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Introduction
Nucleophosmin (NPM1), also known as B23 
protein, resides primarily in the nucleus, but shut-
tles continuously between the nucleus and cyto-
plasm.1,2 The NPM1 protein contains a numbers 
of motifs that act to mediate interactions with 
binding partners and affect its cellular localiza-
tion.1,3 Intracellular NPM1 is predominantly oli-
gomeric and binds to other proteins, including 
tumor suppressor proteins.3 NPM1 is also a mul-
tifunctional phosphoprotein that plays multiple 
roles in ribosome biogenesis, mRNA processing, 
chromatin remodeling, and embryogenesis.4 For 
human hematologic malignancies, NPM1 muta-
tions are significantly implicated in newly diag-
nosed de novo acute myeloid leukemia (AML) 
cases,1,5–7 which account for approximately one-
third of all AML patients and have distinct 
genetic, pathologic, immunophenotypic, and 

clinical features.1,8,9 Notably, mutated NPM1 is a 
reliable marker of AML status in the majority of 
patients.10 NPM1 mutations can be detected in 
AML at relapse, even many years after the initial 
diagnosis.11–14 Because of its distinct biological 
and clinical characteristics, NPM1-mutated 
AML has been defined as a distinct molecular 
leukemia entity in the recently updated World 
Health Organization (WHO) classification of 
myeloid neoplasms and acute leukemia.15–18 
Nevertheless, NPM1 abnormality has an enor-
mous impact on the biological diagnosis, prog-
nostic stratification, and monitoring of minimal 
residual disease (MRD) in hematologic malig-
nancies. The discovery of NPM1 gene alterations 
represents a rational basis for the development of 
molecular targeted drugs for leukemia and lym-
phoma.19–22 The aim of this present review is to 
update our knowledge of the discoveries of NPM1 
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and its alternations in different hematologic 
malignancies, as well as to deepen our under-
standing of recent findings concerning NPM1 
therapeutic targeting.

NPM1 structure and biological function
The human NPM1 gene, located on chromosome 
5q35, contains 12 exons ranging in size from 58 
to 358 bp.23–25 NPM1, a multifunctional phos-
phoprotein, is found localized primarily to the 
granular regions of the nucleolus. The protein 
can shuttle between the nucleus, the nucleo-
plasm, and the cytoplasm during the cell cycle,2 
and is involved in several biological processes, 
such as ribosome biogenesis, tumor suppression, 
nucleolar stress response, and cell apoptosis.3 In 

the majority of patient cases, NPM1 mutations 
are heterozygous, and localize to exon 12 of the 
gene. Around 50 different types of mutations 
have been found, all creating the cytoplasm-dislo-
cated mutant NPM1 (NPM1c+) protein.8,9 The 
NPM1c+ protein in AML is critical to its onco-
genicity. All NPM1 mutations act to maximize 
the export of the mutant to the cytoplasm, includ-
ing rare mutations found outside of exon 12.26 
The loss of NPM1c from the cytoplasm, either 
through nuclear relocalization or targeted degra-
dation, results in immediate downregulation of 
homeobox (HOX) genes, and is followed by 
AML differentiation.27 The cellular distribution 
of wild type (wt) and mutant NPM1 is shown in 
Figure 1. Normally, NPM1 molecules contain 
distinct domains that account for multiple bio-
logical functions. The N-terminal hydrophobic 
regions of NPM1 are responsible for the self- 
oligomerization and chaperone activities of the 
molecule.28 The C-terminus of NPM1 accounts 
for the ribonuclease activity of the protein. The 
C-terminus also contains a short aromatic stretch 
with two tryptophan residues, which are crucial 
for NPM1 binding to the nucleolus.29

The expression of NPM1 is higher in proliferating 
cells than in quiescent cells,30 which may modu-
late cell cycle progression and centrosome dupli-
cation.31,32 Multifunctional characteristics of 
NPM1 also appear to regulate the various post-
translational modifications of NPM1, such as 
acetylation, phosphorylation, polyubiquitination, 
and sumoylation.33–35 When NPM1 expression 
aberrantly increases, the protein acts as an onco-
gene via promoting abnormal cell survival.36 
Conversely, NPM1 may play a critical role in 
modulating the growth-suppressive pathway due 
to its decreased expression, inhibition of NPM1 
shuttling, or colocalization with other oncosup-
pressors, such as the ADP-ribosylation factor 
(ARF).24,37 In general, NPM1 involvement in cell 
proliferation is probably the result of several 
activities, which include modulation of ribosome 
biogenesis as well as interactions with histone 
oncosuppressor proteins.

Anti-NPM1 antibodies for the diagnosis of 
hematologic malignancies
In recent years, several studies have explored the 
utility of anti-NPM1 antibodies for monitoring 
therapeutic outcomes, or as indicators of cancer 

Figure 1. The cellular distribution of wild type and 
mutant NPM1 in a healthy cell and a leukemia cell.
NPM1, Nucleophosmin.
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prognosis after treatment. Of those, the serum 
anti-NPM1 autoantibody has been shown to 
potentially function as a biomarker for the immu-
nodiagnosis and prognosis of prostate cancer.38 
For diagnostic purposes, three different types of 
antibodies directed against fixative-resistant 
epitopes of NPM1 have potential utility for immu-
nohistochemistry in hematologic malignancies: 
those recognizing wt and mutant NPM1 proteins, 
and those specifically directed against either the 
mutant or the wt NPM1 protein. Monoclonal 
antibodies that recognize both wt and mutant 
NPM1 are the most reliable reagents for immuno-
histochemical diagnosis of AML with mutated 
NPM11,39,40; they label leukemic cells in cyto-
plasm (which contains mutant and wt NPM1) 
and the nucleus (which contains only wt 
NPM1).24,41 Polyclonal antibodies that recognize 
mutant but not wt NPM1 label only the cyto-
plasm of leukemic cells, providing more evidence 
that mutant NPM1 is completely dislocated in the 
cytoplasm.24,42,43 If a monoclonal antibody recog-
nizing only wt NPM1 stains leukemia cells in the 
nucleus and cytoplasm, then this is an indication 
of AML with mutated NPM1, since the mutant 
recruits wt NPM1 into the cytoplasm. In this 
case, the best control for specificity of aberrant 
cytoplasmic expression of NPM1 is immunostain-
ing with an antibody against nucleolin (NCL), 
which is another abundant shuttling nucleolar 
protein; in AML with mutated NPM1, the pro-
tein will be located only in the nucleus.40

It has been reported that a monoclonal antibody 
(T26) that recognizes 10 of the 21 known NPM1 
mutants in AML cells did not cross react with wt 
NPM1 or unrelated cellular proteins when 
assessed by immunofluorescence and flow cytom-
etry analysis. These data indicate that T26 may 
become a helpful tool for rapid molecular diagno-
sis of AML.44 The value of anti-NPM1 antibody-
based immunohistochemistry in bone marrow 
biopsies and molecular analysis for the detection 
of NPM1 mutations was further evaluated by 
Woolthuis and colleagues from the University of 
Groningen.45 They observed a high percentage of 
concordance between the two methods of muta-
tion detection. A small subgroup of patients 
showed discordant results from using the two 
methods, which could be caused by fixation and 
histotechnical factors as found in previously pub-
lished studies.1,41,45–48 Moreover, cases with 
mutated NPM1 do not always show overt 

cytoplasmic staining of NPM1 on bone marrow 
biopsies with formalin fixation. Cytoplasmic 
NPM1 localization is not always caused by a con-
ventional NPM1 mutation, and the authors sug-
gest that, for the screening of NPM1 abnormalities, 
more information will be obtained via combining 
immunohistochemistry with molecular analysis.45

NPM1 mutations in human hematologic 
malignancies

NPM1 mutations in AML
Mutations in the NPM1 gene are the most fre-
quent genetic abnormalities of AML, and are 
highly specific to de novo AML.1,5,7,44 NPM1 
mutations usually cause a frameshift in the region 
encoding the C-terminus of the protein. The 
altered reading frame results in the disruption of 
a nucleolar localization signal and the introduc-
tion of an additional nuclear export signal; this 
generally results in aberrant expression of the 
mutated NPM1c+ protein.26,27,40,49,50 Mutations 
within NPM1 are a founder genetic alteration in 
AML, and the presence of NPM1c+ is critical for 
disease maintenance.

Clinically, NPM1 mutations have an important 
prognostic significance. Mutations in the NPM1 
gene have been associated with a favorable prog-
nosis in the absence of concomitant internal tan-
dem duplications (ITD) of the fms-related 
tyrosine kinase 3 (FLT3) gene in cytogenetically 
normal acute myeloid leukemia (CN-AML).1,51–53 
CN-AML is the largest and most heterogeneous 
cytogenetic AML subgroup. NPM1 is the most 
frequently encountered mutation in CN-AML.1 
In the European Leukemia Net and other prog-
nostic classifications, NPM1-mutated CN-AML 
in the absence of FLT3-ITD (NPM1mut/FLT3-
ITD-negative) is considered part of the favorable 
genetic group.54,55 The comparative value of pos-
tremission treatment in patients with CN-AML 
subclassified by NPM1 and FLT3-ITD allelic 
ratio has been debated in a recent study. Among 
521 patients with CN-AML in first complete 
remission (CR1), favorable overall survival (OS) 
was found for patients with mutated NPM1 with-
out FLT3-ITD (71 ± 4%). The outcome in 
patients with a high FLT3-ITD allelic ratio 
appeared to be very poor, with OS and relapse-
free survival (RFS) of 23 ± 8% and 12 ± 6%, 
respectively.56 A favorable outcome is further 
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identified in older AML patients with NPM1mut/
FLT3-ITD-negative who underwent allogeneic 
hematopoietic cell transplantation in CR1. These 
data offer encouraging possibilities compared with 
results from historical nontransplant approaches.57

Several studies have provided definitive evidence 
demonstrating that de novo AML with mutated 
NPM1 is frequently associated with a normal kar-
yotype and frequent comutations in DNMT3A, 
IDH1/IDH2, and TET2, as well as, notably, in 
FLT3-ITD.5,51,52,57–59 It has been reported that 
IDH1 mutations may adversely impact the favora-
ble prognosis associated with the NPM1-mutated/
FLT3-ITD-negative (NPM1mut/FLT3-ITDneg) 
genotype, indicating that IDH1 mutation analysis 
might serve to refine prognostic stratification in 
NPM1-mutated AML cases without FLT3-
ITD.60,61 Recently, a large study evaluated the 
potential prognostic impact of karyotype in 2426 
intensively treated patients with NPM1mut/FLT3-
ITDneg/low AML in a pooled analysis of individual 
patient data from nine international cohorts. Of 
these, 2000 patients (82.4%) had a normal karyo-
type and 426 (17.6%) had an abnormal karyo-
type. A total of 1845 patients with NPM1wt/
FLT3-ITDneg/low and adverse-risk cytogenetics 
were identified in this international collaborative 
study. Of note, AML patients with NPM1 muta-
tions harboring the FLT3-ITDneg/low genotype and 
adverse-risk cytogenetics were found to share the 
same unfavorable prognosis as their counterparts 
with wt NPM1.62 Interestingly, the investigators 
from the Wellcome Trust Sanger Institute in 
Cambridge found that the combination of 
NPM1c+ and Flt3-ITD had an early profound 
effect on gene expression and hematopoiesis. 
Also, both types of comutations drove AML in the 
majority of mice, and the leukemias in NPM1c 
Flt3-ITD mice were more aggressive and undif-
ferentiated. Their data demonstrate that molecu-
lar synergy between NPM1c+ and Flt3-ITD 
underpins the co-occurrence patterns, phenotype, 
and prognosis of NPM1-mutant AML.63 More 
studies further revealed that the co-occurrence of 
DNMT3A, NPM1, and FLT3-ITD mutations 
represents a distinct entity with a very poor AML 
outcome.64–66 A recent study identified Hepatic 
Leukemia Factor (HLF) as a novel leukemic stem 
cell regulator in DNMT3A, NPM1, and FLT3-
ITD triple-mutated AML, which is also geneti-
cally defined as a high-risk subgroup in AML.64 
Furthermore, there are still some mutations that 

rarely co-occur with NPM1 mutations, such as 
partial tandem duplication in the mixed lineage 
leukemia (MLL) gene, and mutations in RUNX1, 
CEBPA, and TP53 genes.67

To characterize the genetic composition of 
NPM1-mutated AML, a study showed recently 
that NPM1c+ leukemia cells displayed increased 
transcription of stem-cell-associated genes, 
including HOXA, HOXB, and MEIS1.27 
Relocalization of NPM1c+ to the nucleus 
resulted in a downregulation of the HOX/MEIS1 
gene signature and subsequent differentiation of 
AML cells. These results demonstrate the poten-
tial therapeutic benefit of inducing nuclear relo-
calization of NPM1. Interestingly, when the 
mutation status of five recurrently mutated onco-
genes in 129 paired NPM1 mutated samples 
obtained at diagnosis and relapse was assessed,21 
the authors found a mild shift in the genetic pat-
tern from diagnosis to relapse including the loss 
of NPM1 mutations. At the time of relapse, 
NPM1 mutation loss patients feature distinct 
mutational patterns that share almost no somatic 
mutation with the corresponding diagnosis sam-
ple, and affect different signaling pathways. By 
contrast, profiles of patients with the persistence 
of the NPM1 mutation are demonstrated to have 
a high overlap of mutations between diagnosis 
and relapse. A recent study further showed that 
upregulation of the HOXA5, HOXB5, HOXA10, 
PBX3, and MEIS1 genes was associated with 
AML cells harboring NPM1 gene mutations, 
which was also correlated with a worse prognosis 
in AML. The in vitro data in this latter study sug-
gests that a complex involving the HOX genes 
with PBX3 and MEIS1 cofactors may behave as 
an advanced therapeutic target in NPM1-mutated 
AML patients.68 These results were consistent 
with previous findings showing that the gene 
expression profile of NPM1c+ AML is character-
ized by upregulation of genes involved in stem 
cell maintenance.53,69

Moreover, Brodska and colleagues described sev-
eral fusion products with other genes resulting 
from chromosomal translocations in hematologi-
cal malignancies in particular.70 The fusion pro-
teins contain the NPM1 N-terminal domain, 
which serves mostly as an oligomerization inter-
face promoting the oncogenic potential of the 
fusion partner. Of note, NPM-RAR, NPM-
MLF1, or NPM-ALK fusions can be found 
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specifically in acute promyelocytic leukemia 
(APL, AML-M3), myelodysplastic syndrome 
(MDS), or non-Hodgkin’s lymphoma (NHL), 
respectively. Recently, a unique NPM1–RARG–
NPM1 chimeric fusion was discovered in an older 
male subject, who presented with morphological 
and immunophenotypical features of hypergranu-
lar APL, but lacked response to all-trans retinoic 
acid (ATRA) and arsenic trioxide [ATO (As2O3)] 
therapies. Further study demonstrated that the 
NPM1–RARG–NPM1 fusion leads to both 
impairment of the NPM1 protein and abnormal 
RARG, which contributes to impaired differenti-
ation and leukogenesis.71

To investigate the correlation of NPM1 mutation 
with clinical features and biological characteris-
tics, the NPM1 mutation was analyzed in bone 
marrow cells from 173 consecutive patients with 
de novo AML.12 The results revealed a remarkable 
difference in the incidence of NPM1 mutation 
between adult and pediatric patients. Children 
had a significantly lower incidence of NPM1 
mutations than adults. Of note, NPM1 mutation 
presented at diagnosis and disappeared at com-
plete remission (CR), and the same mutation 
reappeared at relapse, suggesting that the NPM1 
mutation is probably an early event in the devel-
opment of AML but may play little role in the 
progression of the disease. Another group found 
that cytoplasmic localization of the promyelocytic 
leukemia gene (PML) could be mediated by inter-
acting with mutant NPM1, which could stabilize 
PML through inhibiting proteasome-mediated 
degradation, and further enhance autophagic 
activity and cell survival in AML. Their results 
indicate conclusively that pharmacological inhibi-
tors of PML or autophagy are potential therapeu-
tics for NPM1-mutated AML therapy.72

NPM1 mutations in chronic myelomonocytic 
leukemia
Chronic myelomonocytic leukemia (CMML) is a 
clonal hematopoietic stem cell disorder, charac-
terized by overlapping features of both a myelo-
proliferative neoplasm and a myelodysplastic 
syndrome.18 It is a rare hematological malignancy 
that occurs in 0.3–0.52/100,000 patients.73 
NPM1 mutations in the context of CMML are 
extremely infrequent. Zuo and colleagues 
reported that, of 152 patients with CMML who 
were tested, 8 (5%) were positive for the NPM1 

mutation.74 Investigators from the Mayo Clinic 
identified 8 (2%) patients with NPM1 mutation 
in a total of 373 WHO-defined CMML patients.75 
Similar results were analyzed in primary marrow 
samples from 150 patients with various chronic 
myeloid disorders. Of those, NPM1 mutations 
were detected in three (2%) patients, all of whom 
had CMML and less than 1-year survival.76 
Notably, the previous findings show that patients 
with CMML and NPM1 mutations have a more 
aggressive clinical course and a higher probability 
of AML progression.

In comparison with those harboring the wt coun-
terpart, NPM1-mutant CMML patients were 
more likely to be anemic, have a ‘dysplastic 
CMML subtype’, have an increased frequency of 
DNMT3A and FLT3-ITD, and a lower inci-
dence of TET2 and ASXL1 mutations.75 To bet-
ter understand the molecular events following 
acquisition of the NPM1 mutation in CMML 
patient, Bolli and colleagues performed exome 
sequencing of bone marrow DNA at CMML 
diagnosis, AML diagnosis, and first CR. They 
found that DNMT3A and TET2 mutations were 
acquired first, followed by NPM1 and CEBPA 
mutations. All four mutations had high variant 
allele frequencies (VAF) in CMML, which is 
consistent with a clonal sweep after acquisition of 
the last mutation (CEBPA or NPM1) and prior to 
AML transformation. Mutations affecting NRAS 
and FLT3 were almost undetectable in CMML, 
but present at high VAF in AML samples.77

NPM1 mutations in MDS
MDS is a heterogeneous group of chronic mye-
loid neoplasms in which progression to secondary 
AML (sAML) is common.78–81 To elucidate dif-
ferential roles of mutations in MDS, the investi-
gators analyzed clonal dynamics using 
whole-exome or targeted sequencing based on 
699 patient samples. Of those, 122 samples were 
analyzed longitudinally. In comparison with high-
risk MDS, FLT3, PTPN11, WT1, IDH1, NPM1, 
IDH2, and NRAS mutations tended to be newly 
acquired, and were associated with faster sAML 
progression and a shorter OS time.78 Similar to 
the incidence in CMML, NPM1 mutations are 
very rare in MDS or MDS/myeloproliferative 
neoplasm (MPN). Only 31 (1.6%) of 1900 
patients with newly diagnosed MDS or MDS/
MPN had NPM1 mutations. The authors found 
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those NPM1-mutated patients had distinct clini-
cal features, were younger, and likely to be female; 
they also had lower hemoglobin, higher median 
bone marrow blast percentage at diagnosis, and a 
higher frequency of normal karyotype compared 
with wt NPM1 patients. In this regard, these data 
were in agreement with recent findings, which 
suggest that patients with NPM1-mutant MDS or 
MDS/MPN who are candidates for intensive ther-
apeutic strategies and allogeneic stem cell trans-
plantation may have improved outcomes and may 
benefit the most from chemotherapy, rather than 
MDS-based treatment approaches.82

NPM1 translocations in lymphomas
The NPM1 gene is translocated in CD30+ ana-
plastic large-cell lymphoma (ALCL) and in rare 
variants of AML.83 Due to the loss of one func-
tional allele of the NPM1 gene, cells from these 
tumors contain an oncogenic fusion protein 
(NPM1–ALK, NPM–RARα or NPM1–MLF1) 
and a reduced level of wt NPM1. Because of ALK 
gene translocations, about 60% of ALCL express 
the ALK protein. ALK+ T cell lymphoma is an 
aggressive neoplasm, and around 85% of ALK+ 
ALCL carry the t(2;5)(p23;q35) chromosome 
translocation,83,84 in which the ALK gene on 
chromosome 2 is fused with the NPM1 gene on 
chromosome 5.85 The chimeric gene encodes a 
fusion protein comprising the amino-terminal 
portion of NPM1 and the entire cytoplasmic 
region of ALK. Lymphomas with this condition 
characteristically express the ALK protein both in 
the cytoplasm and, ectopically, in the nucleus. 
The NPM1 oligomerization domain promotes 
NPM1–ALK heterodimer formation with wt 
NPM1, which, in turn, via shuttling, imports 
NPM1-ALK into the nucleoli. Meanwhile, due to 
the presence of the NPM1–ALK fusion protein, 
ALCL cells also show aberrant NPM1 cytoplas-
mic expression.86

More than 80% of ALK+ T cell lymphoma cases 
harbor the NPM1–ALK oncogene; NPM1–ALK 
functions as a constitutively activated cytoplasmic 
tyrosine kinase that is capable of translocating to 
the nucleus.87 The activation of NPM1-ALK 
induces activation of several downstream signal-
ing pathways, such as Janus kinases/signal trans-
ducers and activators of transcription (JAK/
STAT) and Ras/mitogen-activated protein kinase/
extracellular signal-regulated kinase (MAPK/

ERK), all of which play crucial roles in cell sur-
vival and proliferation in ALK+ NHLs.88–92 A 
previous study indicated that NPM acts through 
its heterodimerization domain to bind sequences 
located in the transactivation domain (TAD) of 
the Forkhead Box M1(FOXM1), an oncogenic 
transcription factor.93 A recent study showed that 
FOXM1 is highly expressed in ALK+ lymphoma 
and contributes to its oncogenesis. The authors 
found that the NPM1 portion in the NPM1-ALK 
fusion protein was crucial for binding to FOXM1, 
as the ALK portion alone cannot efficiently inter-
act with FOXM1. This study provided evidence 
of the important pathogenetic role of NPM1 in 
ALK+ lymphoma. Disruption of the binding 
between FOXM1 and NPM1 in heterodimers 
may serve as a highly specific anticancer thera-
peutic approach for NPM1-ALK+ lymphoma.94

NPM1 overexpression in solid tumors and 
hematologic malignancies
NPM1 overexpression has been found in numer-
ous human solid tumors, and has been extensively 
implicated as a biomarker of poor prognosis.36,95–98 
When NPM1 expression is significantly increased, 
it may function as an oncogene by promoting 
aberrant cell growth through enhancement of 
ribosome machinery.36 A previous study showed 
the upregulation of NPM1 transcripts in colorec-
tal cancer (CRC) cell lines, and increasing NPM1 
protein expression with progression from normal 
colon to adenoma to CRC in a tissue microar-
ray. Modulation of NPM1 expression occurred 
within CRC cells, affecting cellular viability, 
p53-dependent senescence, and cell-cycle pro-
gression, indicating that NPM1 may play a fun-
damental role in colorectal carcinogenesis.97 
The high expression of NPM1 has also been 
reported to link to gradient drug resistance in 
bladder cancer,99,100 lung cancer,15 hepatoma 
carcinoma,101 and breast carcinoma.102 The 
downregulation of NPM1 expression markedly 
reversed the effects of multidrug resistance 
(MDR) in human hepatoma cells via inhibition 
of P-glycoprotein expression.101

To date, relatively little is known about the role of 
NPM1 overexpression in hematologic malignan-
cies. A recent study identified mutated chronic 
lymphocytic leukemia cells that were character-
ized by a MYC-related overexpression of NPM1 
and ribosome-associated components.103 In our 
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previously reported work, we first validated that 
overexpression of NPM1 and NCL may be 
involved in drug resistance, and might be an 
important indicator for prognosis evaluation in 
AML and in acute lymphoblastic leukemia 
(ALL).104 We also reported that knockdown of 
NPM1 by RNA interference may reverse MDR in 
resistant leukemic cells.105 Further investigation 
by our group found that knockdown of NPM1 
reversed drug resistance by downregulating P-gp 
and the Akt/mTOR signal pathway, indicating 
that NPM1 may serve as a potential modulator 
for drug resistance.106 Our findings were in agree-
ment with a previous report in human hepatoma 
cells.101 Moreover, we recently found that high 
expression of NCL, another important nucleocy-
toplasmic multifunctional protein, promotes 
drug resistance in Burkitt’s lymphoma, which 
may be related to the stabilization of Bcl-2 mRNA 
and the decreased induction of apoptosis.107 
Currently, ongoing studies in our group are aimed 
at better understanding the interacting systems of 
NPM1 and NCL in hematologic malignancies. 
Meanwhile, we are screening and assessing new 
therapeutic strategies and agents that we expect 
to facilitate the targeting NPM1 and NCL and to 
improve the outcome of patients with hemato-
logic malignancies.

Mutated NPM1 as a biomarker for 
assessment of residual disease in AML
Mutated NPM1 is a reliable biomarker for assess-
ment of disease status in AML. A previous study 
in 173 patients of de novo AML demonstrated 
that NPM1 mutations occur in an age-dependent 
fashion. The NPM1 mutation disappeared with 
CR, but the same mutation reappeared at 
relapse.12 A study involving a large cohort of 
intensively treated AML patients further showed 
that the NPM1 mutation is an excellent marker 
for prediction of residual disease. The persistence 
of NPM1-mutated transcripts in blood after the 
second chemotherapy cycle was associated with a 
greater risk of relapse after 3 years of follow-up. 
NPM1 mutations were detected in 69 of 70 AML 
patients at the time of relapse. In this study, the 
authors addressed that the presence of MRD, as 
determined by quantification of NPM1-mutated 
transcripts, and found that MRD might provide 
valuable prognostic information independent of 
other risk factors.10 Moreover, another study 
recently found that mutated NPM1 is of 

particular importance for monitoring disease 
dynamics in AML patients. A good initial 
response is essential to reach lower NPM1 levels 
after treatment. A good initial mutated NPM1 
clearing cannot prevent relapse, but postpones it. 
However, this postponement positively correlates 
with OS. This study emphasized that the most 
informative time point for the determination of 
the minimal NPM1 measurement as a predictor 
for survival and relapse risk is 9 months after ther-
apy start.108 These findings might impact the 
design of further studies and guide novel MRD-
guided therapeutic strategies in AML.

Targeting NPM1 mutation therapy in AML
NPM1 acts as a hub protein and is involved in 
trafficking other proteins to the nucleolus. 
Consequently, it is essential for the formation and 
maintenance of a functional nucleolus. NPM1 
mutations act deterministically to promote 
nuclear export of the mutants, and aberrant cyto-
plasmic delocalization of NPM1 is thought to be 
critical for leukaemogenesis.6,26,50 However, the 
manner in which the NPM1 mutation disrupts 
cell control and induces leukemia remains 
unclear. Thus, the consequences of targeting 
NPM1, either wt or mutant, remain worth explor-
ing. To date, the potential approaches for target-
ing NPM1-mutated AML include the following22: 
interfering with the aberrant transport of the 
NPM1 mutant protein; interfering with wt NPM1 
functions; demethylating agents; immunotherapy 
with monoclonal antibodies; ATRA and arsenic 
trioxide. Promising molecules for the therapeutic 
targeting of mutant NPM1 in AML are described 
in the following and summarized in Table 1.

NPM1-mutated leukemia cells display increased 
transcription of stem cell-associated genes such as 
the clustered HOX genes. Aberrant HOX expres-
sion is found in almost all AML cells that harbor 
a mutated NPM1 gene, and FLT3 is concomi-
tantly mutated in about 60% of these cases.52,68,113 
Little is known about how mutant NPM1 cells 
maintain aberrant gene expression. A recent study 
demonstrated that the chromatin regulators 
MLL1 and DOT1L control HOX and FLT3 
expression in mutated NPM1 AML. These genes 
are therapeutically targetable via the pharmaceu-
tical inhibition of menin-MLL1 and DOT1L. 
Small-molecule inhibition of these two histone 
modifiers results in the differentiation of mutated 
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NPM1 AML cells in vitro and in vivo. This study 
indicated that both menin-MLL1 and DOT1L 
inhibitors, as single agents or in combination, 
represent novel therapeutic opportunities for 
NPM1-mutated AML.112

Imiquimod is a toll-like receptor 7 immunomodu-
lator. It has been reported that the imiquimod 
analog 1-(3-methoxyphenyl)-N-methylimidazo-
quinoxalin-4-amine (EAPB0503) has promising 
antitumor activity, which could selectively 
induce NPM1c+ proteasomal degradation in 
NPM1c+ AML cells and lead to their apoptosis. 
Nevertheless, EAPB0503 treatment restores wt 
NPM1 nucleolar localization in vitro and in ex vivo 
treated blasts, and it selectively reduces the leuke-
mia burden in NPM1c+ AML xenograft mice.110 
These findings reinforce the idea of targeting the 
NPM1c+ oncoprotein to eradicate leukemic cells 
using this promising drug.

NPM1 is translocated or mutated in various lym-
phomas and leukemias, forming fusion proteins or 
NPM1-mutant products.86,87 Several studies have 
shown that small molecule inhibitors may func-
tion as anticancer and antileukemic agents via dis-
rupting NPM1 dimer/oligomer formation, which 

can result in growth inhibition and apoptosis in 
cancer cells.111,114,115 Among those inhibitors, 
NSC348884 has been shown to be lethal for vari-
ous cancer cell-types with mutant NPM1.111,116,117 
For leukemia, NSC348884 induced apoptosis 
and sensitized cultured and primary AML cells 
with NPM1 mutation to ATRA, but did not 
impact those AML cells coexpressing FLT3-ITD 
or normal CD34+ progenitor cells expressing wt 
NPM1.111 Currently, these molecules have not 
been approved for AML patients with NPM1 
mutations. However, there is growing interest in 
developing novel molecules aimed at targeting 
NPM1 mutations, which might provide a more 
theoretical basis and scientific evidence for the 
anti-NPM1 agents in future preclinical in vivo 
studies.

ATRA or ATO are highly effective molecular tar-
geted therapies in APL with promyelocytic 
PMLRARα gene rearrangement.118 The NPM1 
mutation is frequent and represents a founder 
genetic lesion in AML. Interestingly, data from a 
previous study showed that elderly patients with 
NPM1-mutant AML appeared to benefit from 
ATRA treatment.119 Moreover, it was reported 
that AML cells carrying NPM1 mutations are 

Table 1. Promising molecules for therapeutic targeting of mutant NPM1 in AML.

Molecules Target cells Consequences in cellular processes Study

ATRA/ATO OCI-AML3 and IMS-M2 (NPM1 
mutated cell lines)

Proteasome-dependent degradation of NPM1c protein Martelli109

 AML patient primary cells with 
NPM1 mutation

Oxidative stress induction/cell apoptosis  

EAPB0503 OCI-AML3 Proteasome-mediated degradation of NPM1c protein Nabbouh110

 OCI-AML3 xenograft mice Restore wt-NPM1 nucleolar localization/growth arrest/
apoptosis

 

NSC348884 OCI-AML3 Interference with the oligomerization of NPM1 Balusu111

 AML patient primary cells with 
NPM1 mutation

Cell apoptosis/sensitize NPM1c+ AML cells to ATRA  

MI-2-2 OCI-AML3 Inhibition of menin-MLL1 and DOT1L Kuhn112

EPZ4777 AML patient primary cells with 
NPM1 mutation

Suppression of HOX and FLT3 expression  

MI-503 OCI-AML3 xenograft mice Cell differentiation/inhibition NPM1mut leukemia initiation  

AML, acute myeloid leukemia; ATO, arsenic trioxide; ATRA, all-trans retinoic acid; EAPB0503, 1-(3-methoxyphenyl)-N-methylimidazoquinoxalin-4-
amine; FLT3, fms-related tyrosine kinase 3; HOX, homeobox; NPM1, nucleophosmin; wt, wild type.
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more sensitive to ATO. The expression of NPM1-
mutant protein with an acquired C-terminal 
cysteine-288 may enhance the sensitivity of AML 
cells to oxidative stress induced by ATO.120 The 
mechanisms underlying this action were indepen-
dently reported by two studies. The NPM1-
mutant oncoprotein can be a target of ATO/
ATRA, which induces proteasome-dependent 
degradation of NPM1 leukemic protein and 
apoptosis in NPM1-mutated AML cell lines and 
the cells of primary patients. PML intracellular 
distribution is altered in NPM1-mutated AML 
cells, and reverted by ATO via oxidative stress 
induction.109 The combination of ATO and 
ATRA significantly reduced leukemic blasts in 
the bone marrow of 3 NPM1-mutant AML 
patients, and restored nucleolar localization of 
NPM1 and PML both in vitro and in vivo.121 
Collectively, these findings provide evidence that 
the ATO/ATRA strategy may represent a viable 
option in NPM1-mutant AML.

Other therapeutic strategies associated with 
NPM1 mutation in AML
The precise mechanism of action of the NPM1 
mutant in AML is not well known, and other con-
tributing events and therapeutic strategies still 
need to be investigated. Several studies have evi-
denced that NPM1-mutated AML cells strongly 
express CD33.122–124 However, in the same study, 
the authors also found no correlation between 
FLT3 gene mutations and CD33 expression in 
NPM1-mutated AML cells.123 These results 
establish a rational basis for the therapeutic use of 
the anti-CD33 antibody in NPM1-mutated AML 
cells. A previous study reported that Dactinomycin 
may induce nucleolar stress by influencing ribo-
some biogenesis through the inhibition of RNA 
polymerase I,125 which is active in Wilms’ tumor 
and other cancers. Similar therapeutic effects of 
targeting NPM1 mediated by Dactinomycin in 
AML cells were also presented by Falini and col-
leages.20 They hypothesized that the nucleolus of 
NPM1-mutated AML cells might be vulnerable 
to Dactinomycin, and trigger a nucleolar stress 
response. They observed that one patient with 
NPM1-mutated AML without FLT3 internal 
tandem duplication mutations achieved morpho-
logic and immunohistochemical CR after two 
cycles of Dactinomycin therapy.20 Moreover, 
Actinomycin D (actD), another chemotherapy 
drug used widely in various cancer types, has 

been found to induce cell death in all studied leu-
kemic cell lines via an increase in nucleolar stress 
leading to a redistribution of mutated NPM1 in 
the nucleoplasm.126

More recent work from the University of 
Nottingham showed that DNA damage caused 
by drugs may induce a switch in the aberrant 
cytoplasmic localization of NPM1c+ to a pre-
dominantly nucleolar localization in NPM1-
mutated AML cells. Their results showed that the 
exploitation of nucleolar NPM1-replete cells to 
treat nucleolar stress would be effective only in 
the absence of DNA damage.19 Going forward, 
immune responses may contribute to clinical out-
comes via lysis of residual leukemic cells through 
specific T cells after chemotherapy. NPM1 muta-
tions are one of the most frequent molecular 
alterations in AML. Algorithm-based CD4+ and 
CD8+ T-cell epitopes derived from mutated 
NPM1 were reported to feasibly elicit a coordina-
tive immune response against NPM1-mutated 
AML cells, suggesting that NPM1 mutations 
might constitute an ideal target structure for indi-
vidualized immunotherapeutic approaches.127 
Recently, an unusual case of CMML harboring 
an NPM1 mutation associated with extensive 
myeloid sarcomas was reported.128 The patient 
had rapid resolution of lymphadenopathy, and 
attained remission after being administered ida-
rubicin and cytarabine induction chemotherapy, 
in addition to a matched unrelated donor alloge-
neic bone marrow transplant. This study high-
lights that the NPM1 chemosensitivity noted in 
AML might be applicable to other hematological 
conditions. Thus, other potential multiple thera-
peutic interventions are certainly worthy of fur-
ther investigation.

Closing remarks
The answers to several questions regarding the 
role of NPM1 abnormality in the development of 
hematopoietic malignancies remain unclear. 
More studies are required for a better under-
standing of the underlying mechanisms associ-
ated with the development of drug resistance 
caused by NPM1 overexpression. Moreover, 
NPM1 gene alternation status is not a single 
parameter in predicting clinical significance in 
hematopoietic malignancies. Many studies are 
currently ongoing with the aim of elucidating how 
NPM1 abnormalities contribute to oncogenesis, 
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and to develop strategies to take advantage of spe-
cific characteristics for the improvement of ther-
apy. In this review, we provide a summary of 
current knowledge in this field. Importantly, pre-
sent investigations may eventually lead to the 
development of more specific antihematopoietic 
malignancy strategies in the future.
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