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Salient Object Detection (SOD) simulates the human visual perception in locating the most attractive objects in the images.
Existing methods based on convolutional neural networks have proven to be highly effective for SOD. However, in some cases,
these methods cannot satisfy the need of both accurately detecting intact objects and maintaining their boundary details. In this
paper, we present a Multiresolution Boundary Enhancement Network (MRBENet) that exploits edge features to optimize the
location and boundary fineness of salient objects. We incorporate a deeper convolutional layer into the backbone network to
extract high-level semantic features and indicate the location of salient objects. Edge features of different resolutions are extracted
by a U-shaped network. We designed a Feature Fusion Module (FFM) to fuse edge features and salient features. Feature
AggregationModule (FAM) based on spatial attention performsmultiscale convolutions to enhance salient features./e FFM and
FAM allow themodel to accurately locate salient objects and enhance boundary fineness. Extensive experiments on six benchmark
datasets demonstrate that the proposed method is highly effective and improves the accuracy of salient object detection compared
with state-of-the-art methods.

1. Introduction

/e goal of salient object detection (SOD) is to find the most
distinct and salient objects in an image. Salient object de-
tection as an important preprocessing task in computer
vision applications has been widely applied in many fields,
such as semantic segmentation [1, 2], video segmentation
[3], object recognition [4, 5], and cropping [6].

Inspired by cognitive studies of visual attention,most early
works were based on handcrafted features, such as contrast
[7, 8], center prior [9, 10], and so on [11–13]. With the im-
provement of GPU computing power, deep convolutional
neural networks (CNNs) [14] have successfully broken the
limits of traditionalmethods./eseCNN-basedSODmethods
have achieved great success on widely used benchmarks.

Inspired by the excellent performance of FCN [15] based
CNN in the field of semantic segmentation, FCNs have also
beenmassivelyapplied toSOD,suchasseveral end-to-enddeep
network structures [16–18]. /e basic units of salient object
map finally output by these end-to-end network structures are
the individual pixels in the image area, which can highlight the

salient information. As the depth of the convolutional layer
increases, the location of salient objects becomes more accu-
rate.However, thedetailedboundariesof salientobjects are lost
due to the pooling operation, see Figure 1.

Boundary information is critical for SOD. /erefore,
many SOD jobs also try to enhance boundary details by
differentmeans. Some salient object detectionmodels [19–21]
refinehigh-level featureswith local informationby combining
U-Net with a bidirectional or recursive approach to obtain
accurate boundary details. Some methods use preprocessing
(superpixel) [22] and postprocessing (CRF) [17, 21] to pre-
serve object boundary information. Besides, loss functions
have also been used to obtain high-quality salient objects. For
example, BASNet [23] uses the proposed hybrid loss to im-
prove boundary accuracy. Some methods [24–26] attempt to
use the edge as the supervision for training SOD models,
which significantly improves the accuracy of the saliencymap.

We explicitly model edge features and use the attention
mechanism to fuse edge features and salient features to
obtain salient objects with a high-quality edge.

Our contributions can be summarized as follows:
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(A) We propose anMRBENet network that utilizes FFM
to fuse salient edge features to enhance the boundary
and semantic features of salient objects. From the
top layer to the bottom layer, the edge details of
salient features are sequentially optimized. When
extracting edge features, the guidance of high-level
semantic features can effectively avoid the influence
of shallow noise. Experimental results show that it
can filter out noise.

(B) /e edge features are first supervised by the salient
edge ground truth, and then fused with the salient
object features through a feature fusion module. /e
feature aggregation module extends the receptive
field throughmulti-scale convolution, which can not
only effectively aggregate features but also promote
feature fusion and enhance the edge details of salient
features.

2. Related Work

Traditional nondeep learning methods predict salient ob-
jects based mainly on low-level features, such as pixel
contrast [12], average image color difference [27], and phase
spectrum with Fourier transform [28].

Compared with traditional methods, the convolutional
neural network (CNN) performs extraordinarily. In [15],
Long et al. first proposed a fully convolutional neural net-
work (FCN) to predict each pixel. /e FCN replaces the last
fully connected layer of the convolutional network with a
convolutional layer. At the end of the network structure, the
feature map is up-sampled, and then the up-sampled feature
map is classified into pixels. /e final output is an end-to-
end image.

In recent years, most neural network models for salient
object detection have extended or improved fully con-
volutional neural networks. HED [29] added a series of side
output layers after the last convolutional layer of each stage
of VGGNet [30] and fuses the feature maps output by each
layer to obtain the final result map. In DSS [17], Hou et al.
added several short connections from the deeper side output
to the shallower side output, so that higher-level features can
help locate lower-level features, and lower-level features can
enrich the details of higher-level features. /e smart com-
bination of higher and lower-level features makes it possible
to detect salient objects accurately. PoolNet [26] made full
use of the function of the pool and incorporated three

residual blocks. Wu et al. [31] embedded a mutual learning
module and an edge module in the model. Each module is
separately supervised by the salient object and the edge of the
salient object and is trained in an intertwined bottom-up and
top-down manner. Wang et al. [32] designed a pyramid
attention module for salient object detection and proposed
an edge detection module. /e former extends the receptive
field and provides multi-scale clues. /e latter uses explicit
edge information to locate and enhance the saliency of the
object edge. Wang et al. [33] proposed an iterative collab-
orative top-down and bottom-up reasoning network for
salient object detection. /e two processes of top-down and
bottom-up are alternately executed to complement and
enhance the fine-grained saliency and high-level saliency
estimation. Noori et al. [34] proposed a multiscale attention
guidance module and an attention based multilevel inte-
grator module. /ese two modules not only extract multi-
scale features but also assign different weights to multi-level
feature maps.

Given the huge body of work in this field, the latest
research progress of SOD can be quickly grasped through
relevant surveys. In [35], Borji et al. comprehensively
reviewed the works and development trends of salient object
detection before 2019 and discussed the impact of evaluation
indicators and dataset bias on model performance. Recently,
Wang et al. conducted a comprehensive survey [36] covering
all aspects of SOD. /ey summarized the existing SOD
evaluation datasets and evaluation indicators, constructed a
new SOD dataset with rich attribute annotations and ana-
lyzed the robustness and portability of the deep SOD model
for the first time in this field.

Recently, RGB-D/RGB-T SOD is a growing trend. /e
accuracy of saliency detection can be improved by learning
simultaneous multimodal information. For example, Ji et al.
[37] proposed a depth calibration framework (DCF)
learning strategy. DCF generates depth images quality
weights by classifying positive and negative samples of depth
images. /e depth images are then calibrated based on these
weights. /rough this strategy, the accuracy of saliency
estimation is improved by depth information, and it tackles
the influence of bad information in depth images on saliency
results.

3. Proposed Model

3.1. Features Extraction. We use the vgg16 network as the
backbone network. As shown in Figure 2, we delete the full

Input GT Our BMPM RASPicanet

Figure 1: We compare our method with BMPM, Picanet, and RAS. /e boundary maps in the figure are all calculated using the canny
algorithm on their respective saliency feature maps.
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connection layer in vgg16 and add a set of deeper successive
convolution layers. /e deeper convolution block and CP
module form a GGM module for extracting and enhancing
high-level semantic features./e high-level features can help
locate the location of salient objects and edges. From the
backbone network, we obtain six side features, Conv1-2,
Conv2-2, Conv3-3, Conv4-3, Conv5-3, and Conv6-3, from
the backbone network. /e six side features can be denoted
by the backbone feature set C:

C � C
(1)

, C
(2)

, C
(3)

, C
(4)

, C
(5)

, C
(6)

 . (1)

Side path1 is abandoned because side path1 is too close
to the input image, so the receptive field is very small. In
addition, encoding shallow features will significantly in-
crease the computational cost [38]. Side path1 has little effect
on the final result.

Since the side output features have different resolutions
and number of channels, we first use a set of CP modules to
compress the number of side output feature channels into an
identical, smaller number, denoted as k. /is is beneficial for
reducing the amount of subsequent computation and for
performing subsequent elementwise operations. /e com-
pressed side features can be expressed as follows:

F
(i)

� f ϕ Trans C
(i)

; θ   , (2)

where Trans(C(i); θ) represents the convolutional layers
with parameter θ (it can change the number of channels of
the feature map), and ϕ(·) represents the ReLU activation
function, i ∈ 2, 3, 4, 5, 6{ }.

Low-level features have rich information, but some of
the information will interfere with the SOD task. So, it is
necessary to highlight the salient information of low-level
features. /e added GGM has the largest receptive field.
/erefore, we predict a coarse saliency map for this layer to
guide the network to extract useful details from low-level
features. /e coarse prediction map can roughly locate the
salient object regions having larger saliency values (weights)
than the background regions. We upsample the coarse

saliency map to make its resolution consistent with that of
the low-level feature layers. In order to find the right details
of salient objects in low-level features, we combine low-level
features with coarse prediction maps to enhance the useful
details of salient objects. /e data flow indicated by the
purple dotted arrow in Figure 2 represents the guidance of
the coarse saliency map to the low-level features. F(i) can be
expressed as follows:

F
(i)

� f ϕ Trans C
(i)

+ Up F
(6)

; C
(i)

  ; θ   , (3)

where Up denotes the bilinear interpolation operation,
i ∈ 2, 3, 4, 5{ }.

We explicitly model the edge features on side path2. We
utilize a U-shaped network to extract edge features at four
different resolutions. /is network consists of a CP module
and six convolution blocks. C(2) and F(6) are elementwise
summed and input into the network. /e CP module
compresses the input features into k channels. /e convo-
lution block consists of two convolution layers to enhance
and extract edge features. We also add four edge supervi-
sions to this network. As shown in Figure 2, we get the edge
feature F(i)

e , i ∈ 2, 3, 4, 5{ }.

3.2. Features Fusion Module (FFM). As shown in Figure 3,
the Spatial Attention (SA) module performs maximum
pooling and average pooling on features. Two pooling op-
erations are used to aggregate the channel information of the
features, and two single channel maps are obtained. /e two
images are concatenated together to get a spatial attention
through a standard convolutional layer. Spatial attention
focuses on the weights of each part of the feature map.
/erefore, the spatial attention model can find the most
important part (salient object) in the feature map, which is
very suitable for SOD tasks.

/e corresponding salient feature FS and edge feature FE

are input into the FFM module for feature fusion. We first
enhance the edge features in the salient features by multi-
plication. /en we use a 3× 3 convolution layer to drive the
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Figure 2: Framework of MRBENet. GGM (global guidance module) consists of a set of deeper and successive convolution layers and a CP
module. /e CP module consists of two convolution layers and a ReLU layer.
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preliminarily fused feature P, which can be expressed as
follows:

P � conv3×3 FS × FE( . (4)

Meanwhile, we apply the spatial attention module to
salient features to get a feature vector, then multiply it with
the edge feature to obtain the feature Υ, which can be
expressed as follows:

Υ � Spatial FS(  × FS(  × FE. (5)

/e final fusion feature T can be expressed as follows:

T � conv3×3(P + Υ). (6)

3.3. Decoder and Features Aggregation Module (FAM). As
shown in Figure 4, FAM utilizes multiscale learning (dilated
convolution with different dilation rates) to expand the
receptive field, enhance the boundary details of salient
objects, and promote the fusion of salient features and edge
features. /e input feature is denoted as χ. We expand the
number of χ channels to M times by 1× 1 convolution. /e
depth separable convolution with different expansion rates is
used for multiscale learning./is process can be expressed as
follows:

χ1 � conv1×1(χ),

χd1
2 � conv

d1
3×3 χ1( ,

χd2
2 � conv

d2
3×3 χ1( ,

χd3
2 � conv

d3
3×3 χ1( ,

χd4
2 � conv

d4
3×3 χ1( ,

χ2 � ReLU BN concatenation χd1
2 , χd2

2 , χd3
2 , χd4

2   ,

(7)

where d1, d2, d3, d4 are dilation rates, taken as 1, 2, 3, 4 here.
BN is the abbreviation of batch normalization. Here we set
up a residual connection, which can be expressed as
follows:

χ3 � conv1×1 χ2(  + χ. (8)

/en, we apply a spatial attention to χ and obtain the
attention vector χ′. /e feature of the final output can be
expressed as follows:

χ′ � Spatial(χ) × χ,

out � conv χ3 × χ′( .
(9)

We obtain the final saliency prediction map from top to
bottom through FAM. We added depth supervision (purple
arrow in Figure 2) after the four FAM modules to refine the
saliency map by learning the error between the saliency map
and the ground truth.

3.4. Loss Function. /e total loss function of our network
consists of edge lossLeand saliency lossLS. Assume that
G, Ge represents supervision from saliency ground-truth and
edge ground-truth, and Pe

kandPS
k represent the edge pre-

diction map and the saliency prediction map. /e total loss
function can be expressed as follows:

Ltotal � 
4

k�1
Le P

e
k, Ge(  + 

9

k�1
LS P

S
k, G , (10)

LeandLSuses the widely used cross-entropy loss function:

L(P, G) � − 
i

Gilog Pi(  + 1 − Gi( log 1 − Pi(  , (11)

where i represents the pixel index, P ∈ Pe
k, PS

k .

4. Experiment

4.1. Datasets. We train our network on the subset DUTS-
TR in the dataset DUTS [39]. We have evaluated the
proposed network on six standard benchmark datasets:
DUT-OMRON [40], DUTS [39], ECSSD [41], PASCAL-S
[42], HKU-IS [43], and SOD [44, 45]. DUT-OMRON
contains 5168 high-quality images. /ere are one or more
salient objects with a relatively complex background
structure. DUTS is so far the largest salient object de-
tection dataset available. DUTS contains two subsets:
training subset DUTS-TR and test subset DUTS-TE.
DUTS-TR has 10553 images designed for training, and
DUTS-TE has 5019 images designed for testing. ECSSD
contains 1000 meaningful and complex semantic images
with various complex scenes. PASCAL-S has 850 images
with chaotic background and complex foreground. HKU-
IS has 4447 images with high-quality annotations. Most
images in the dataset have multiple connected or dis-
connected salient objects. SOD contains 300 high-quality
images with a complex background. It was originally
designed for image segmentation [44]. Pixel-level
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1 δ
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Figure 3: FFM: features fusion module. SA: spatial attention.
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annotations of salient objects are generated in [45] and
used for object detection. Although the SOD dataset has
fewer images, it is currently one of the most challenging
object detection datasets, since most of the images contain
multiple salient objects, and some salient objects overlap
with the boundary or have low contrast.

4.2. Experimental Details. We train our network on the
DUTS-TR dataset. We use vggnet16 as the backbone
network. All weights of the newly added convolutional
layer are randomly initialized with truncated normal
(σ � 0.01), and the deviation is initialized to 0. /e
hyperparameters of our network model are set as follows:
learning rate � 2e-5, weight decay � 0.0005,
momentum� 0.9, batch-size � 8. Backpropagation is pro-
cessed in a group of 50 images. We do not use the validation
dataset during the training process./emodel is trained for
30 epochs, and the learning rate after 15 epochs is divided
by 10. We implement our network model based on the
publicly available Pytorch framework.We use a GTX 2080ti
GPU (12GB RAM) to train and test our model.

4.3. EvaluationMetrics. We use some widely used standard
metrics, including F-measure, Mean Absolute Error
(MAE) [7] and S-measure [46], and the PR curve, to
evaluate our model and other advanced models. /e PR
curve is a standard method for evaluating the probability
map of saliency prediction. It is actually a curve obtained
by two variables, Precision (precision rate) and Recall
(recall rate), where recall is the abscissa and precision the
ordinate.

F-measure is an overall performance measurement,
computed from the weighted harmonic mean of precision
and recall. It is expressed as follows:

Fβ �
1 + β2  × Precision × Recall

β2 × Precision × Recall
, (12)

β2 is set to 0.3 to weight precision more than recall.
/e MAE value represents the average absolute pixel

difference between the saliency map (represented by S) and
the ground truth map (represented by G). It is expressed as
follows:

MAE �
1

W × H


W

x�1


H

y�1
|S(x, y) − G(x, y)|, (13)

where W and H represent the width and height of the sa-
liency map, respectively.

S-measure focuses on evaluating the structural infor-
mation of saliency maps. S-measure is closer to the human
visual system than F-measure. /e S-measure could be
computed as follows:

S � cS0 +(1 − c)Sc, (14)

where S0 and Sc denote the region-aware and object-aware
structural similarity. c is set as 0.5 by default.

4.4. Ablation Experiment and Analysis. In this section, we
use DUTS-TR as the training set to verify the effectiveness of
the key components in the proposed network. We also
discuss the effects of different components in the proposed
network on different datasets.

/e baseline model is an encoder-decoder structure. It
can integrate multi-scale features. We adopt saliency su-
pervision and the cross-entropy loss function in this model.
From Table 1, the U-shaped network built with vgg16 still
has excellent performance.

/e Base + E model adds edge supervision to the side
path2 of the Baseline model. /e saliency prediction map is
obtained by fusing salient edge features and salient features.
As shown in Figure 5(f), there is a lot of redundant in-
formation in the edge features of the picture. From Table 1,
after incorporating edge information into the Baseline
model, the evaluation metrics are improved.

/e Base +U-E model uses a U-shaped structure to ex-
tract edge features and fuses salient features and edge features
by adding elements. Figure 5(e) is the obtained feature
prediction map at the largest resolution among the four
different resolutions. Compared with Figures 5(f), 5(e) has
clearer object boundaries and less redundant information.
Although the edge map obtained by Base +U-Emodel is finer
than that obtained by Base +E model, from the evaluation
metrics in Table 1, their SOD tasks do not differ significantly.
/erefore, the network has to be further optimized.

Base +U-E-G model adds a GGM module to the Base-
+U-E model. Although the saliency map obtained by GGM
has blurred boundaries (see Figure 2 coarse prediction map),
its spatial location information is the most abundant. /e
predicted coarse saliency map serves as guidance to enhance
the saliency information of the side output feature. By fusing
the top-level semantic feature, the edge feature extracted by
the U-shaped network is even finer, as shown in Figure 5(d).
/e evaluation metrics are also significantly improved.

Our final model adds FFM and FAM modules to the
Base + U-E-G model. From the data in Table 1, through
the optimization of FFM and FAM, our model has the
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Figure 4: FAM: features aggregation module. SA: spatial attention. D-conv denote deep separable convolution, and d is dilation rate.
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best performance. /is verifies that the proposed FFM
and FAM modules can more effectively promote the
fusion of edge features and salient features to improve
performance.

As shown in Table 2, experiments are conducted using
different feature fusion methods on SOD, HKU-IS, and
PASCAL-S datasets. Method (a) uses elementwise addition
instead of FFM to fuse salient features and edge features.
Method (b) uses elementwise multiplication instead of FFM.
Method (c) concatenates the two feature maps and performs
a convolution operation to fuse the features. Method (d)
utilizes a spatial attention module after using element ad-
dition for feature fusion. Compared with method (a),
method (d) has improved performance after increasing
spatial attention. In our model (e), FFM is a combination of
elementwise addition and multiplication, and convolution
and spatial attention. Comprehensively comparing the in-
dicators of these datasets, our FFM module performs best.

4.5. Comparison with State-of-the-Arts. In this section, we
compare our proposed MRBENet with 16 state-of-the-art
methods, including AFNet [47], BMPM [20], BASNet
[23], EGNet [24], PoolNet [26], Picanet [21], RAS [48],

CPD [38], ASNet [49], Gatenet [50], ICON [51], CII [52],
Auto-MSFNet [53], MINet [54], U2Net [55], and DNA
[56]. For a fair comparison, we either use the saliency map
provided by the author or run their source codes to get the
saliency map.

Quantitative evaluation. We evaluate our model
MRBENet with other advanced models on six datasets. As
shown in Table 3, we can see the MAE, Max F-measure, and
S-measure values of different methods in different datasets.
We draw PR curves of the different methods in Figure 6.
Combining the graphs and tables, it can be seen that our
method outperforms most methods. Our vgg16-based
model has better performance than some Resnet-based
models such as CPD and BASNet. After replacing the
backbone network with resnet50, the performance of the
model is improved.

Visual comparison. In Figure 7, we show the visuali-
zation results of different methods. It can be seen that our
method performs well on images with low contrast (rows 1
to 3), complex background (rows 4 to 6), blurred borders
(rows 1 to 5), andmultiple objects (rows 7 to 8). Ourmethod
makes full use of high-level semantic information and edge
information, and can still recognize salient objects in
complex scenes.

Table 2: Ablation experiment for feature fusion.

Method
SOD HKU-IS PASCAL-S

MAE↓ MaxF↑ S↑ MAE↓ MaxF↑ S↑ MAE↓ MaxF↑ S↑
(a) ADD 0.0991 0.8672 0.7926 0.0307 0.9363 0.9186 0.0658 0.8717 0.8616
(b) Multiplication 0.1002 0.8679 0.7945 0.0309 0.9366 0.9188 0.0666 0.8739 0.8614
(c) Concat + conv 0.0997 0.8707 0.7943 0.0301 0.9365 0.9185 0.0663 0.8711 0.8605
(d) ADD+SA 0.0979 0.8670 0.7955 0.0307 0.9365 0.9186 0.0650 0.8761 0.8613
(e) Our model 0.0966 0.8695 0.8019 0.0299 0.9354 0.9181 0.0643 0.8764 0.8613

(a) (b) (c) (d) (e) (f)

Figure 5: Examples of a visual edge map of ablation experiment. (a) RGB (b) GT (c) Edge GT (d) Base +U-E-G (e) Base +U-E (f) Base + E.

Table 1: Ablation experiment was performed on SOD, HKU-IS, and DUTS-TE datasets.

Model
SOD HKU-IS DUTS-TE

MAE↓ MaxF↑ S↑ MAE↓ MaxF↑ S↑ MAE↓ MaxF↑ S↑
(a) Baseline 0.118 0.845 0.784 0.042 0.924 0.905 0.054 0.853 0.860
(b) Base + E 0.111 0.859 0.785 0.039 0.924 0.905 0.048 0.870 0.871
(c) Base +U-E 0.110 0.858 0.781 0.038 0.923 0.904 0.045 0.871 0.872
(d) Base +U-E-G 0.106 0.862 0.792 0.034 0.929 0.911 0.041 0.880 0.882
(e) Our model 0.103 0.866 0.791 0.032 0.933 0.913 0.040 0.878 0.881
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5. Conclusion

In this paper, we propose an MRBENet network that en-
hances the fineness of salient objects through the multiscale
fusion of salient edge features. /e GGM incorporated into
the backbone network can extract high-level semantic

features, which can help locate object boundaries accurately
for shallow features. /e FFM fuses edge features and salient
object features to enhance the edge of salient objects. Our
model performs well against the state-of-the-art methods on
six datasets./e experimental results show that themodel can
improve the salient object localization and edge fineness

RGB GT Our AFNet BMPM EGNet PoolNet PiCANet RAS MINet U2Net BASNet CPD GateNet DNA ICON

Figure 7: Qualitative comparison of our method with nine other methods.
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Figure 6: PR curve.
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although the images have complex backgrounds and low
contrast. In the future, we will continue to explore how to use
edge information to improve saliencydetection performance.
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