory and cognitive processing) and between
putamen and thalamus [42, 45]. The incremental task-
related deactivation of the default mode network regions
have been associated with increased task engagement as
well as transitions from rest-to-task states [46, 47].
Thus, there are substantial MRI-based data that indi-

cate widespread brain differences between ADHD and
neurotypical controls. This body of information is of
potential importance in understanding the basic under-
pinnings of this common and clinically vexing disability.
Recently, the ADHD-200 Consortium undertook the
feasibility of ‘breaking’ the reliance of psychiatry and be-
havioral neurology upon the classic ADHD classification
system (based upon clusters of symptoms) by supplant-
ing this with MRI derived measurements [48]. The
Consortium completed a study, fueled by the availability
of a large set of MRI-based imaging data and the efforts
of multiple investigators at multiple sites, to blindly
classify a ‘test set’ of mixed normal and ADHD subjects’
MRI data after preliminary evaluation of an also-supplied

and openly identified ‘training set’ of similarly mixed but
identified normal and ADHD subjects. At study conclu-
sion it was determined that “The average prediction accur-
acy was 49.8% (range: 37.4–60.5%)” [48]. One competing
group explored predictive classification based solely upon
supplied demographic/phenotypic variables and achieved
a prediction rate accuracy of 62.5%. The consortium
concluded “…that diagnostic assessment cannot currently
be based on structural or functional brain imaging, nor do
we believe that brain imaging will ultimately result in a
first-line tool in clinical psychiatry. The costs of conducting
brain imaging … would be prohibitive” [48].

EEG spectral analysis
Comparative studies between ADHD and neurotypical
control subjects using EEG have primarily used traditional
power spectral analysis of individual channels and fre-
quencies. The most consistent finding, especially among
practitioners of EEG neurofeedback, has been an in-
creased power in the theta band (4–7 Hz) and decreased
power in the alpha and beta bands (10–30 Hz) [49–52].
An analysis of the clinical utility of theta found that the
theta power increase differentiated between ADHD and
control subjects with a 62% accuracy, and that a signifi-
cantly elevated theta characterized a subgroup of ADHD
patients and was significantly correlated with inattention
and executive problems [53]. Others have evaluated EEG
spectral content during a large number of differing cogni-
tive tasks such as Stroop, go/no-go, reading, and drawing
[54–61]. Here, results are less consistent perhaps reflect-
ing the diverse testing paradigms employed.

EEG measures of approximate entropy (ApEn)
According to Sohn et al. [61], ApEn is “…an index that
quantifies the irregularity or complexity of a dynamical
system. It is particularly effective with short and noisy
time-series data”, such as EEG. The authors compared
subjects with ADHD to normal controls at rest and then
again during a continuous performance task. Between
groups difference in complexity and spectral content was
noted over the right frontal electrodes but only during the
continuous performance task. The authors concluded that
“…that cortical information processing is altered in ADHD
adolescents, and thus their levels of cortical activation may
be insufficient to meet the cognitive requirements of
attention-demanding tasks” [61]. These findings suggest
that signal processing techniques beyond spectral analysis
and its derivatives may prove useful in understanding the
complexities of ADD. ApEn is not utilized in the current
study; its potential utility is to be explored in the future.

EEG coherence
Given the MRI evidence reviewed above demonstrating al-
tered brain networks and connectivity for ADD subjects
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when compared to neurotypical controls, such compari-
sons utilizing EEG coherence have also been undertaken.
EEG spectral coherence, on a frequency by frequency basis,
represents the consistency of the phase difference between
two EEG signals when compared over time [62]. According
to Srinvasan et al. [63], coherence is a measure of
synchronization between two EEG signals based on phase
consistency. While two signals may have different phases,
high coherence occurs when this phase difference tends to
remain constant. In each frequency band, coherence mea-
sures whether two signals can be related by a linear time
invariant transformation, i.e., a constant amplitude ratio
and phase shift (delay). In practice, EEG coherence
depends mostly on the consistency of phase differences
between channels. High coherence values are taken as a
measure of strong connectivity between the brain regions
that produce the compared EEG signals [64].
Several studies utilizing EEG coherence have shown

significant differences between control and ADHD sub-
jects as well as differences within the ADHD population
in regard to the degree of response to therapeutic
medications [65–67]. Murias et al. [68], using high
density EEG recordings, summarized that, by use of EEG
coherence, it could be shown that “…altered functional
connectivity, particularly among frontal regions, is
implicated in ADHD”.
In a recent comprehensive paper, Helgadottir et al.

[69] utilized EEG spectral coherence measures to classify
a large population of control and ADHD subjects.
Utilizing a training test set cross-validation process, the
authors identified consistent group differences that were
stronger when age was factored into the analyses. The
most relevant coherences among the 12 electrode pairs
chosen for analysis were noted to involve left-right elec-
trode pairs C3-C4 (central) and T7-T8 (temporal). The
authors suggested that their study “…demonstrates that
an EEG-based method using classification algorithms
can bring a new perspective to the diagnosis of ADHD in
children and adolescents …” [69]. They also suggested
that EEG-based classification algorithms may enable
monitoring of subjects longitudinally.

Aims of the current study
The main aim of the current study was to assess the valid-
ity of EEG coherence as a means to differentiate subjects
with ADHD from healthy neurotypical control subjects. In
order to achieve this, a scientifically and technically sound
and comprehensive study of such subjects was designed
following the step-wise goals outlined below:

(1)To identify a population of subjects with attention
disorder within an existing large EEG database and
to select age-comparable neurotypical control
subjects from the same database.

(2)To base analyses on a measure of connectivity (EEG
coherence) between and among a full set of 24
standard electrodes (Fig. 1), that includes
sub-temporal electrodes.

(3)To avoid analysis of high frequency beta and gamma
EEG spectral bands owing to the well-known,
strongly confounding, impact of muscle activity on
these bands [70, 71].

(4)To base analyses on awake, resting EEG thereby
avoiding the possibility for group-specific, task-based
artifact associated, in our experience, with behavioral
paradigms that require response(s).

(5)To undertake a rigorous, previously-described
process minimizing any effects of EEG artifact upon
analytic results [62].

(6)To produce and analyze the full matrix of all
possible EEG coherence channels, i.e., each
electrode’s connectivity to all other electrodes,
across all individual EEG spectral bands.

(7)To reduce the large resulting coherence variable
number by the use of principal component analysis
(PCA), instead of by a priori ‘knowledge based’
preselection, thereby being guided by the actual
structure of the coherence data implicit in the
unrestricted, large omnibus set of all possible
coherences.

(8) To explore the potentially confounding effects of
medications and coexisting diagnoses upon
detection of subjects with attention disorder by
coherence-based measures.

(9) To explore result consistency by means of multiple
split-half replications.

(10)To explore age sub-grouping and compare and
contrast to whole population results.

(11)To determine whether a pattern of coherence
difference manifests a recognizable EEG coherence
pattern or ‘connectome’ specific to attention disorder,
and to explore its possible clinical relevance.

Methods
Study population
All analyses were performed at Boston Children’s
Hospital (BCH), a Harvard Medical School affiliated
teaching hospital in Boston, Massachusetts, USA. The
Developmental Neurophysiology Laboratory (DNL), within
the Department of Neurology at BCH, is under the direc-
tion of the first author. The DNL maintains an extensive
database of patients and research subjects including digi-
tized, unprocessed (raw) EEG data, accompanied by com-
prehensive referral information, for thousands of patients
and research subjects including neurotypical control group
subjects. Patients are typically referred to rule out epilepsy
by studies that incorporate lengthy digital EEG recordings.
Research subjects also include similarly collected EEG data
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obtained from those subjects selected to serve as neuroty-
pical controls (Table 1).

Patients with ADD
From the DNL database, patients were identified on the
basis of referrals from experienced BCH and other
Harvard Medical School affiliated teaching hospital clini-
cians, including neurologists, psychiatrists, and psycholo-
gists, who identified patients as having ADD or ADHD as
their primary clinical problem. Referral for clinical EEG
was initiated to rule out the possibility that attention
lapses might reflect a covert manifestation of epilepsy.
Necessary inclusion criteria thus required a referral

diagnosis of ADD or ADHD (hereinafter combined and
referred to as ADD). Diagnosis relied upon DSM-IV or
DSM-5 criteria sometimes supplemented by one or more
rating scales (e.g., Connors [72, 73]) and/or augmented by
the clinical opinion of one or more expert behavioral
neurologists based upon clinical history and examination.
Additional information regarding etiology, academic

performance, concurrent behavioral or mood issues,
sensorimotor problems, medication(s), and other comor-
bidities were available for all subjects. This allowed for
definition of population subgroups in order to explore
the putative impact of comorbidities and medication
upon ADD neurophysiology (see Table 1 and Results).

Healthy neurotypical control group subjects
From a population of healthy children previously re-
cruited and studied at the Neurobehavioral Infant and
Child Studies Lab, affiliated with the DNL, for various
neuro-developmental research projects, a group of neu-
rotypical control subjects was obtained from the DNL
database in order to provide a comparison group of chil-
dren, selected to be normally functioning while avoiding
comparison with an exclusively ‘super-normal’ group.
Necessary inclusion criteria were as follows: (1) for

younger subjects, living at home and as indicated, enrolled
at regular school, and considered normal by their parents;
or (2) for older subjects, gainfully employed and/or
enrolled in college or the equivalent, and identified as
functioning within the normal range on standardized
developmental and/or neuropsychological assessments
performed during the respective research studies.
Exclusion criteria were as follows: (1) diagnosed neuro-

logic or psychiatric illness such as ADD/ADHD, mood
disorder, autism, psychosis, global developmental delay,
genetically based syndrome(s), significant head injury,
drug dependency, or currently active seizure disorder; (2)
abnormal neurological examination as identified during
the research study; (3) an EEG report suggesting an active
seizure disorder or epileptic encephalopathy (note that
subjects with rare EEG spikes or EEG ‘normal variants’
were not excluded); (4) noted by the research psychologist
and/or experienced EEG technologist to have significant
attention, hyperactive, psychotic, or autistic features; (5)
newborn period diagnoses of intraventricular hemorrhage,
retinopathy of prematurity, hydrocephalus, cerebral palsy
or other significant conditions likely influencing EEG data;
and/or (6) receiving medication treatment at the time of
the EEG study.

Measurements and data analysis
EEG data acquisition
EEG technologists, naïve to the study’s goals, and specif-
ically trained and skilled in working with children, ado-
lescents and young adults within the study’s age group
and diagnostic range, obtained EEG data in one of three

Fig. 1 Standard 24 EEG electrode names and positions. Head in
vertex view, nose above, left ear to left. The ‘standard’ 19, 10–20
electrodes are shown as black circles. EEG electrodes: Z: Midline;
FZ: Midline Frontal; CZ: Midline Central; PZ: Midline Parietal; Even
numbers, right hemisphere locations; odd numbers, left hemisphere
locations; Fp: Frontopolar; F: Frontal; C: Central; T: Temporal;
P: Parietal; O: Occipital. An additional subset of five, 10–10 electrodes
are shown as open circles. EEG electrodes: FT: Frontal-Temporal;
TP: Temporal-Parietal; OZ: Midline Occipital. FT and TP electrodes are
often referred to as ‘subtemporal’ electrodes

Table 1 Populations studied

Description Total Control Attention Deficit
Disorder

Fulfilling criteria, used for
principal component analysis
and full group discriminant

966 619 347

Ages 2–22 years, % female 15 13

Subgroups by age

2–8 years 327 221 106

8–14 years 517 348 169

14–22 years 122 50 72
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ways. The primary method involved the use of up to 32
gold-cup scalp electrodes affixed with Collodion or an
equivalent after measurement. Analyses of these data
were subsequently restricted to the following 24 chan-
nels available for all subjects: FP1, FP2, F7, F3, FZ, F4,
F8, T7, C3, CZ, C4, T8, P7, P3, PZ, P4, P8, O1, OZ, O2,
FT9, FT10, TP9, TP10 (Fig. 1). Data were primarily
obtained from Grass™ (Grass Technologies Astro-Med,
Industrial Park 600, East Greenwich Avenue, West
Warwick, RI 02893 USA) EEG amplifiers with 1–100 Hz
bandpass filtering and digitized at 256 Hz for subsequent
analyses. More recent subjects’ EEG data were obtained
with Neuroscan™ (Compumedics Neuroscan, 6605 West
W.T. Harris Boulevard, Suite F, Charlotte, NC 28269
USA) or EGI™ (Electrical Geodesics Inc., 1600 Millrace
Drive, Suite 200 Eugene, OR 97403 USA) amplifiers that
utilized a higher spatial (more electrodes) and/or higher
temporal (1–500 Hz) resolution. Such ‘high resolution’
data were adjusted to conform to the characteristic pa-
rameters of the Grass amplifiers. The EGI electrode nets
were utilized with conductive paste, as saline soaked
electrodes appear to promote electrode ‘bridging’, which
in turn artificially alters spectral coherence between
bridged electrodes. Photogrammetry™ was employed to
establish electrode location when high electrode density
nets were applied without direct measurement of
electrode location. After photogrammetry, reduction to
24-electrode location was accomplished with BESA™
(BESA GmbH, Freihamer Strasse 18, 82116 Gräfelfing,
Germany) software by 3D spline interpolation. Spectral
band pass differences were equalized by in-house devel-
oped software utilizing forward and reverse Fourier
transforms [74].
For all subjects, EEG data were gathered in the eyes

closed, waking state. Adequate periods of waking EEG
were assured for collection. ‘Times out’ to relax and
regain composure were offered as indicated. EEG data
collected during epochs of evoked potential formation to
visual or auditory stimulation were excluded from ana-
lysis in the current study.

Measurement issues and solutions
EEG studies are confronted by three major methodo-
logical problems. The first involves management of abun-
dant artifacts resulting from eye movement, eye blink,
poor electrode-scalp contact, drowsiness, and/or muscle
activity, all of which may be prominent in younger and/or
more behaviorally difficult to manage children such as
those with ADD. It has been well established that even
EEGs appearing ‘clean’ by visual inspection may yet
contain significant artifacts [75, 76]. Artifact may provoke
excessive variance and mask discovery of group difference
and/or may be group specific and thereby promote ap-
pearance of spurious group differences [77]. Second is

capitalization upon chance from application of statis-
tical tests on the basis of too many collected/analyzed
variables with subsequent chance findings that spuri-
ously support an experimental hypothesis (Type 1 or
false positive error [78]). Third is failure to find valid
group differences resulting from a priori variable re-
duction in order to avoid capitalization upon chance,
which may involve discarding of variables that mani-
fest true group differences (Type 2 or false negative
error [78]). Methods discussed below were designed
to specifically address these three common methodo-
logical/analytic problems confronting all EEG-based
data analyses.

Artifact management
As previously outlined in greater detail [62] the follow-
ing steps were instituted for artifact management:

(1)EEG segments containing obvious movement
artifact, electrode artifact, eye blink storms,
drowsiness, epileptiform discharges, and/or bursts
of muscle activity were marked for removal from
subsequent analyses by expert visual inspection
(initially by the EEG technologist with subsequent
second review by the first author, an experienced
clinical electroencephalographer). Artifact
identified in a subset of channels resulted in
removal of all channel data for the duration
of the artifact.

(2)EEG data were subsequently filtered below 50 Hz
with an additional 60 Hz mains filter.

(3)Remaining ambient eye blink was removed by
utilizing the source component technique [79], as
implemented in the BESA software package. These
combined techniques resulted in EEG data that
appeared largely artifact free, with rare exceptions of
low-level temporal muscle fast activity and persisting
frontal and anterior temporal slow eye movement
artifacts, which nonetheless remain capable of
contaminating subsequent analyses.

(4)A regression analysis approach [80] was employed
to remove the remaining potential contaminants
from subsequently created EEG coherence data
(see below). Representative frontal slow EEG
spectral activity, taken to reflect residual eye blink,
and representative frontal-temporal EEG spectral
fast activity, taken to represent residual muscle
artifact, were used as independent variables within
multiple regression analysis, where coherence data
variables (see below) were treated as dependent
variables. Residuals of the dependent variables, now
uncorrelated with the chosen independent artifact
variables, were used for the subsequent analyses.
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Calculation of spectral coherence and spectral variables
As previously described [62], 8–20 minutes of eyes closed,
awake state EEG data per subject were transformed within
BESA to the Laplacian or current source density refer-
ence. This approach provided ‘reference-independent’ data
that are primarily sensitive to underlying cortex and rela-
tively insensitive to deep/remote EEG sources. Use of the
current source density also reduces spurious effects of vol-
ume conduction upon coherence by emphasizing sources
at small spatial scales [63] and is optimal for coherence
analyses. The current source density reference technique
is considered superior to the use of the common average
reference for studies involving spectral coherence [63].
Spectral coherence was calculated using a Nicolet™

(Nicolet Biomedical Inc., 5225 Verona Road, Madison, WI
53711 USA) software package, according to the conven-
tions recommended by van Drongelen [64] (p. 143–4,
equations 8.40, 8.44). In practice, coherence is typically
estimated by averaging over several epochs or frequency
bands [64]. In the current project, a series of 2-sec epochs
was utilized to process available EEG segments. Spectral
coherence measures were derived from the 1–32 Hz
range, in 16, 2-Hz wide spectral bands, resulting in 4416
unique coherence variables. The diagonal of the 24 by 24
electrode coherence matrix has a coherence value of
1 – each electrode to itself; and half of the 552 remaining
coherence values are duplicates of the other half. This re-
sults in 276 unique coherences per spectral band. Multi-
plication by the 16 spectral bands in turn results in 4416
unique spectral coherence values per subject. Standard
spectral data were calculated, using the common average
reference, by Fast Fourier Transform over the same
frequency range noted above and based upon the Fast
Fourier Transform algorithm described in Press et al. [74]
(p. 411–2). Resulting spectral data were solely utilized in
order to approximate residual artifact contamination
(see Artifact Management) and facilitate removal by
regression analysis.

Prevention of capitalization upon chance: variable number
reduction by creation of coherence factors
In order to avoid capitalization on chance resulting from
the use of too many variables and to facilitate subse-
quent statistical analysis, PCA of the EEG coherence
data was employed as an objective technique to reduce
variable number meaningfully whilst preserving informa-
tion content [62, 81]. The coherence data were first nor-
malized (centered and shifted to have unit variance) so
that resultant factors reflected deviations from the aver-
age. In order to avoid loss of sensitivity by a priori data
limitation, an unrestricted form of PCA [82] was applied
allowing all coherence variables per subject to enter
analysis. By employment of an algorithm based upon
singular value decomposition [74, 83], a data set of

uncorrelated (orthogonal) principal components or factors
[81, 82] was developed in which the identification of a
small number of factors following Varimax rotation [84]
describe an acceptably large amount of variance [85]. Vari-
max rotation enhances factor contrast yielding higher load-
ings for fewer factors whilst retaining factor orthogonality.
Although not the only PCA method applicable to large,
asymmetrical matrices (4416 variables by 966 cases as in
the current study), singular value decomposition may be
used to solve under-determined and over-determined sys-
tems of linear equations [74]; it is among the most efficient
techniques used for PCA [82]. This approach to variable
number reduction has been successfully used in prior stud-
ies of EEG spectral coherence in infants [86] and adults
[82, 87, 88], children with autism [62, 89], and pediatric
and young adult subjects with schizophrenia [90]. When
total population size is over 200, as in the current study,
coherence factor formation consistency by split-half repli-
cation becomes redundant (unpublished finding).

Discrimination of subject groups by use of EEG spectral
coherence variables
BMDP™-P7M (stepwise discriminant functional analysis)
facilitates several analyses of importance to our project.
First, when discriminant functional analysis completes
formation of stepwise variable selection it creates the
Wilk’s lambda measure, which can be approximated by
an F value as for a one-way ANOVA. This gives an indi-
cation of classification success at an early point of the
analytic process. Second, all classification functions and
outcome indices can be formed on a designated ‘train-
ing-set’ containing at least two subject groupings; results
may be assayed on a designated ‘test-set’ that has been
specifically left out of the initial analytic processes.
Third, for classification of each training-set subject, P7M
computes the Mahalanobis distance measure to the
group mean of each training-set population as well as
the posterior probabilities belonging to each group. Ac-
cordingly, subjects are classified into one or the other
training-set group on the basis of the highest posterior
probability, i.e., the smallest Mahalanobis group distance.
Success of training-set generated classification can be
assayed by the set aside test-set subjects’ classification
success. Fourth, P7M provides a new continuous, canon-
ical variable derived from a calculated linear combin-
ation of input variables that best discriminates between
the two groups under study. Although the rules used to
form the canonical variable are generated from the des-
ignated training-set population data, these rules can also
be used to directly calculate canonical variable scores for
members of a secondary test-set. In this instance, univar-
iate analysis of the test-set canonical variable between
members of test-set subject groups, or between the con-
trol population and a single left out population, can
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provide another estimate of prospective classification
success. For example, two-group t-tests (BMDP-3D) can
be performed utilizing the canonical discriminant
variable produced by a training-set test on the corre-
sponding test-set population. Fifth, P7M encompasses a
random number generator that can be used to randomly
split a large population into multiple training-sets and
test-sets to assess prospective classification success, e.g.,
split-half replication, which is best done when total
population size is relatively large. Sixth, P7M provides a
simpler prospective classification success estimate re-
ferred to as jackknifing or leave-one-out [91, 92], where
a single subject test-set is formed and classification suc-
cess is recorded using the full population, minus the left
out subject, as the training-set. This process is repeated
until all subjects have been individually left out. Jack-
knifing is preferred to estimate prospective classification
success when total population size is relatively small.

Factor description; relationship of PCA outcome factors to
input coherence variables
Individual outcome factors were formed as linear combina-
tions of all input variables with the weight or loading of
each coherence variable upon a particular factor as deter-
mined by the PCA computation [93]. Meaning of outcome
factors was discerned by inspection of the loadings of the
input variables upon each individual factor [81, 93]. Factor
loadings were treated as if they were primary neurophysio-
logic data and displayed topographically [94, 95]. The
highest 10–15% of coherence loading values, are displayed
as previously utilized [62, 86–90], in order to facilitate an
understanding of the meaning(s) of individual factors, as

shown in Fig. 3. In this figure, each head image shows the
top or highest set of coherences that load upon an individ-
ual factor at the indicated frequency or frequency range.
Taking into account the sign (±) of the coherence loading
upon the PCA derived factor, the sign (±) of the factor’s
loading on the group study discriminant function, and the
directional sign (±) of the two groups (CON vs. ADD) plot-
ted upon the discriminant function axis it is possible to
infer the direction of coherence difference for the ADD re-
lated group for an individual factor. Red lines signify in-
creased coherence and yellow lines decreased coherence for
the ADD group (for the given factor). For example, Factor
12 of Fig. 3 illustrates decreased 8–18 Hz posterior (largely
occipital-temporal) coherences in the ADD population. In
short, the lines delineate coherences primarily associated
with a factor and the line color delineates coherences that
are increased or decreased in ADD for each factor.

Results
Neurotypical subjects (CON)
A total of 619 control subjects with available EEG data,
who fulfilled the defined criteria for the CON group and
fell within the 2–22 year age range, were identified
within the Neurobehavioral Infant and Child Studies Lab
database (Table 1 and Fig. 2).

ADD subjects
A total of 347 ADD subjects, with available EEG data,
who met criteria for the ADD group and fell within the
2–22 year age range were identified within the DNL
database (see Table 1, and Fig. 2 for subgroupings). On
the basis of available clinical information, those taking

Fig. 2 Subject groupings. The entire population consists of 966 subjects, 347 as attention deficit disorder (ADD) and 619 as control. Breakdown of
the ADD ‘pure’ (APU) population is shown above and ADD ‘plus’ (APL) population below
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psychoactive medications within the ADD group were
identified as medicated (subcategory MED); a total of
182 ADD subjects were identified as MED.
All ADD subjects, including the MED group, were also

divided into the subcategories APU (ADD ‘pure’) and
APL (ADD ‘plus’). APU subjects had ADD as their
primary medical diagnosis with no obvious causal factor
or medical comorbidity. Mild school problems and
occasional extremes of behavior were accepted within
the APU subgroup. APU subjects were allowed to have
questioned but unconfirmed or reports of mild add-
itional learning, language, mood, anxiety, sensory inte-
gration, or motor planning disorders.
Subjects entered the APL group when the possibilities

for potentially relevant comorbidities were raised includ-
ing ‘autistic-like’ behavior, remote but mild closed head
injury, past history of seizures no longer active, occa-
sional mood swings without firm diagnosis of bipolar
disorder, and previous drug abuse.
The final category represented those subjects whose

adjunctive symptomatic history or prescribed medication
use was more ‘extreme’. This more historically deviant
group is referred to as AEX (ADD, extreme). AEX encom-
passes subjects taking psychoactive medications outside of
the category usually employed for treatment of otherwise
uncomplicated ADD and/or with compelling history
suggestive of underlying causative disease(s). It includes
subjects where attentional issues remained the primary
complaint but who also carried confirmed additional
diagnosis such as epilepsy, bipolar disorder, significant
(etiologically relevant) head injury or encephalitis, and/or
a diagnosis of developmental delay. All ADD subjects
were categorized as APU or APL and any one subject
might also fall into categories AEX and/or MED.
Such coarse subcategorizations were formed to assist
the determination of whether physiological difference
between CON and ADD groupings might be compli-
cated by the presence of the potentially confounding
historical details; Figure 2 graphically displays the
entire utilized population. The sequence APU to APL
to AEX reflects progressive complexity of medical his-
tory but does not necessarily reflect an augmented
degree of attentional disorder.

Generation and selection of spectral coherence variables
Results of PCA
All available 619 CON and 347 ADD subjects were com-
bined and utilized for singular value decomposition-
based PCA on a 4416 coherence variable by 966 case
data matrix. Distribution of variance among output
coherence factors demonstrated a satisfactory conden-
sation into a small number of factors – 795 factors
described 99.01%, 365 factors described 90.03%, 40
factors described 50.39%, 7 factors described 24.90%,

and the first factor alone described 6.43% of the total
variance after Varimax rotation. The first 40 varimax
rotated factors, describing just over half of the total
variance, were taken to constitute each subject’s EEG
coherence data for subsequent statistical analyses. The
only investigator intervention in this process involved
selection of the PCA data reduction protocol and the
decision to utilize as many created factors (in this
case 40) as needed to describe at least half of the
information (variance) contained within the original
coherence variables. Resulting ‘unbiased’ data reduc-
tion was on the order of 4416:40 or 110:1. Given the
extensive subject age range, multivariate regression
(BMDP-6R) was used to remove an age effect from
these 40 coherence factors and the 40 factor age-
regression ‘residuals’ were utilized to represent sub-
jects for subsequent analyses.
CON versus ADD two-group F test results showed

that 17 of the 40 individual factors were significant at a
significance level better than P ≤ 0.05 (Table 2). Ten
were better than the P ≤ 0.01 level and seven were better
than the P ≤ 0.0001 level. Note the highest F value of
376.69 for top ranked Fac13 is nearly nine times the F
value for the second ranked Fac12 at 39.87.

Significance tests of CON versus ADD
Two trials were taken to assess the multivariate
statistical significance between the CON and ADD
populations when represented by all 40 coherence

Table 2 Factor ranking, group CON vs. group ADD by F-test,
17 of 40 factors with P ≤ 0.05

Rank Factor F to enter P df

1 Fac13 376.69 0.0001 1964

2 Fac12 39.87 0.0001 1964

3 Fac4 38.43 0.0001 1964

4 Fac1 37.87 0.0001 1964

5 Fac2 23.43 0.0001 1964

6 Fac3 17.59 0.0001 1964

7 Fac9 15.70 0.0001 1964

8 Fac28 13.96 0.0002 1964

9 Fac27 9.01 0.0028 1964

10 Fac11 8.74 0.0032 1964

11 Fac7 6.58 0.0105 1964

12 Fac35 6.41 0.0115 1964

13 Fac40 6.00 0.0145 1964

14 Fac8 5.38 0.0208 1964

15 Fac15 4.93 0.0206 1964

16 Fac34 4.32 0.0379 1964

17 Fac17 4.07 0.0438 1964
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derived factors. The first trial involved discriminant ana-
lysis of the 619 CON versus the entire (n = 347) ADD
population with all 40 factors forced to enter. The dis-
crimination was successful at the P ≤ 0.0001 level by
Wilk’s lambda. The classification success for both groups
was high (CON 88.5%, ADD 94.5%), indicating that the
40 factors, as a group, are significantly different between
the CON and ADD groups.
The second trial was chosen to represent a com-

parison between all 619 controls and the most unam-
biguous ADD representatives – 90 APU subjects not
taking medications and not within the AEX subgroup
(Fig. 2). This cleanest of the APU population is
referred to as APUU. P7M was utilized with all 40
factors forced-in. This CON-APUU group compari-
son was significant at P ≤ 0.0001 by Wilk’s lambda.
The classification success for both groups was 91.1%.
These findings indicate that the 40 factors, as a
group, are also significantly different between the
CON and APUU groups. Of interest, the passively
classified remaining 257 ADD subjects (not involved
in the discriminant creation, treated as a test set)
were correctly classified 87.55%. Thus, this addition-
ally indicated that classification rules developed on
ADD pure subjects may correctly classify ADD sub-
jects on medications and/or additional complicating
clinical factors. This possibility is explored more
thoroughly below and with variable selection/stepping
allowed.

Classification of medicated ADD subjects on the basis of
non-medicated ADD subjects
The discriminant was formed on CON (n = 619) versus
all non-medicated ADD (n = 165) subjects. The CON
subjects were 88.9% and the non-medicated ADD were
90.9% correctly classified on the basis of 25 factors
where stepping was permitted. The excluded, medicated
ADD subjects (MED; n = 182) were 88.46% correctly
classified. Thus, classification rules generated on the
basis of unmedicated ADD subjects can successfully
classify left-out medicated ADD subjects with high ac-
curacy. The t-test of the discriminant function variable,
created by contrasting the CON versus unmedicated
MED subgroup, was very significant (P ≤ 0.0001) when
passively assessed between the CON and the left-out
MED population (Table 3.1).

Classification of APL subjects on the basis of APU subjects
The discriminant was formed on CON (n = 619) versus
APU (n = 158) subjects. The CON subjects were 89.8%
and the APU were 89.2% correctly classified on the basis
of 20 factors where, again, stepping was permitted. The
excluded APL subjects (n = 189) were 86.77% correctly
classified. Thus, classification rules generated on the
basis of APU subjects can successfully classify APL sub-
jects with high accuracy and the discriminant function
variable was very significant (P ≤ 0.0001) on the excluded
APL population (Table 3.2).

Table 3 Classification of left-out clinical groups

1. Classification of medicated ADD (MED) on basis of CON vs. unmedicated ADD (UMED)

Training Set: CON vs. UMED Test Set: MED

Num CON % CON Num UMED % UMED Num MED % MED DFA significance

correct correct correct correct correct correct t df P

550/619 88.9% 150/165 90.9% 161/182 88.46% 25.55 799 0.0001

Top 5 FAC: 13, 12, 4, 1, 2

2. Classification of ADD plus (APL) on basis of CON vs. ADD pure (APU)

Training Set: CON vs. APU Test Set: APL

Num CON % CON Num APU % APU Num APL % APL DFA significance

correct correct correct correct correct correct t df P

556/619 89.8% 141/158 89.2% 164/189 86.77% 24.04 806 0.0001

Top 5 FAC: 13, 12, 4, 2, 3

3. Classification of ADD extreme (AEX) on basis of CON vs. ADD not extreme (nAEX)

Training Set: CON vs. nAEX Test Set: AEX

Num CON % CON Num nAEX % nAEX Num AEX % AEX DFA significance

correct correct correct correct correct correct t df P

554/619 89.5% 219/238 90.2% 98/109 89.90% 20.33 726 0.0001

Top 5 FAC: 13, 12, 4, 2, 1

CON neurotypical controls, DFA discriminant function analysis, df degrees of freedom, FAC factor(s), t Student’s t-test, P probability
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Classification of AEX subjects on the basis of non-AEX
subjects
The discriminant was formed on CON (n = 619) versus
non-AEX (n = 238) subjects. The CON subjects were
89.5% and the non-AEX subjects were 92.0% correctly
classified on the basis of 24 factors; stepping was once
more permitted. The excluded AEX subjects (n = 109)
were 89.9% correctly classified. Thus, classification rules
generated on the basis of non-AEX subjects can success-
fully classify AEX subjects with high accuracy and the
discriminant function variable was very significant on
the excluded AEX population (Table 3.3).

CON versus entire ADD population
The discriminant was formed on CON (n = 619) versus
all ADD (n = 347) subjects. The CON subjects were
88.7% and the ADD were 94.5% correctly classified on
the basis of 27 factors where stepping was permitted. By
the ‘prospective’ jackknifing process, 87.9% of the CON
and 93.7% were correctly classified, for an overall

average success of 90.0%. This indicates that dis-
criminant analysis based upon CON and the entire ADD
population has potential for prospective classification
utilization.

Ten split-half replications of CON versus ADD
To directly address the above classification robustness as
suggested above, the entire CON plus ADD population
was randomly split into two halves, a total of ten times.
Each one of the ten training-sets of randomly selected
CON and ADD subjects was used to create a diagnostic
discriminant rule to be tested upon a separate test-set,
exempted from classification rule formation. The training-
set derived classification rules were then tested on each
corresponding test-set. For each of the ten spit-half trials,
subject membership in either the training or test sets was
blindly determined by a random number generator. Results
are shown in Table 4. The test-set CON subjects were cor-
rectly identified 86.75% on average (range 83.65–90.07%).
The test-set ADD subjects were correctly identified 88.49%

Table 4 Ten split-half replications of full population

Part 1: Number of subjects in training and test sets and top five factors chosen per trial

Trial Number of training set subjects Number of test set subjects Number of factors used Top five factors chosen

1 462 504 20 13, 4, 1, 12, 40

2 494 472 20 13, 4, 12, 1, 3

3 512 454 23 13, 12, 4, 1, 2

4 475 491 18 13, 3, 12, 1, 2

5 480 486 20 13, 4, 2, 12, 7

6 487 479 20 13, 12, 4, 9, 3

7 479 487 23 13, 1, 4, 12, 2

8 492 474 25 13, 4, 1, 12, 3

9 497 469 21 13, 4, 12, 2, 7

10 488 478 17 13, 4, 12, 3, 7

Part 2: Ten test set classification accuracies and t-test results

Trial Num CON % CON Num ADD % ADD

Correct Correct Correct Correct t df P

1 285/336 84.82 150/168 89.29 19.76 502 0.0001

2 273/311 87.78 195/218 85.71 18.55 470 0.0001

3 252/296 85.14 145/158 91.77 20.34 452 0.0001

4 275/316 87.03 158/175 90.29 21.96 489 0.0001

5 277/318 87.11 151/168 89.88 20.68 484 0.0001

6 264/307 85.99 155/172 90.12 19.49 477 0.0001

7 274/314 87.26 155/173 89.60 22.13 485 0.0001

8 272/302 90.07 155/172 90.17 20.90 472 0.0001

9 258/291 88.66 148/178 83.15 19.18 467 0.0001

10 261/312 83.65 151/166 90.96 20.32 476 0.0001

Mean 86.75 88.49

Num number of, CON normal control, ADD attention deficit disorder, t t-test, df degrees of freedom, P probability value. Results are the number and percent of
correctly classified test set subjects; t values are determined for each test set using the corresponding training-set-developed discriminant function scores
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on average (range 83.15–91.77%). Moreover, when the dis-
criminant score variables generated by the training-set
were passively created and evaluated for each correspond-
ing test-set subject, the test-set CON versus ADD t-test re-
sults for the significance of the discriminant function
variable as applied to the test-set were highly significant for
all 10 replications at P ≤ 0.0001.

The first factor chosen in each case was Fac13. The
ranked usage of the nine factors utilized across the 10
replications was: Fac13 (10x), Fac12 (10x), Fac9 (9x),
Fac1 (6x), Fac3 (5x), Fac2 (5x), Fac7 (3x), Fac9 (1x), and
Fac40 (1x).
Thus, there is high and consistent success in subject

classification and in creation of a significant discriminant
function variable across 10 split-half replications where
subject grouping as within the training or test set was
not determined by elements of subject’s respective clin-
ical histories but was chosen on a truly random basis.

CON versus ADD across age subgroups
Discriminant analysis was performed in age limiting ana-
lysis of subpopulations 2–8 years (221 CON v. 106 ADD
subjects), 8–14 years (348 CON vs. 169 ADD subjects),
and 14–20 years of age (49 CON vs. 70 ADD). Analysis
of the 2- to 8-year-old subjects demonstrated a
significant Wilk’s lambda of 0.366 (F = 25.1; df 21,305;
P ≤ 0.0001). A high jackknifed classification was also
achieved (CON 199/221, 90.0% correct and ADD 96/106,
90.6% correct). Analysis of the 8- to 14-year-old subject
groups demonstrated a significant Wilk’s lambda of 0.216
(F = 74.7; df 24,492; P ≤ 0.0001). A high jackknifed classifi-
cation was once more achieved (CON 337/348, 96.8%
correct and ADD 162/169, 95.9% correct). Analysis of the
14- to 20-year-old subject group demonstrated a
significant Wilks lambda of 0.090 (F = 59.9; df 17,101;
P ≤ 0.0001). A high jackknifed classification was once
more achieved (CON 49/49, 100% correct and ADD
68/70, 97.1% correct).
Thus, classification based on age range limited sub-

groups manifest better success than for analyses encom-
passing the entire age range.

Classification of autism spectrum disorder (ASD) subjects on
the basis of CON versus ADD rules
To explore the possibility that the apparent ability of
CON versus ADD discriminants described above might
simply detect any non-control subject, we made use of
430 previously studied [62] children with ASD, ages
2–12 years, whose data had been similarly de-artifacted
and formed into 4416 coherence variables. The current 40
ADD factors were passively, canonically created on all
ASD subjects, using currently created ADD factor loading
rules, to permit comparison of ASD subjects with the

current CON and ADD samples. Discriminant analysis
(limited to ages 2–12) was performed on 569 CON and
237 ADD subjects. CON subjects were 91.2% (519/569)
and ADD 93.7% (222/237) correctly classified. Discrimin-
ant rules created by the above 2- to 12-year-old CON plus
ADD samples as a training-set was, however, only 30.7%
(133/430) successful on the separately collected ASD
population (treated as a passively classified test-set). These
data illustrate that the current study’s ADD derived rules
characterize only a fraction of ASD subjects as having
ADD, which shows that CON-ADD defined classification
rules do not necessarily assign all non-control subjects to
the ADD group. It is notable, however, that, in general,
some 30–50% of ASD patients may also manifest atten-
tional disorder [96]. However, we did not have adequate
historical information on the ASD population regarding
concurrent attentional disorder to determine whether
current CON-ADD-based classifiers might actually have
correctly detected ADD characteristics within 30% of the
ASD population.

Coherence loadings upon ADD factors
Figure 1 shows electrode locations utilized in this study
and their traditional names. Figure 3 shows the coher-
ence loadings on each of the 27 factors chosen by step-
wise discriminant analysis for the successful CON versus
ADD analysis described above. In Fig. 3, colored lines in-
dicate electrode coherence pairs and their color signifies
coherence change relative to the ADD-group; red indi-
cates increased and yellow decreased coherence for the
ADD group as compared to the CON group. Similar
factor loading displays have been used in other studies
[62, 86–90] to graphically illustrate the most important
coherence loadings upon a given factor by identification
of the coherence loadings with the highest values per
factor and additional display of all other coherence load-
ings that achieve within 85% or more of the highest
loading value on the factor. Note that factors are displayed
in Fig. 3 by the order of selection by the discriminant ana-
lysis. All schematic heads are in ‘neurological view’, i.e.,
nose above and left ear to image left. The first chosen Fac-
tor 13 requires two head images as it manifests both de-
creased (Fac13-1) and increased (Fac13-2) coherence. All
remaining 26 factors manifest only a single direction of
coherence difference for the ADD population. Within the
28 head images of Fig. 3, 19 loading patterns indicate
lower coherence and nine indicate higher coherence for
the ADD population. Thus, reduced connectivity predom-
inates in ADD although there are discrete factors also
manifesting increased coherence in ADD.
It is important to emphasize that functional connectiv-

ity need not precisely follow anatomical connectivity.
Functional connection between two spatially disparate
cortical regions may be modified by many factors
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Fig. 3 EEG coherence connectome. Twenty-seven factor loading patterns are illustrated, each within a rectangular black outlined box. The schematic
black background heads are shown in vertex view, nose above, left ear to the left, and occiput below. White dots signify electrode positions (see Fig. 1).
Each line represents the coherence between the electrodes at beginning and end of the line. Colored straight and curved lines signify factor loadings
that either were reduced (yellow) or increased (red) for the attention deficit dirorder (ADD) group. Lines represent the top 15% loadings for the illustrated
factor. Factor designation is shown to the top left and involved frequency(ies) is (are) shown to the top right of each box. These 27 factors were those
utilized for the discrimination between the CON and entire ADD population (see text, Results)
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including those that influence synaptic coupling along
the axonal pathway(s) that connect regions. There is also
the possibility that two regions may be ‘connected’ by
more than one neural pathway and that a shift of
efficiency among the connecting pathways may alter net
degree of connectivity [97].
As regards spectral bands, delta spectral activity is

associated with 2, theta with 9, alpha with 8, and beta
with 15 factors. There is a trend for reduced coherence
in factors covering faster EEG spectral bands and in-
creased coherence in factors covering slower spectral
bands but proportional differences do not reach statis-
tical significance by Fisher’s exact test.
By visual estimate (Fig. 3), the temporal regions are

involved in 25, parietal in 17, central in 16, occipital in
15, and frontal in 16 factor loading patterns. Overall, 20
loading patterns are mostly symmetrical and bilateral
whereas 8 are mostly asymmetrical or regional. Absent
from these loadings are the typically chosen, linear left-
right and front-back patterns selected for analysis in
other coherence studies. Also note that the single most
significant and utilized factor, Fac13, involved subtem-
poral electrodes (e.g., FT9, TP9, FT10, TP10) that have
been excluded from most published analyses and yet 20
of the 28 head images in Fig. 3 involve coherence load-
ings involving at least one subtemporal electrode.

Discussion
Following an extensive process to minimize/eliminate
eye blink and muscle artifact, 4416 coherence variables
were created per subject. The large 4416 variable by 966
subject input data matrix was successfully reduced by
PCA, yielding 40 factors accounting for slightly more
than 50% of the total variance (or information). This
110:1 data reduction to 40 factors avoided the need for
up-front ‘educated variable selection’. Data reduction
was solely guided by the underlying, intrinsic data struc-
ture of the numerous coherence variables. As can be
seen in the factor coherence loading map (Fig. 3), the
typically chosen pattern of left-to-right and front-to-
back coherence electrode pairs is essentially absent.
When the CON and ADD subjects are compared by

two group F test (Table 2), seven of the 40 factors show a
significant difference at the P ≤ 0.0001 level. Despite this
large number of highly significant factors, the observation
of Sellke at al. [98] that “…P values are often incorrectly
viewed as an error probability for rejection of the hypoth-
esis or, even worse, as the posterior probability that the
hypothesis is true” was heeded. Findings of this study are
based not only upon significance (P) levels but also re-
quire subject classification success resulting from a multi-
variate discriminant processes and, where possible, the
strong reliance upon estimates of prospective classification

success by means of ‘left-out groups’ as in jackknifing
and/or split-half replication.
At the time of initial study design, it was assumed that

major findings would ultimately be based primarily upon
a ‘pure’ population of subjects, namely ADD subjects off
medications and without concurrent associative and/or
causative symptomatology and/or neurologic diseases.
Subjects taking medications (MED) and/or with mild
(APL) or more definite (AEX) associative illness were,
however, also identified, so that the presence of these
presumed modifying influences of medications and/or
associated symptoms might be explored. That these fac-
tors might have a minimal impact upon the physiology
of identified clinical subgroups became evident early in
the analytic process.
At the start of the discriminant analyses it was first

verified that, if all 40 factors were forced into the
CON (n = 619) versus APUU (n = 90) discriminant ana-
lysis, these two groups could be significantly separated
(P ≤ 0.0001); indeed, the groups were strongly separated
(91.1% correct for each). However, the remainder of the
ADD population of 257 subjects in the MED, APL, and
AEX subgroupings (acting as a left-out test-set) were
correctly classified as ADD by the CON versus APUU dis-
criminant process at the 87.55% level. Thus, classifiers
based upon the purest ADD subpopulation nevertheless
correctly classified the remaining ‘less-pure’ subjects with
corresponding high accuracy. This suggests that medica-
tions and associated diseases might have little effect upon
the coherence pattern associated with attentional disor-
ders. To explore this, discriminant analysis was utilized to
study each of these potentially confounding factors. The
training sets were CON versus the target group (‘no MED’
or APU or ‘not AEX’) and the test set the opposing ADD
group (MED, APL, or AEX). As shown in Table 3, in every
case, the test set was well classified on the basis of the
corresponding training set classification rules; and the
discriminant function variable was also highly significant
on each test set.
Thus, it would appear that the CON versus ADD group

difference is driven by a connectivity difference primarily
attributable to the attentional disorder itself and is only
minimally influenced by medications and/or associated
clinical diagnoses/symptoms. Consequently, split-half rep-
lication was undertaken on the entire CON versus ADD
population for two reasons. First, to search for the possi-
bility that there might be random groupings that might
fail test-set replication thereby potentially identifying
unsuspected, unique population subgroups, and secondly
to determine prospective CON versus ADD classification
robustness as a necessary prelude to the possibility of an
EEG coherence-based ‘diagnostic’ test for ADD. As shown
in Table 4, all 10 replications manifested high test-set
classification success and highly significant test-set
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discriminant function difference. No evidence was found
to suggest hidden, aberrant subpopulations within the
current data set. It is also apparent that the 10 successful
split-half replications might be adequate to justify consid-
eration of EEG-based coherence data as having strong po-
tential for a diagnostic test of ADD. However, as has been
previously discussed in our study of ASD [62], clinical pa-
tients are seldom referred just to confirm that they are ei-
ther neurotypical or have ADD.
As a partial test of our current ADD classifiers on an

alternative clinical group, we formed ADD coherence
factors on a previously studied ASD population and deter-
mined that 30% were classified as ADD. This might be a
classification error but is more likely consistent with the
published observation that some 30–50% of patients
within general ASD population have ADD symptoms [96]
despite the fact that DSM-5 indicates that once the ASD
diagnosis has been made one should not also diagnose
ADD. However, this ADD-ASD interaction – accurate or
in error – constitutes but a partial example of the com-
plexity of establishing a clinical diagnosis by a procedure
such as EEG spectral coherence. For example, the current
EEG coherence-based discriminant must be extended
beyond the CON versus ADD dichotomies. Patients are
seldom referred to establish single diagnostic possibilities,
so there must be an exploration of EEG coherence find-
ings within numerous other relevant clinical entities such
as bipolar disorder, psychosis, global developmental delay,
developmental dysphasia, dyslexia, epilepsy, closed head
injury, and many more. Therefore, a hierarchical classifica-
tion strategy must be developed in order to form a truly
useful diagnostic tool. Finally, however, it is to be noted
that, despite statements by others that ADD diagnosis is
now possible by EEG [69], there are no well-known aca-
demic centers currently employing EEG-based clinical
studies for this purpose. Further, one might rightly ques-
tion whether clinicians really need a neurophysiological
laboratory test to establish ADD.
It is notable that coherence factors evidence greater

age subgroup classification success than observed within
the whole group analysis despite statistical removal of
age effect from the 40 factors prior to analyses. The
finding of better age subgroup analysis indicates that the
effect of age upon the 40 factors is non-linear; the previ-
ous ‘removal’ of age effects by regression being a linear
process having no impact upon non-linear effects, which
appear to persist. Implications of this observation are
that multiple age subgroup classification functions
should be considered when forming classifiers for clin-
ical application; Helgadottir et al. [69] make the same
observation.
At the moment, the most significant findings of the

current study relate to the strong EEG coherence factors
and the complex factor loading patterns, or ADD

‘connectome’, they illuminate (Fig. 3). To start, the
complex ‘connectome’ pattern made manifest by EEG
coherence factors loading patterns appear able to
facilitate discrimination between CON and ADD group
subjects’ independent of the presence and/or absence of
potentially complicating clinical factors (medications
and common coexisting syndromes) that were initially
felt within our group to constitute confounding vari-
ables. Or stated another way, attentional problems seen
in association with other discrete syndromes, are associ-
ated with the same patterns of altered connectivity
observed in ‘pure’ADD.
As speculated by Pascual-Leone [99], the ability to sus-

tain focused attention constitutes, along with spoken
language, a crucial human strength and forms an
important part of the skill-set responsible for the
dominance of our species. Therefore, the discovery of a
complex and extensive EEG coherence ‘connectome’ un-
covered by study comparing subjects with and without
disorders of attention is not surprising.
As to the specific detail, reduced EEG connectivity

prevails in ADD but increased coherence is also pro-
minent within some loading patterns. As noted in the
Introduction, MRI connectivity studies demonstrate
both decreased and increased connectivity as are mani-
fested by EEG measures.
Factor 13, by far the most statistically significant factor

(Fig. 3), was also the first chosen by all discriminant ana-
lyses. The Factor 13–1 loading pattern indicated a strong
and mostly symmetrical disconnection between and
within temporal and occipital regions bilaterally. In con-
trast, the Factor 13–2 image showed augmented con-
nectivity between the left lateral frontal and the central,
right, and right lateral frontal regions. The right lateral
frontal region also showed increased connectivity with
the right posterior temporal region. Attempts to explain
the clinical/neurocognitive meaning of the patterns de-
lineated are largely speculative. For example, the reduced
occipital-temporal coherence made manifest by Factor
13–1 might signal a mild visual agnosia akin to the
‘psychic blindness’ first reported by Kluver and Bucy
[100]. Alternatively, it might indicate mild visual discon-
nection between the dorsal lateral frontal region and
temporal memory regions with visual cortex possibly sig-
naling mild associated visual working memory dysfunc-
tion as first explained by Smith et al. [101]. Additionally,
it remains possible that neither speculation may prove to
be correct when and if actually evaluated.
It may be that all patterns of disconnection constitute

defects of communication between and among brain re-
gions, resulting in altered/diminished cerebral process-
ing as shown in many factor loading images. However,
regions of increased connectivity could represent either
the brain’s attempts at ‘compensation’ or could represent
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additional interference within and among normal centers
of neuronal processing. Some regions of increased con-
nectivity could also reflect inability to suppress interfer-
ing and distracting inputs. Since factors are represented
by single variables it should be possible to explain the
meaning of coherence factors by correlations with cogni-
tive and performance variables obtained from CON and
ADD populations. However, ‘attention’ has very many at-
tributes, including, as examples, adequate ‘attention dur-
ation’, ability to ‘localize’ relevance within multiple
inputs, ‘resistance to interference’, ability to ‘shift and re-
turn’, and overall ‘cognitive skill and/or processing
speed’. Our population does not contain standardized
neuropsychological testing for all subjects and therefore
a further quest for factor meaning will await results of
future studies where neuropsychological tests are ex-
tended to assess various facets of attention.
Without detailed behavioral and psychometric study of

ADD subjects under neurophysiological investigation,
inferring cognitive dysfunction solely based upon loca-
tions of the two regions manifesting altered connectivity
is likely prone to error. It would be best that direct
neurocognitive evaluation be undertaken to explore
‘meaning’ of factor patterns. Such assessment should be
undertaken other than during neurophysiological study
given the possibility for testing induced EEG contamin-
ation (e.g., by movement, muscle and/or ocular artifact);
such studies are in the planning phase in this laboratory.
Although the need for an EEG-based diagnostic test

for ADD can rightly be questioned, the quantitative na-
ture of the 10 strongest factors and/or the highly signifi-
cant canonical discriminant function scores might serve
another potentially useful role. Changes in a single sub-
ject’s position along the factor score and/or discriminant
function axis before and after a clinical intervention
could provide a quantitative neurophysiological index of
functional brain change related to such intervention,
with the discriminant function variable constituting a
possible ‘biomarker’. It is not impossible that change in
neurophysiological function might precede detection of
positive behavioral change and thereby avoid premature
abandonment of potentially positive pharmacologic or
neuro-behavioral interventions.

Conclusion
EEG spectral coherence data gathered on a population
of neurotypical controls and attentionally disordered
subjects demonstrates an unanticipated, complex pattern
of altered cortical connectivity. Discriminant function
analysis, contrasting controls and subjects with attention
disorder, demonstrates a very significant group differ-
ence that survives10 randomly generated split-half repli-
cations. Moreover, the coherence-based classification
success is little altered by the presence or absence of

medications and common coexisting conditions within
the attention-disordered group. This, in turn, suggests
that the spatial pattern of altered coherence remains
dominant and unchanged in the face of variables that
may alter clinical presentation.
The large subject volume and consistency of results sug-

gest that such data could become the basis of diagnostic
testing. However, it is seems more likely, at this time, that
the discriminant function variables as well as the original
coherence-based factors as variables might best serve as
objective means for confirmation of attentional disorder
and/or quantitative indices of change when derived from
EEG data obtained over time, perhaps before and after
therapeutic interventions of any sort.
A potential clinical application could arise from the

ability to quantitatively impose previously derived ADD
coherence ‘connectomes’ on patients with other primary
diagnoses. As described in the Results, some 30% of an
ASD population were also classified as ADD. It is well
known that ASD subjects, as a group, do poorly with
stimulant medications [102, 103]. It is speculated that
limitation of stimulant medications to those ASD sub-
jects with positive identification by the physiologically
based ADD coherence connectome might enhance the
probability for a positive clinical response.
As coherence can be taken as a measure of functional

brain connectivity, the connectome pattern shown by
the coherence factor loadings (Fig. 3) demonstrates, sur-
prisingly, that there are widespread and complex regions
of altered cortical connectivity with many more regions
implicated than typically assumed, with no single region
predominant. Although reduced connectivity prevails,
regions of increased connectivity are also clearly evident.
Specific functional ‘meanings’ of the coherence patterns
elucidated by the factor loading images must await stud-
ies involving direct correlations between psychological
variables and factor scores.
Overall, attentional disorder is a widespread syndrome

with potentially devastating impact upon daily function
and is often difficult to successfully treat without
secondary complication(s). The complex, spatially dis-
persed, and across-subject consistency demonstrated in
the current study is in accord with attentional disorder
constituting a serious, complex, and primary disorder of
brain function.
As regards ‘diagnostic use’ of the attentional disorder

EEG coherence connectome, the data herein show that
the current ADD connectome very accurately and reli-
ably identifies patients with clinically manifest disorders
of attention. However, as is also made manifest by the
ASD results obtained, 30% of subjects securely identified
as having ASD by a previously created ASD connectome
were also identified as having attentional issues by the
newly derived ADD connectome. Application of both
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the ASD and ADD connectomes were needed to clarify
the assumed coexistence of attentional disorders and
ASD in the same subject(s). By this example, it is clear
that, whereas the current connectome accurately identi-
fies attentional disorders, it cannot exclude co-existence
of other psychiatric disorders that concurrently manifest
attentional problems. Additional connectomes, specific
to a number of common psychiatric disorders, must also
be developed, and their interactions evaluated, prior to
EEG assuming a ‘diagnostic’ role in psychiatry; such
works are in progress.

Abbreviations
ADD: Attention deficit disorder group; ADHD: Attention deficit hyperactivity
disorder; AEX: Extreme subgroup; ApEn: Approximate entropy (complexity);
APL: ADD-plus subgroup; APU: ADD-pure subgroup; ASD: Autism Spectrum
Disorder; BCH: Boston Children’s Hospital; BMDP: Bio-Medical Data Package, a
statistical software package; CON: Neurotypical control group; df: Degrees of
freedom; dACC: Dorsal anterior cingulate cortex; DNL: Developmental
Neurophysiology Laboratory; DSM-IV: DSM-5, Diagnostic and Statistical Manual,
Editions IV and 5; EEG: Electroencephalogram, electroencephalography,
electroencephalographic; MED: Medicated sub-group; MRI: Magnetic resonance
imaging; PCA: Principal component analysis

Acknowledgements
The authors thank the children and their families, who participated in the
studies performed. They further thank registered EEG technologists Herman
Edwards, Jack Connolly, and Sheryl Manganaro for the quality of their work
and for their consistent efforts over the years. The authors thank Deborah
Waber, PhD, for availability of control subject data in the 8- to 10-year-old
control population. Younger subjects were behaviorally-developmentally
assessed by the third author. The professionals acknowledged performed
their roles as part of their regular clinical and research obligations and were
not additionally compensated for their contribution. The authors especially
thank Neurologist-in-Chief, Scott Pomeroy MD, PhD, and Psychiatrist in Chief,
David R. DeMaso, MD, for their continuing support of these research efforts.
This work was supported in part by US Department of Education grants
HO24S90003, H133G50016, and HO23C970032 and National Institutes of
Child Health and Development grants RO1-HD38261 and RO1-HD047730,
as well as grants from the Weil Memorial Charitable Foundation and the
Buehler Foundation to Heidelise Als, PhD. It was partly supported by
NIH/NIMH grant RO1 MH097979 to Yogesh Rathi, PhD, and Gloria McAnulty,
PhD. It was also in part supported by the National Institutes of Neurological
Disorders and Stroke program project FP01002436 to Deborah Waber, PhD.
Additional support was received from the Intellectual and Developmental
Disabilities Research Center grant HD018655 to Scott Pomeroy, MD, PhD.

Availability of data and materials
Data and materials are not available.

Authors’ contributions
Study concept and design, selection of patients and subjects, all authors.
Acquisition and preparation of neurophysiologic data, FHD. Interpretation of
results, all authors. Statistical analyses, FHD, GBM, and AS. Results interpretation,
all authors. FHD had full access to all the data in the study and takes
responsibility for all aspects of the study including integrity of data accuracy
and data analysis. All authors collaborated in writing and editing the paper and
approved the final manuscript.

Authors’ information
FHD: Physician, child neurologist, clinical electroencephalographer and
neurophysiologist with undergraduate degrees in electrical engineering
and mathematics. Current research interests are in neuro-developmental
disorders and epilepsy including the development and utilization of
specialized analytic techniques to support related investigations. AS: Cognitive
neuroscientist with specialized interests in the neurophysiological identification
of neuro-developmental disorders, particularly language disorders. GBM: Research
neuropsychologist with interests in pediatric neuro-development and learning/

attentional disorders. HA: Developmental and clinical psychologist with research
interests in newborn, infant and child neuro-development and behavior
including generation of early predictors of later outcome from behavioral, MRI,
and neurophysiologic data.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Approved by IRB with requirement that published data be de-identified.

Ethics approval and consent to participate
All control group subjects’ parents, and/or control group subjects themselves, as
appropriate according to age, gave informed consent in accordance with
protocols approved by the BCH Institutional Review Board (IRB) as being in full
compliance with the Helsinki Declaration. Control subjects/families gave consent
at the time of their original research study. Subjects with ADD, who had been
referred clinically for EEG evaluation, as part of their standard care, were studied
under a separate IRB protocol also in compliance with the BCH IRB and also in
full compliance with the Helsinki Declaration, which required de-identification of
data without requirement for individual post hoc informed consent.

Author details
1Department of Neurology, Boston Children’s Hospital and Harvard Medical
School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA.
2Department of Psychiatry, Boston Children’s Hospital and Harvard Medical
School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA.

Received: 19 September 2016 Accepted: 4 February 2017

References
1. American Psychiatric Association. Diagnostic and Statistical Manual of

Mental Disorders. 5th ed. Arlington: APA; 2013.
2. Simon V, Czobor P, Balint S, Meszaros A, Bitter I. Prevalence and correlates

of adult attention-deficit hyperactivity disorder: meta-analysis. Br J Psychiatr.
2009;194(3):204–11.

3. Biederman J, Petty CR, Clarke A, Lomedico A, Faraone SV. Predictors of
persistent ADHD: an 11-year follow-up study. J Psychiatr Res. 2011;45(2):150–5.

4. Wymbs B, Molina B, Pelham W, Cheong J, Gnagy E, Belendiuk K, Walther C,
Babinski D, Waschbusch D. Risk of intimate partner violence among young
adult males with childhood ADHD. J Atten Disord. 2012;16(5):373–83.

5. Kent KM, Pelham Jr WE, Molina BS, Sibley MH, Waschbusch DA, Yu J, Gnagy
EM, Biswas A, Babinski DE, Karch KM. The academic experience of male high
school students with ADHD. J Abnorm Child Psychol. 2011;39(3):451–62.

6. Babinski DE, Pelham Jr WE, Molina BS, Waschbusch DA, Gnagy EM, Yu J,
Sibley MH, Biswas A. Women with childhood ADHD: comparisons by
diagnostic group and gender. J Psychopathol Behav Assess. 2011;33(4):420–9.

7. Hanwella R, Senanayake M, de Silva V. Comparative efficacy and
acceptability of methylphenidate and atomoxetine in treatment of attention
deficit hyperactivity disorder in children and adolescents: a meta-analysis.
BMC Psychiatr. 2011;11:176.

8. Shin JY, Roughead EE, Park BJ, Pratt NL. Cardiovascular safety of
methylphenidate among children and young people with attention-deficit/
hyperactivity disorder (ADHD): nationwide self controlled case series study.
BMJ (Clinical research ed). 2016;353:i2550.

9. Lubar JF, Swartwood MO, Swartwood JN, O'Connell PH. Evaluation of the
effectiveness of EEG neurofeedback training for ADHD in a clinical setting
as measures by changes in T.O.V.A. scores, behavioral ratings, and WISC-R
performance. Biofeedback Self Regul. 1995;20:83–99.

10. Micoulaud-Franchi JA, Geoffroy PA, Fond G, Lopez R, Bioulac S, Philip P.
EEG neurofeedback treatments in children with ADHD: an updated
meta-analysis of randomized controlled trials. Front Hum Neurosci. 2014;8:906.

11. Cortese S, Ferrin M, Brandeis D, Holtmann M, Aggensteiner P, Daley D,
Santosh P, Simonoff E, Stevenson J, Stringaris A, et al. Neurofeedback for
attention-deficit/hyperactivity disorder: meta-analysis of clinical and
neuropsychological outcomes from randomized controlled trials. J Am Acad
Child Adolesc Psychiatry. 2016;55(6):444–55.

12. Saad JF, Kohn MR, Clarke S, Lagopoulos J, Hermens DF. Is the theta/beta EEG
marker for ADHD inherently flawed? J Atten Disord. 2015. Ahead of print.

Duffy et al. BMC Medicine  (2017) 15:51 Page 17 of 19



13. Polanczyk GV, Wilcutt EG, Salum GA, Kieling C, Rhode LA. ADHD prevalence
estimates across three decades: an updated systematic review and
meta-regression analysis. Int J Epidemiol. 2014;43(2):432–42.

14. Centers for Disease Control and Prevention (CDC). Increasing prevalence of
patient-reported attention-deficit/hyperactivity disorder among children -
United States. MMWR Morb Mortal Wkly Rep. 2010;25(44):1439–43.

15. Mattila ML, Kielinen M, Linna SL, Jussila K, Ebeling H, Bloigu R, Joseph RM,
Moilanen I. Autism spectrum disorders according to DSM-IV-TR and
comparison with DSM-5 draft criteria: an epidemiological study. J Am Acad
Child Adolesc Psychiatry. 2011;50(6):583–92. e511.

16. Bush G. Cingulate, frontal, and parietal cortical dysfunction in attention-
deficit/hyperactivity disorder. Biol Psychiatry. 2011;69(12):1160–7.

17. Valera EM, Faraone SV, Murray KE, Seidman LJ. Meta-analysis of structural
imaging findings in attention-deficit/hyperactivity disorder. Biol Psychiatry.
2007;61(12):1361–9.

18. De La Fuente A, Xia S, Branch C, Li X. A review of attention-deficit/
hyperactivity disorder from the perspective of brain networks. Front Hum
Neurosci. 2013;7:192.

19. Castellanos FX, Lee PP, Sharp W, Jeffries NO, Greenstein DK, Clasen LS,
Blumenthal JD, James RS, Ebens CL, Walter JM, et al. Developmental trajectories
of brain volume abnormalities in children and adolescents with attention-deficit/
hyperactivity disorder. J Am Med Assoc. 2002;288(14):1740–8.

20. Carmona S, Vilarroya O, Bielsa A, Tremols V, Soliva JC, Rovira M, Tomas J,
Raheb C, Gispert JD, Batlle S, et al. Global and regional gray matter
reductions in ADHD: a voxel-based morphometric study. Neurosci Lett.
2005;389(2):88–93.

21. Seidman LJ, Valera EM, Makris N. Structural brain imaging of attention-
deficit/hyperactivity disorder. Biol Psychiatry. 2005;57(11):1263–72.

22. Shaw P, Lerch J, Greenstein D, Sharp W, Clasen L, Evans A, Giedd J,
Castellanos FX, Rapoport J. Longitudinal mapping of cortical thickness and
clinical outcome in children and adolescents with attention-deficit/
hyperactivity disorder. Arch Gen Psychiatry. 2006;63(5):540–9.

23. Qiu A, Crocetti D, Adler M, Mahone EM, Denckla MB, Miller MI, Mostofsky SH.
Basal ganglia volume and shape in children with attention deficit hyperactivity
disorder. Am J Psychiatry. 2009;166(1):74–82.

24. Frodl T, Skokauskas N. Meta-analysis of structural MRI studies in children and
adults with attention deficit hyperactivity disorder indicates treatment
effects. Acta Psychiatr Scand. 2012;125(2):114–26.

25. Bonath B, Tegelbeckers J, Wilke M, Flechtner HH, Krauel K. Regional gray
matter volume differences between adolescents with ADHD and typically
developing controls: further evidence for anterior cingulate involvement.
J Atten Disord. 2016. Ahead of print.

26. Shaw P, Eckstrand K, Sharp W, Blumenthal J, Lerch JP, Greenstein D, Clasen L,
Evans A, Giedd J, Rapoport JL. Attention-deficit/hyperactivity disorder is
characterized by a delay in cortical maturation. Proc Natl Acad Sci U S A.
2007;104(49):19649–54.

27. Makris N, Biederman J, Valera EM, Bush G, Kaiser J, Kennedy DN, Caviness VS,
Faraone SV, Seidman LJ. Cortical thinning of the attention and executive
function networks in adults with attention-deficit/hyperactivity disorder.
Cereb Cortex. 2007;17(6):1364–75.

28. Proal E, Reiss PT, Klein RG, Mannuzza S, Gotimer K, Ramos-Olazagasti MA,
Lerch JP, He Y, Zijdenbos A, Kelly C, et al. Brain gray matter deficits at
33-year follow-up in adults with attention-deficit/hyperactivity disorder
established in childhood. Arch Gen Psychiatry. 2011;68(11):1122–34.

29. Shaw P, Gilliam M, Liverpool M, Weddle C, Malek M, Sharp W, Greenstein D,
Evans A, Rapoport J, Giedd J. Cortical development in typically developing
children with symptoms of hyperactivity and impulsivity: support for a
dimensional view of attention deficit hyperactivity disorder. Am J Psychiatry.
2011;168(2):143–51.

30. Makris N, Liang L, Biederman J, Valera EM, Brown AB, Petty C, Spencer TJ,
Faraone SV, Seidman LJ. Toward defining the neural substrates of ADHD: A
controlled structural MRI study in medication-naive adults. J Atten Disord.
2015;19(11):944–53.

31. Arnsten AF. Fundamentals of attention-deficit/hyperactivity disorder: circuits
and pathways. J Clin Psychiatry. 2006;67 Suppl 8:7–12.

32. Yoncheva YN, Somandepalli K, Reiss PT, Kelly C, Di Martino A, Lazar M, Zhou J,
Milham MP, Castellanos FX. Mode of anisotropy reveals global diffusion
alterations in attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc
Psychiatry. 2016;55(2):137–45.

33. Bush G. Attention-deficit/hyperactivity disorder and attention networks.
Neuropsychopharmacology. 2010;35(1):278–300.

34. Danielson NB, Guo JN, Blumenfeld H. The default mode network and
altered consciousness in epilepsy. Behav Neurol. 2011;24(1):55–65.

35. Cubillo A, Halari R, Ecker C, Giampietro V, Taylor E, Rubia K. Reduced
activation and inter-regional functional connectivity of fronto-striatal
networks in adults with childhood Attention-Deficit Hyperactivity Disorder
(ADHD) and persisting symptoms during tasks of motor inhibition and
cognitive switching. J Psychiatr Res. 2010;44(10):629–39.

36. Rubia K, Halari R, Cubillo A, Mohammad AM, Scott S, Brammer M. Disorder-
specific inferior prefrontal hypofunction in boys with pure attention-deficit/
hyperactivity disorder compared to boys with pure conduct disorder during
cognitive flexibility. Hum Brain Mapp. 2010;31(12):1823–33.

37. Castellanos FX, Proal E. Large-scale brain systems in ADHD: beyond the
prefrontal-striatal model. Trends Cogn Sci. 2012;16(1):17–26.

38. Castellanos FX, Margulies DS, Kelly C, Uddin LQ, Ghaffari M, Kirsch A, Shaw D,
Shehzad Z, Di Martino A, Biswal B, et al. Cingulate-precuneus interactions: a
new locus of dysfunction in adult attention-deficit/hyperactivity disorder.
Biol Psychiatry. 2008;63(3):332–7.

39. Sato JR, Hoexter MQ, Castellanos XF, Rohde LA. Abnormal brain connectivity
patterns in adults with ADHD: a coherence study. PLoS One. 2012;7(9):e45671.

40. Fair DA, Posner J, Nagel BJ, Bathula D, Dias TGC, Mills KL, Blythe MS, Giwa A,
Schmitt CF, Nigg JT. Atypical default network connectivity in youth with
attention-deficit/hyperactivity disorder. Biol Psychiatry. 2010;68(12):1084–91.

41. Sun L, Cao Q, Long X, Sui M, Cao X, Zhu C, Zuo X, An L, Song Y, Zang Y,
et al. Abnormal functional connectivity between the anterior cingulate and
the default mode network in drug-naive boys with attention deficit
hyperactivity disorder. Psychiatry Res. 2012;201(2):120–7.

42. Cao X, Cao Q, Long X, Sun L, Sui M, Zhu C, Zuo X, Zang Y, Wang Y.
Abnormal resting-state functional connectivity patterns of the putamen in
medication-naive children with attention deficit hyperactivity disorder.
Brain Res. 2009;1303:195–206.

43. Tian L, Jiang T, Wang Y, Zang Y, He Y, Liang M, Sui M, Cao Q, Hu S, Peng M,
et al. Altered resting-state functional connectivity patterns of anterior
cingulate cortex in adolescents with attention deficit hyperactivity disorder.
Neurosci Lett. 2006;400(1–2):39–43.

44. Li X, Sroubek A, Kelly MS, Lesser I, Sussman E, He Y, Branch C, Foxe JJ.
Atypical pulvinar-cortical pathways during sustained attention performance
in children with attention-deficit/hyperactivity disorder. J Am Acad Child
Adolesc Psychiatry. 2012;51(11):1197–207. e1194.

45. Qiu MG, Ye Z, Li QY, Liu GJ, Xie B, Wang J. Changes of brain structure and
function in ADHD children. Brain Topogr. 2011;24:243–52.

46. Konrad K, Eickhoff SB. Is the ADHD brain wired differently? A review on
structural and functional connectivity in attention deficit hyperactivity
disorder. Hum Brain Mapp. 2010;31(6):904–16.

47. Liddle EB, Hollis C, Batty MJ, Groom MJ, Totman JJ, Liotti M, Scerif G, Liddle PF.
Task-related default mode network modulation and inhibitory control in
ADHD: effects of motivation and methylphenidate. J Child Psychol Psychiatry.
2011;52(7):761–71.

48. HD-200 Consortium. The ADHD-200 Consortium: a model to advance the
translational potential of neuroimaging in clinical neuroscience. Front Syst
Neurosci. 2012;6:62.

49. Mann CA, Lubar JF, Zimmerman AW, Miller CA, Muenchen RA. Quantitative
analysis of EEG in boys with attention-defecit hyperactivity disorder:
controlled study with clinical implications. Pediatr Neurol. 1992;8:30–6.

50. Chabot RJ, Serfontein G. Quantitative electroencephalographic profiles of
children with attention deficit disorder. Biol Psychjiatry. 1996;40:951–63.

51. Lansbergen MM, Arns M, van Dongen-Boomsma M, Spronk D, Buitelaar JK.
The increase in theta/beta ratio on resting-state EEG in boys with attention-
deficit/hyperactivity disorder is mediated by slow alpha peak frequency.
Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(1):47–52.

52. Lansbergen MM, van Dongen-Boomsma M, Buitelaar JK, Slaats-Willemse D.
ADHD and EEG-neurofeedback: a double-blind randomized placebo-
controlled feasibility study. J Neural Transm. 2011;118(2):275–s284.

53. Ogrim G, Kropotov J, Hestad K. The quantitative EEG theta/beta ratio in
attention deficit/hyperactivity disorder and normal controls: sensitivity,
specificity, and behavioral correlates. Psychiatry Res. 2012;198(3):482–8.

54. Heinrich H, Busch K, Studer P, Erbe, K, Moll GH, Kratz O. EEG specytal
analysis in ADHD; implications for neurofeedback training. Front Hum
Neurosci. 2014;8:611–620.

55. Janzen T, Graap K, Stephanson S, Marshall W, Fitzsimmons G. Differences in
baseline EEG measures for ADD and normally achieving preadolescent
males. Biofeedback Self Regul. 1995;20(1):65–82.

Duffy et al. BMC Medicine  (2017) 15:51 Page 18 of 19



56. DeFrance JF, Smith S, Schweitzer FC, Ginsberg L, Sands S. Topographical
analyses of attention disorders of childhood. Int J Neurosci. 1996;87(1–2):41–61.

57. Monastra VJ, Lubar JF, Linden M, VanDeusen P, Green G, Wing W, Phillips A,
Fenger TN. Assessing attention deficit hyperactivity disorder via quantitative
electroencephalography. Neuropsychol. 1999;13:424–33.

58. El-Sayad E, Larsson JO, Persson HE, Rydelius PA. Altered cortical activity in
children with attention-deficit/hyperactivity disorder during attentional load
task. J Am Acad Chils Adolesc Psychiatry. 2002;41(7):811–9.

59. Swartwood JN, Swartwood MO, Lubar JF, Timmermann DL. ADHD-
combined type during baseline and cognitive tasks. Pediatr Neurol.
2003;28(3):199–204.

60. Hermens DF, Kphn MR, Clarke SD, Gordon E, Williams LM. Sex differences in
adolescent ADHD: findings from concurrent EEG and EDA. Clin
Neurophysiol. 2005;116(6):1455–63.

61. Sohn H, Kim I, Lee W, Peterson BS, Hong H, Chae JH, Hong S, Jeong J. Linear
and non-linear EEG analysis of adolescents with attention-deficit/hyperactivity
disorder during a cognitive task. Clin Neurophysiol. 2010;121(11):1863–70.

62. Duffy FH, Als H. A stable pattern of EEG spectral coherence distinguishes
children with autism from neuro-typical controls - a large case control
study. BMC Med. 2012;10:64.

63. Srinvasan R, Winter WR, Ding J, Nunez PL. EEG and MEG coherence:
measures of functional connectivity at distinct spatial scales of neocortical
dynamics. J Neurosci Methods. 2007;166(1):41–52.

64. van Drongelen W. Signal Processing for Neuroscientists: An Introduction to
the Analysis of Physiological Signals, vol. 5. Oxford: Elsevier; 2011.

65. Robbie JC, Clarke AR, Barry RJ, Dupuy FE, McCarthy R, Selikowitz M.
Coherence in children with AD/HD and excess alpha power in their EEG.
Clin Neurophysiol. 2016;127(5):2161–6.

66. Barry RJ, Clarke AR, Hajos M, Dupuy FE, McCarthy R, Selikowitz M. EEG
coherence and symptom profiles of children with attention-deficit/
hyperactivity disorder. Clin Neurophysiol. 2011;122(7):1327–32.

67. Dupuy FE, Clarke AR, Barry RJ, McCarthy R, Selikowitz M. EEG coherence in
children with attention-deficit/hyperactivity disorder: differences between good
and poor responders to methylphenidate. Psychiatry Res. 2010;180(2–3):114–9.

68. Murias M, Swanson JM, Srinivasan R. Functional connectivity of frontal
cortex in healthy and ADHD children reflected in EEG coherence.
Cereb Cortex. 2007;17(8):1788–99.

69. Helgadottir H, Gudmundsson OO, Baldursson G, Magnusson P, Blin N,
Brynjolfsdottir B, Emilsdottir A, Gudmundsdottir GB, Lorange M, Newman PK,
et al. Electroencephalography as a clinical tool for diagnosing and monitoring
attention deficit hyperactivity disorder: a cross-sectional study. BMJ Open.
2015;5(1):e005500.

70. Whitham EM, Pope KJ, Fitzgibbon SP, Lewis T, Clark CR, Loveless S, Broberg M,
Wallace A, DeLosAngeles D, Lillie P, et al. Scalp electrical recording during
paralysis: quantitative evidence that EEG frequencies above 20 Hz are
contaminated by EMG. Clin Neurophysiol. 2007;118(8):1877–88.

71. Whitham EM, Lewis T, Pope KJ, Fitzgibbon SP, Clark CR, Loveless S,
De Los AD, Wallace AK, Broberg M, Willoughby JO. Thinking activates EMG
in scalp electrical recordings. Clin Neurophysiol. 2008;119(5):1166–75.

72. Conners CK, Sitarenios G, Parker JD, Epstein JN. The revised Conners'
Parent Rating Scale (CPRS-R): factor structure, reliability, and criterion
validity. J Abnorm Child Psychol. 1998;26(4):257–68.

73. Conners CK, Sitarenios G, Parker JD, Epstein JN. Revision and restandardization
of the Conners Teacher Rating Scale (CTRS-R): factor structure, reliability, and
criterion validity. J Abnorm Child Psychol. 1998;26(4):279–91.

74. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes in C;
The Art of Scientific Computing. 2nd ed. Cambridge: Cambridge University
Press; 1995.

75. Duffy FH. Issues facing the clinical use of brain electrical activity. In:
Pfurtscheller G, Lopes da Silva F, editors. Functional Brain Imaging. Stuttgart:
Hans Huber Publishers; 1988. p. 149–60.

76. Duffy FH, Jones K, Bartels P, McAnulty G, Albert M. Unrestricted principal
components analysis of brain electrical activity: issues of data
dimensionality, artifact, and utility. Brain Topohraphy. 1992;4(4):291–307.

77. Karson CN, Coppola R, Morihisa JM, Weinberger DR. Computed
electroencephalographic activity mapping in Schizophrenia: The resting
state reconsidered. Arch Gen Psychiatr. 1987;44(6):514–7.

78. Zar JH. Biostatistical Analysis. Englewood Cliffs: Prentice Hall; 1984.
79. Berg P, Scherg M. Dipole modeling of eye activity and its application

to the removal of eye artifacts from EEG and MEG. Clin Phys Physiol Meas.
1991;12(Suppl A):49–54.

80. Semlitsch HV, Anderer P, Schuster P, Presslich O. A solution for reliable and
valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology.
1986;23(6):695–703.

81. Bartels PH. Numerical evaluation of cytologic data. IX. Search for data
structure by principal components transformation. Anal Quant Cytol.
1981;3(3):167–77.

82. Duffy FH, Jones KH, McAnulty GB, Albert MS. Spectral coherence in normal
adults: Unrestricted principal components analysis - Relation of factors to
age, gender, and neuropsychologic data. Clinical EEG. 1995;26(1):30–46.

83. Golub GH, Kahane W. Calculating the singular values and pseudo-inverse of
a matrix. J Numer Anal. 1965;2:202–24.

84. Kaiser HJ. A Varimax criterion for analytic rotation in factor analysis.
Psychometrika. 1958;23:187–200.

85. Golub GH. Matrix Computations. 2nd ed. Baltimore: Johns Hopkins
University Press; 1989.

86. Duffy FH, Als H, McAnulty GB. Infant EEG spectral coherence data during
quiet sleep: unrestricted principal components analysis–relation of factors to
gestational age, medical risk, and neurobehavioral status. Clin
Electroencephalogr. 2003;34(2):54–69.

87. Duffy FH, McAnulty GB, Albert MS. Effects of age upon interhemispheric EEG
coherence in normal adults. Neurol Aging. 1996;17:587–99.

88. Duffy FH, McAnulty GM, McCreary MC, Cuchural GJ, Komaroff AL. EEG
spectral coherence data distinguish chronic fatigue syndrome patients from
healthy controls and depressed patients - A case control study. BMC Neurol.
2011;11:82.

89. Duffy F, Shankardass A, McAnulty G, Als H. The relationship of Asperger's
syndrome to autism: a preliminary EEG coherence study. BMC Med.
2013;11:175.

90. Duffy FH, D'Angelo E, Rotenberg A, Gonzalez-Heydrich J. Neurophysiological
differences between patients clinically at high risk for schizophrenia and
neurotypical controls - first steps in development of a biomarker. BMC Med.
2015;13(1):276.

91. Lachenbruch PA. Discriminant Analysis. New York: Hafner Press; 1975.
92. Lachenbruch P, Mickey RM. Estimation of error rates in discriminant analysis.

Technometrics. 1968;10:1–11.
93. Cooley WW, Lohnes PR. Multivariate Data Analysis. New York: Wiley; 1971.
94. Duffy FH, Burchfiel JL, Lombroso CT. Brain electrical activity mapping

(BEAM): A method for extending the clinical utility of EEG and evoked
potential data. Ann Neurol. 1979;5:309–21.

95. Duffy FH, Bartels PH, Burchfiel JL. Significance probability mapping: An aid
in the topographic analysis of brain electrical activity. Electroencephalogr
Clin Neurophysiol. 1981;51:455–62.

96. Rommelse NN, Franke B, Geurts HM, Hartman CA, Buitelaar JK. Shared
heritability of attention-deficit/hyperactivity disorder and autism spectrum
disorder. Eur Child Adolesc Psychiatry. 2010;19(3):281–95.

97. Kilner JM. More than one pathway to action understanding. Trends Cognit
Sci. 2011;15(8):352–7.

98. Sellke T, Bayarri MJ, Berger JO. Calibration of p values for testing precise null
hypotheses. Am Stat. 2001;55(1):62–71.

99. Pascual-Leone J. Mental attention, not language. may explain evolutionary
growth of human intelligence and brain size. Behav Brain Sci. 2006;29(1):19–20.

100. Kluver H, Bucy PC. Psychic blindness and other symptoms following bilateral
temporal lobectomy in rhesus monkeys. Am J Physiol. 1937;119:352–3.

101. Smith EE, Jonides J, Koeppe RA. Dissociating visual and verbal spatial
working memory using PET. Cereb Cortex. 1996;6(6):11–20.

102. Christakou A, Murphy CM, Chantiluke K, Cubillo AI, Smith AB, Giampietro V,
Daly E, Ecker C, Robertson D, Murphy DG, et al. Disorder-specific functional
abnormalities during sustained attention in youth with Attention Deficit
Hyperactivity Disorder (ADHD) and with autism. Mol Psychiatry.
2013;18(2):236–44.

103. Doyle CA, McDougle CJ. Pharmacologic treatments for the behavioral
symptoms associated with autism spectrum disorders across the lifespan.
Dialogues Clin Neurosci. 2012;14(3):263–79.

Duffy et al. BMC Medicine  (2017) 15:51 Page 19 of 19


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Definitions and demographics
	Neuroanatomical and neuro-functional differences in ADHD
	Structural MRI
	Functional MRI
	EEG spectral analysis
	EEG measures of approximate entropy (ApEn)
	EEG coherence

	Aims of the current study

	Methods
	Study population
	Patients with ADD
	Healthy neurotypical control group subjects

	Measurements and data analysis
	EEG data acquisition
	Measurement issues and solutions
	Artifact management
	Calculation of spectral coherence and spectral variables
	Prevention of capitalization upon chance: variable number reduction by creation of coherence factors
	Discrimination of subject groups by use of EEG spectral coherence variables
	Factor description; relationship of PCA outcome factors to input coherence variables


	Results
	Neurotypical subjects (CON)
	ADD subjects
	Generation and selection of spectral coherence variables
	Results of PCA
	Significance tests of CON versus ADD
	Classification of medicated ADD subjects on the basis of non-medicated ADD subjects
	Classification of APL subjects on the basis of APU subjects
	Classification of AEX subjects on the basis of non-AEX subjects
	CON versus entire ADD population
	Ten split-half replications of CON versus ADD
	CON versus ADD across age subgroups
	Classification of autism spectrum disorder (ASD) subjects on the basis of CON versus ADD rules
	Coherence loadings upon ADD factors


	Discussion
	Conclusion
	Abbreviations
	Acknowledgements
	Availability of data and materials
	Authors’ contributions
	Authors’ information
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

