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The present study was conducted to examine the effects of body weight on intradiscal pressure (IDP) and annulus stress of
intervertebral discs at lumbar spine. Three-dimensional finite element model of osseoligamentous lumbar spine was developed
subjected to follower load of 500N, 800N, and 1200N which represent the loads for individuals who are normal and overweight
with the pure moments at 7.5 Nm in flexion and extension motions. It was observed that the maximum IDP was 1.26MPa at
L1-L2 vertebral segment. However, the highest increment of IDP was found at L4-L5 segment where the IDP was increased to
30% in flexion and it was more severe at extension motion reaching to 80%. Furthermore, the maximum annulus stress also
occurred at the L1-L2 segment with 3.9MPa in extension motion. However, the highest increment was also found at L4-L5
where the annulus stress increased to 17% in extension motion. Based on these results, the increase of physiological loading
could be an important factor to the increment of intradiscal pressure and annulus fibrosis stress at all intervertebral discs at the
lumbar spine which may lead to early intervertebral disc damage.

1. Introduction

Obesity has been recognised as a factor that could lead to
chronic low back pain (LBP). This problem is expected to
further escalate in the near future with the current increasing
numbers of overweight and obese population [1, 2]. It was
demonstrated that the increase of body weight will increase
the stress at the lumbar spine which leads to potential factor
of intervertebral disc (IVD) degeneration [3–6]. Further-
more, excessive loading applied on the lumbar spine tends

to fracture the vertebral body endplate before damaging the
IVD [7].

In computational studies, follower loadapplied to the lum-
bar spine could increase intradiscal pressure (IDP), interseg-
mental rotation and facet joint force [8, 9]. The compressive
load on the spine reduces the disc height due to the decrease
of the volume of mass gelatinous in nucleus pulposus. As the
fluid is being squeeze out from the disc, the tissue will reorga-
nize which caused the viscoelastic annulus collagen fibers to
creep [10, 11]. Consequently, this increases the hydrostatic
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pressure and the outer annulus starts to bulge. Although these
phenomenons have been described in many computational
and clinical studies, the fundamental understanding that
underpins the biomechanics leading to disc damage has yet
to be explored. Furthermore, the relationship between the
increase in body weight to the stresses occurs at various
vertebral segments of the lumbar spine when the body in
different posture needs to be elucidated.

In the present study, the effects of physiological loading
on the lumbar spine were studied at all vertebral segments
to examine the IVD during flexion and extension motions
using finite element method. The IDP at nucleus pulposus
and the von Mises stress (VMS) at annulus fibrosis of the
IVD were investigated.

2. Materials and Methods

2.1. Finite Element Modeling. The geometrical data of lum-
bar vertebrae were obtained from computed tomography
(CT) scan of a healthy 21-year-old male with 1.73m height
and 70 kg weight. The CT scan images of 3mm slice
thickness in two-dimensional (2D) Standard Tessellation
Language (STL) format were segmented to develop a three-
dimensional (3D) model of human lumbar spine using
Mimics 14.0 (Materialise, Leuven, Belgium) and Magics
(Materialise, Leuven, Belgium) softwares as shown in
Figure 1(a). Marc Mentat 2011 (MSC, Software, Santa Ana,
CA) finite element (FE) software was then used to generate
the FE model using linear first-order tetrahedral elements
as shown in Figure 1(b).

The vertebra was divided into hard cortical bone on the
outside and less dense cancellous bone inside where linear
isotropic material properties were imposed for both cortical
and cancellous bones [12]. The thickness of cortical was set
at 1mm [13].

The 3D model of the IVD was created manually using
SolidWorks (Dassault Systèmes SolidWorks Corporation)
software where the volumetric ratio between the annulus
and nucleus was set to 3 : 7 [14]. The top and the bottom
surfaces of the disc were constructed such that the surfaces
were in contact with the corresponding adjacent surfaces of
the vertebral body using Mimics software. The IVD was
composed of nucleus pulposus and annulus fibrosis which
was modelled as hyperelastic using Mooney-Rivlin formula-
tion [15, 16]. The annulus was constructed to be composite
of a homogenous ground substance reinforced by collagen
fibers. The fibers were represented by 3D truss element with
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Figure 1: L1–L5 lumbar spine. (a) Three-dimensional model and (b) finite element model.

Table 1: Geometrical parameters of the lumbar spine ligaments
[15, 18].

Ligaments Cross-sectional area (mm2)

Posterior longitudinal ligament (PLL) 20.0

Anterior longitudinal ligament (ALL) 63.7

Ligamentum flavum (LF) 40.0

Capsular ligament (CL) 30.0

Intertransverse ligament (ITL) 1.8

Interspinous ligament (ISL) 40.0

Supraspinous ligament (SSL) 30.0
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nonlinear stress-strain curve material properties and the
angle varied from ±24° to ±46° [12, 15].

The facet cartilage area was set as hyperelastic using the
Mooney-Rivlin formulation with the thickness of 2mm
[12, 16]. The articulating facet surfaces were modelled as

surface-to-surface contact with 0.5mm initial gap where
the normal contact stiffness was 200N/mm and the friction
coefficient is zero [15]. This will only allow the compressive
force to be transmittedwithin the gap between the articulating
facet surfaces [15, 17].

The ligaments were represented using truss elements.
Table 1 shows the geometrical parameter of the lumbar spine
ligaments [15, 18]. The complete list of the material proper-
ties imposed in the FEmodel of the osseoligamentous lumbar
spine is presented in Table 2.

Mesh convergence analysis was performed in order to
obtain an optimum FE model of the lumbar spine. Four FE
models of L4-L5 lumbar segment were developed using
1.5mm, 2.0mm, 2.5mm, and 3mm mesh sizes. The analysis
was based on the IDP results of the IVD where the optimum
mesh size started at 2mm as the IDP reached a plateau value.
The 2.0mm was then applied in FE model of L1–L5 lumbar
spine [12].

2.2. Finite Element Analysis. The contact surfaces between
the vertebral bodies and the IVD were set as perfectly con-
nected to each other using segment to segment contact
algorithm in Marc Mentat software. The FE model was
subjected to follower load of 500N, 800N, and 1200N which
represent the typical human normal weight, overweight, and
obesity based on 65% of upper body weight with an addi-
tional 200N of local muscle force [19, 20]. Pure moment of
7.5Nm was generated using force couple applied at flexion

Table 2: Material properties of the components in the osseoligamentous lumbar spine model.

Element set Element type Material properties Reference

Cortical bone 3D tetrahedron E= 12,000MPa, ν= 0.3 [16]

Cancellous bone 3D tetrahedron E= 100MPa, ν= 0.2 [16]

Articular cartilage 3D Herman formulation, lower order tetrahedron E= 35MPa, ν= 0.4 [15]

Nucleus pulposus 3D Herman formulation, lower order tetrahedron Mooney-Rivlin: C1 = 0.12, C2 = 0.03 [12]

Annulus fibrosis 3D Herman formulation, lower order tetrahedron Mooney-Rivlin: C1 = 0.18, C2 = 0.045 [12, 16]

PLL 3D truss E= 10.0MPa (ɛ< 11%), E= 20MPa (ɛ> 11%) [15, 18]

ALL 3D truss E= 7.8MPa (ɛ< 12%), E= 20MPa (ɛ> 12%) [15, 18]

LF 3D truss E= 15.0MPa (ɛ< 6.2%), E= 19.5MPa (ɛ> 6.2%) [15, 18]

CL 3D truss E= 7.5MPa (ɛ< 25%), E= 32.9MPa (ɛ> 25%) [15, 18]

ITL 3D truss E= 10.0MPa (ɛ< 18%), E= 58.7MPa (ɛ> 18%) [15, 18]

ISL 3D truss E= 10.0MPa (ɛ< 14%), E= 11.6MPa (ɛ> 14%) [15, 18]

SSL 3D truss E= 8.0MPa (ɛ< 20%), E= 15.0MPa (ɛ> 20%) [15, 18]

E: Young’s modulus; ν: Poisson’s ratio; ɛ: strain; C1 and C2: material constant characterising the deviatoric deformation of material.

Fixed displacement

Follower load path

Flexion moment point

Extension moment point 

Figure 2: Loading and boundary condition of FE model of the
lumbar spine.

Table 3: Magnitude of moment loading applied on the lumbar
spine.

Loading direction
Flexion moment

point
Extension moment

point
Fy (N) Fz (N) Fy (N) Fz (N)

Flexion −98N −230N 98N 230N

Extension 98N 230N −98N −230N
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and extension moment points (Figure 2) to create either flex-
ion or extension motions [21, 22]. The force couple consists
of two equal and opposite forces as shown in Table 3 [23].

Eight spring elements were applied around the L1–L5
lateral vertebral body where the total load was divided
equally to each of the spring element [24, 25]. This is to
assure the uniformity of the applied follower load and to
avoid any potential rotation of the intervertebral body. The
inferior surface of the L5 vertebral body was completely fixed
in all directions as shown in Figure 2.

3. Results

3.1. Verification of FE Model. The FE model of osseoligamen-
tous lumbar spine was verified by comparing the range of
motion (ROM) with previous in vitro study for flexion and
extension motions at pure moment of 7.5Nm. The present
results of the intersegmental rotations of the lumbar spine
follow similar trend to the previous in vitro results as shown
in Figure 3 [21]. The percentage difference of the ROM
between present and previous in vitro study in flexion was
7.5% at 7.5Nm. Although notable difference was found
between 2Nm and 5Nm in extension motion of the lumbar
spine, the percentage difference of the ROM was decreased
to 8.1% when reaching 7.5Nm moments.

Further comparisons were also carried out to examine the
axial displacement and IDP of IVD at L4-L5 vertebral seg-
ment. It was found that similar trends were observed in the
previous in vitro studies as shown in Figure 4 [26, 27]. The
differences between the present FEA results and previous
in vitro study results for axial displacement and IDP of the
IVD at 1200N compression load were 7.1% and 6.9%,
respectively. Based on these results, the developed FE model
could produce appropriate and reliable results for further
FE analysis.

3.2. The Effects of Human Weight on the Intradiscal Pressure.
Figure 5 shows the comparison of the IDP of nucleus pulpo-
sus for each IVD vertebral segments in the lumbar spine. It
was found that the IDP was increased as the human spine
physiological loading increased in flexion motion where the
highest pressure was 1.26MPa at L1-L2 vertebral segment.
The IDP was increased in flexion motion but an opposite
trend was observed in extension motion. The effects of the
human weight were observed to be more significant at the
L4-L5 segment as shown in Figure 6. In flexion motion, the
1200N load generated 30% higher pressure than the 500N
load, respectively, whereas in extension motion, the pressure
decreased to 80%. At other vertebral levels, the difference of
the IDP between 500N and 1200N loads ranges from 4%
to 8% in flexion motion, whereas higher range was obtained
between 18–60% in extension motion.

3.3. The Effects of Human Weight on Annulus Fibrosis. In
general, the annulus stress increased as the human weight
increased with the maximum annulus stress of 3.9MPa for
1200N load at L1-L2 lumbar segment as shown in Figure 7.
The highest increment was observed at the L4-L5 where the
annulus stress increased to 17% in extension motion,
whereas in flexion motion, the annulus stress increased to
10%. At other vertebral levels, the increment of the annulus
stress between 500N and 1200N loads was between 1.3–8%
in extension and 1–8% in flexion motion.

4. Discussion

The present study demonstrates that physiological loading of
body weight plays an important role of stress distribution at
IVD in the lumbar spine. It was observed that increasing
body weight will increase the pressure at nucleus pulposus
and annulus fibrosis at all levels of the IVD. Furthermore,
the position and direction of motion appears to affect these
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Figure 3: Comparison of ROM between present FE model and previous in vitro result under 7.5Nm pure moments.
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results where the IDP was increased in flexion motion but an
opposite trend was observed in extension motion. A severe
effect was noticed when heavier individuals continue to expe-
rience increased stress and pressure on IVD at all vertebral
segments in the lumbar spine particularly at L4-L5 segment
in both flexion and extension motions.

The results of the present study show similar pattern to the
IDP measured in in vitro study where the maximum IDP was
found inflexionmotiondue to the load shift fromtheposterior

towards the anterior of the IVD in flexionmotion [12, 28, 29].
The increase of nucleus pressure enhances the tensile stress on
the annulus fibers which leads to the excessive stress on the
IVD and stimulate the propagation of disc degeneration
particularly in nucleus pulposus [21]. This will increase the
stiffness of IVD and could reduce its height due to the outflow
of fluid through the vertebral body endplates [30]. Subse-
quently, the fluid loss will increase the proteoglycan and
osmotic pressure within the nucleus [30, 31].
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Figure 5: Comparison of the IDP of nucleus pulposus for each IVD vertebral segments in the lumbar spine.
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The maximum annulus stress was obtained in extension
motion due to the load shift from the anterior towards the
posterior of the IVD. This phenomenon was also observed
in previous clinical study where the structural defect in the
vertebral body endplate tends to distribute the load trans-
ferred from the nucleus to the posterior annulus. It has been
shown that this can potentially lead to pain and could tear the
annulus at the disc rim [32, 33].

5. Conclusion

Gaining body weight will increase stresses of IVD at all
vertebral segments in the lumbar spine particularly the L4-L5
segment. Furthermore, the nucleus pulposus was more
severely affected compared with the annulus fibrosus.
Although flexion and extension motions of the lumbar spine
appear to have different percentage effect on the IVD, it was
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found that heavier individuals will continue to experience an
increase in stress at IVD regardless of the position of the spine.
This could be a factor that can lead to early intervertebral
disc damage.
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