5963 measured reflections

 $R_{\rm int} = 0.102$

2303 independent reflections

1169 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Hydroxy-N'-[2-(6-methoxynaphthalen-2-yl)propanoyl]benzohydrazide

Shaaban Kamel Mohamed,^a Peter N. Horton,^b Mehmet Akkurt, c* Mustafa R. Albayati^a and Herman Potgeiter^d

^aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ^bSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, CDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and ^dSchool of Research, Enterprise & Innovation, Manchester Metropolitan University, Manchester M1 5GD, England

Correspondence e-mail: akkurt@erciyes.edu.tr

Received 18 March 2012; accepted 23 March 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.010 Å; R factor = 0.084; wR factor = 0.189; data-to-parameter ratio = 9.0.

In the title compound, $C_{21}H_{20}N_2O_4$, the naphthalene ring system makes a dihedral angle of $84.5 (3)^\circ$ with the benzene ring, and the -C(=O)-N(H)-N(H)-C(=O) torsion angle is 70.7 (7)°, so that the molecule is twisted. An S(6) ring motif is formed via an intramolecular $O-H \cdots O$ hydrogen bond. In the crystal, molecules are linked by N-H···O and C-H···O hydrogen bonds into supramolecular layers in the *ab* plane.

Related literature

For the pharmaceutical applications of naproxen [systematic name: (+)-6-methoxy- α -methyl-2-naphthalene acetic acid], see: Teplyakov et al. (1993); Bozdag et al. (2001). For the synthesis of potential biologically active compounds based on the structure of naproxen, see: Sharma et al. (2003); Kumar et al. (2010). For related structures, see: Yathirajan et al. (2007); Liang et al. (2008). For hydrogen-bond motifs, see: Etter et al. (1990).

Experimental

Crystal data

C21H20N2O4 $V = 1850 (4) \text{ Å}^3$ $M_r = 364.39$ Z = 4Orthorhombic, $P2_12_12_1$ Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^$ a = 4.851 (6) Å b = 10.407 (12) Å T = 100 Kc = 36.65 (4) Å $0.14 \times 0.05 \times 0.01 \ \mathrm{mm}$

Data collection

Rigaku Saturn724+ diffractometer Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2011) $T_{\min} = 0.987, T_{\max} = 0.999$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.084$	H atoms treated by a mixture of
$wR(F^2) = 0.189$	independent and constrained
S = 1.09	refinement
2303 reflections	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
257 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$
3 restraints	

Table 1		
Hvdrogen-bond geometr	v (Å,	°).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N1 - H1N \cdots O2^{i}$ $N2 - H2N \cdots O4^{ii}$	0.87(3) 0.86(5)	2.19 (3) 2.31 (5)	2.974 (8) 3.072 (8)	149 (5) 149 (5)
O4-H4···O3	0.82 (5)	1.83 (5)	2.618 (7)	161 (6)
$C12-H12\cdots O2^{i}$	0.98	2.36	3.274 (9)	155
$C21-H21\cdots O3^{iii}$	0.93	2.54	3.465 (9)	174

Symmetry codes: (i) x - 1, y, z; (ii) -x + 2, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The financial support of the Iraqi Government to carry out this study is gratefully acknowledged. We also thank Manchester Metropolitan University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5071).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Bozdag, S., Çalis, S., Kas, H. S., Ercan, M. T., Peksoy, I. & Hincal, A. A. (2001). J. Microencapsul. 18, 443-456.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Kumar, S., Tyagi, D. K. & Gupta, A. (2010). Asian J. Pharm. Clin. Res. 3, 208-211.
- Liang, Q.-F., Feng, H.-M. & Li, F.-Q. (2008). Acta Cryst. E64, o1008.
- Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan. Sharma, J., Singla, A. K. & Dhawan, S. (2003). Int. J. Pharm. 260, 217-227.

organic compounds

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.
Teplyakov, A. V., Lammers, A. A. & Dijkstra, B. W. (1993). J. Mol. Biol. 230, 681–683.

Yathirajan, H. S., Narayana, B., Sunil, K., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, 02565.

supplementary materials

Acta Cryst. (2012). E68, o1251-o1252 [doi:10.1107/S1600536812012731]

2-Hydroxy-N'-[2-(6-methoxynaphthalen-2-yl)propanoyl]benzohydrazide

Shaaban Kamel Mohamed, Peter N. Horton, Mehmet Akkurt, Mustafa R. Albayati and Herman Potgeiter

Comment

A commonly prescribed non-steroidal anti-inflammatory drug (NSAID) is naproxen [(+)-6-methoxy-α-methyl-2naphthalene acetic acid] (Teplyakov *et al.*, 1993; Bozdag *et al.*, 2001). It is used in the treatment of painful and inflammatory conditions like rheumatoid arthritis, spondilytis, and osteoarthritis (Sharma *et al.*, 2003; Kumar *et al.*, 2010). As part of our study on the functionalization of naproxen moiety, we report the structure of the title compound, (I), with the aim of synthesising potential biologically active compounds based on the core structure. of naproxen

In the title compound (I), (Fig. 1), the N1—N2 bond length of 1.427 (8) Å, indicates a single bond. All bond lengths in (I) are within normal ranges (Yathirajan *et al.*, 2007; Liang *et al.*, 2008). The naphthalene ring (C1—C10) is planar, with a maximum deviation of -0.007 (7) Å for the C4 atom. This ring makes a dihedral angle of 84.5 (3)° with the hydroxybenzene ring. The —C14(=O)—N1(H)—N2(H)—C15(=O)— torsion angle is 70.7 (7) °.

An intramolecular O—H···O hydrogen bond which generates an S(6) ring motif (Etter *et al.*, 1990) is observed in the molecular structure (Table 1). The crystal structure is stabilized by intermolecular N—H···O and C—H···O hydrogen bonds (Table 1, Fig. 2) which connect molecules into supramolecular layers in the *ab* plane.

Experimental

A mixture of 0.01 mol of 2-(6-methoxy-2-naphthyl)propanoyl chloride and 0.01 mol 2-hydroxybenzohydrazide in tetrahydrofuran was heated at 339 K for three hours. The reaction progress was monitored by TLC until completed. The mixture was then poured on cold water to afford the solid product which was filtered off, dried and recrystallized from ethanol in 72% yield with *M*.pt: at 482–484 K. Suitable crystals for X-ray diffraction were obtained by slow evaporation of a diluted ethanolic solution of the product over two days.

Refinement

The hydroxyl- and amide-H atoms were located in difference density maps, and were refined with the (O, N)—H distance restraints of 0.82 (2) Å and 0.86 (2) Å, respectively, and with free U_{iso} . The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93, 0.96 and 0.98 Å for aromatic-, methyl- and methine-H, respectively, with $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$.

The crystal used was very small $(0.01 \times 0.05 \times 0.14)$ but was the best available after repeated recrystallizations. As such a reasonable number of the higher angle diffractions were indistinguishable from the background noise. The crystal was exposed to the X-rays for as long as required until reached a level where increasing the exposure did not result in the observation of further high angle data. From the reflections collected the structure could be readily determined, such that hydrogen atom positions could be seen in the difference map, even though most were later fixed using standard riding positions (the OH and NH hydrogen atoms were allowed some freedom of position whilst restraining their distances to

0.82 Å and 0.86 Å, respectively). In the absence of significant anomalous scattering, 1052 Friedel pairs were averaged. One poorly fitted reflection (0 1 1) was omitted from the refinement.

Computing details

Data collection: *CrystalClear-SM Expert* (Rigaku, 2011); cell refinement: *CrystalClear-SM Expert* (Rigaku, 2011); data reduction: *CrystalClear-SM Expert* (Rigaku, 2011); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of (I), showing the labelling of the non-H atoms and displacement ellipsoids drawn at the 50% probability level.

Figure 2

View of the packing and hydrogen bonding (dashed lines) of (I) down the *a* axis, in the unit-cell. H atoms not involved in hydrogen bonds have been omitted for clarity.

2-Hydroxy-N'-[2-(6-methoxynaphthalen-2-yl)propanoyl]benzohydrazide

Crystal data

C₂₁H₂₀N₂O₄ $M_r = 364.39$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 4.851 (6) Å b = 10.407 (12) Å c = 36.65 (4) Å V = 1850 (4) Å³ Z = 4

Data collection

Rigaku Saturn724+ diffractometer Radiation source: Rotating Anode Confocal monochromator Detector resolution: 28.5714 pixels mm⁻¹ profile data from ω -scans Absorption correction: multi-scan (*CrystalClear-SM Expert*; Rigaku, 2011) $T_{\min} = 0.987, T_{\max} = 0.999$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.084$ $wR(F^2) = 0.189$ S = 1.092303 reflections 257 parameters 3 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 768 $D_x = 1.308 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4928 reflections $\theta = 2.0-30.1^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 100 KSheet, colourless $0.14 \times 0.05 \times 0.01 \text{ mm}$

5963 measured reflections 2303 independent reflections 1169 reflections with $I > 2\sigma(I)$ $R_{int} = 0.102$ $\theta_{max} = 27.3^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = -6 \rightarrow 4$ $k = -13 \rightarrow 12$ $l = -47 \rightarrow 23$

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0587P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.30$ e Å⁻³ $\Delta\rho_{min} = -0.24$ e Å⁻³ Extinction correction: *SHELXL97* (Sheldrick, 2008), FC*=KFC[1+0.001XFC²\Lambda³/SIN(2\Theta)]^{-1/4} Extinction coefficient: 0.008 (2)

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.5719 (10)	-0.0932 (4)	0.02322 (12)	0.0513 (17)	
02	0.8625 (10)	0.5761 (4)	0.16863 (13)	0.0427 (17)	
O3	0.5850 (8)	0.7217 (4)	0.23922 (11)	0.0353 (16)	
O4	0.9808 (11)	0.8058 (4)	0.28151 (13)	0.0387 (16)	
N1	0.4392 (11)	0.5286 (5)	0.19267 (15)	0.0303 (17)	
N2	0.5549 (11)	0.5038 (5)	0.22776 (15)	0.0337 (17)	
C1	0.6354 (15)	0.2465 (7)	0.05874 (18)	0.044 (3)	
C2	0.7799 (17)	0.3603 (8)	0.0541 (2)	0.063 (3)	
C3	0.7265 (17)	0.4677 (7)	0.07585 (19)	0.055 (3)	
C4	0.5185 (14)	0.4648 (6)	0.10359 (18)	0.038 (3)	
C5	0.3727 (14)	0.3541 (6)	0.10912 (18)	0.043 (3)	
C6	0.4279 (15)	0.2393 (6)	0.08636 (17)	0.040 (3)	
C7	0.2788 (17)	0.1242 (7)	0.09106 (19)	0.056 (3)	
C8	0.3346 (17)	0.0178 (7)	0.06947 (19)	0.055 (3)	
C9	0.5405 (17)	0.0239 (7)	0.04166 (19)	0.048 (3)	
C10	0.6932 (17)	0.1321 (7)	0.03550 (19)	0.056 (3)	
C11	0.7870 (15)	-0.1005 (7)	-0.00403 (19)	0.058 (3)	
C12	0.4624 (13)	0.5834 (6)	0.12777 (16)	0.034 (2)	
C13	0.5530 (16)	0.7139 (6)	0.11123 (16)	0.046 (3)	
C14	0.6096 (15)	0.5647 (6)	0.16510 (18)	0.032 (2)	
C15	0.6505 (12)	0.6079 (6)	0.24718 (17)	0.032 (2)	
C16	0.8385 (13)	0.5788 (6)	0.27894 (16)	0.0300 (19)	
C17	0.9991 (13)	0.6797 (6)	0.29347 (17)	0.032 (2)	
C18	1.1903 (13)	0.6545 (6)	0.32135 (17)	0.036 (2)	
C19	1.2169 (14)	0.5287 (6)	0.33541 (16)	0.035 (2)	
C20	1.0521 (13)	0.4295 (6)	0.32161 (17)	0.037 (2)	
C21	0.8645 (14)	0.4527 (6)	0.29390 (16)	0.033 (2)	
H1N	0.260 (5)	0.521 (6)	0.1924 (14)	0.027 (18)*	
H2	0.91480	0.36530	0.03610	0.0750*	
H2N	0.636 (12)	0.431 (4)	0.2295 (18)	0.06 (3)*	
H3	0.82790	0.54250	0.07230	0.0660*	
H4	0.851 (9)	0.797 (6)	0.2673 (14)	0.05 (3)*	
Н5	0.23850	0.35090	0.12720	0.0520*	
H7	0.14190	0.11960	0.10880	0.0670*	
H8	0.23720	-0.05810	0.07310	0.0660*	
H10	0.82820	0.13420	0.01750	0.0660*	
H11A	0.78710	-0.18460	-0.01480	0.0870*	

supplementary materials

	0.060.00	0.00100	0.00720		
HIIB	0.96250	-0.08480	0.00720	0.0870*	
H11C	0.75440	-0.03720	-0.02260	0.0870*	
H12	0.26350	0.58760	0.13230	0.0410*	
H13A	0.50790	0.78200	0.12790	0.0700*	
H13B	0.45870	0.72750	0.08850	0.0700*	
H13C	0.74830	0.71300	0.10710	0.0700*	
H18	1.29920	0.72050	0.33050	0.0430*	
H19	1.34370	0.51170	0.35380	0.0420*	
H20	1.06880	0.34700	0.33120	0.0440*	
H21	0.75540	0.38620	0.28500	0.0390*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.062 (3)	0.038 (3)	0.054 (3)	0.003 (3)	-0.002 (3)	-0.010 (2)
O2	0.022 (3)	0.046 (3)	0.060 (3)	0.000 (2)	-0.006 (2)	0.003 (3)
03	0.034 (3)	0.022 (2)	0.050 (3)	0.006 (2)	-0.002(2)	0.004 (2)
04	0.043 (3)	0.021 (2)	0.052 (3)	-0.006(2)	-0.008 (3)	-0.003 (2)
N1	0.016 (3)	0.029 (3)	0.046 (3)	0.003 (3)	-0.003 (3)	0.001 (3)
N2	0.032 (3)	0.026 (3)	0.043 (3)	-0.004 (3)	-0.011 (3)	-0.001 (3)
C1	0.034 (4)	0.048 (5)	0.049 (4)	-0.002 (4)	-0.010 (4)	0.004 (4)
C2	0.050 (5)	0.064 (6)	0.074 (6)	0.001 (5)	0.011 (5)	0.002 (5)
C3	0.054 (5)	0.052 (5)	0.058 (5)	0.005 (5)	0.009 (5)	-0.016 (4)
C4	0.037 (5)	0.027 (4)	0.049 (4)	0.004 (4)	-0.004 (4)	-0.004 (3)
C5	0.044 (5)	0.035 (4)	0.051 (4)	0.011 (4)	-0.007 (4)	-0.008 (3)
C6	0.043 (5)	0.041 (4)	0.037 (4)	-0.005 (4)	-0.015 (3)	0.009 (3)
C7	0.063 (6)	0.045 (5)	0.060 (5)	-0.002 (5)	-0.006 (5)	-0.003 (4)
C8	0.076 (6)	0.046 (5)	0.044 (4)	0.021 (5)	-0.021 (5)	-0.009 (4)
C9	0.057 (6)	0.039 (4)	0.049 (4)	0.012 (5)	-0.016 (4)	-0.013 (4)
C10	0.061 (5)	0.050 (5)	0.056 (5)	0.009 (5)	-0.015 (4)	-0.019 (4)
C11	0.058 (5)	0.051 (5)	0.065 (5)	-0.002 (5)	-0.005 (5)	-0.008 (4)
C12	0.024 (4)	0.034 (4)	0.045 (4)	0.002 (3)	-0.004 (3)	-0.005 (3)
C13	0.064 (5)	0.038 (4)	0.037 (4)	-0.001 (4)	-0.008 (4)	0.005 (3)
C14	0.038 (5)	0.015 (3)	0.044 (4)	0.001 (3)	-0.001 (4)	0.000 (3)
C15	0.024 (4)	0.033 (4)	0.038 (4)	0.003 (4)	0.006 (3)	0.002 (3)
C16	0.031 (4)	0.021 (3)	0.038 (3)	-0.002 (3)	0.006 (3)	-0.011 (3)
C17	0.034 (4)	0.021 (3)	0.041 (4)	0.007 (3)	0.014 (3)	0.001 (3)
C18	0.033 (4)	0.024 (4)	0.051 (4)	-0.004 (3)	-0.010 (4)	-0.005 (3)
C19	0.031 (4)	0.038 (4)	0.036 (4)	0.002 (4)	-0.001 (3)	0.002 (3)
C20	0.041 (4)	0.027 (4)	0.042 (4)	0.001 (4)	-0.004 (4)	-0.003 (3)
C21	0.033 (4)	0.024 (4)	0.041 (4)	0.001 (3)	0.003 (3)	0.000 (3)

Geometric parameters (Å, °)

01—C9	1.402 (9)	C15—C16	1.509 (9)
01—C11	1.446 (9)	C16—C21	1.428 (9)
O2—C14	1.239 (9)	C16—C17	1.412 (9)
O3—C15	1.260 (8)	C17—C18	1.405 (9)
O4—C17	1.386 (8)	C18—C19	1.413 (9)
O4—H4	0.82 (5)	C19—C20	1.400 (9)

N1—N2	1.427 (8)	C20—C21	1.385 (9)
N1—C14	1.359 (9)	С2—Н2	0.9300
N2—C15	1.377 (8)	С3—Н3	0.9300
N1—H1N	0.87 (3)	С5—Н5	0.9300
N2—H2N	0.86 (5)	С7—Н7	0.9300
C1—C10	1.491 (10)	С8—Н8	0.9300
C1—C2	1.387 (11)	C10—H10	0.9300
C1—C6	1.430 (10)	C11—H11A	0.9600
C2—C3	1.397 (11)	C11—H11B	0.9600
C3—C4	1.433 (10)	C11—H11C	0.9600
C4—C5	1.367 (9)	C12—H12	0.9800
C4—C12	1.544 (9)	C13—H13A	0.9600
C5—C6	1.482 (9)	C13—H13B	0.9600
C6—C7	1.410 (10)	C13—H13C	0.9600
С7—С8	1.388 (10)	C18—H18	0.9300
C8—C9	1.429 (11)	C19—H19	0.9300
C9—C10	1.367 (11)	C20—H20	0.9300
C12—C13	1.551 (9)	C21—H21	0.9300
C12—C14	1.556 (9)		
C9—01—C11	117.2 (5)	O4—C17—C16	123.3 (6)
C17—O4—H4	98 (4)	C17—C18—C19	119.9 (6)
N2—N1—C14	118.8 (5)	C18—C19—C20	120.0 (6)
N1—N2—C15	117.1 (5)	C19—C20—C21	120.8 (6)
C14—N1—H1N	129 (4)	C16—C21—C20	120.0 (6)
N2—N1—H1N	113 (3)	C1—C2—H2	119.00
N1—N2—H2N	114 (4)	С3—С2—Н2	119.00
C15—N2—H2N	120 (4)	С2—С3—Н3	119.00
C2—C1—C6	119.2 (6)	С4—С3—Н3	119.00
C2—C1—C10	121.1 (7)	С4—С5—Н5	120.00
C6—C1—C10	119.7 (6)	С6—С5—Н5	120.00
C1—C2—C3	121.3 (7)	С6—С7—Н7	120.00
C2—C3—C4	121.2 (7)	С8—С7—Н7	120.00
C3—C4—C5	119.2 (6)	С7—С8—Н8	120.00
C3—C4—C12	121.0 (6)	С9—С8—Н8	120.00
C5—C4—C12	119.8 (6)	C1-C10-H10	121.00
C4—C5—C6	120.2 (6)	С9—С10—Н10	121.00
C5—C6—C7	121.6 (6)	O1—C11—H11A	109.00
C1—C6—C7	119.5 (6)	O1-C11-H11B	110.00
C1—C6—C5	118.9 (6)	O1-C11-H11C	110.00
C6—C7—C8	120.6 (7)	H11A—C11—H11B	109.00
C7—C8—C9	120.5 (7)	H11A—C11—H11C	110.00
O1—C9—C8	112.4 (6)	H11B—C11—H11C	109.00
C8—C9—C10	122.2 (7)	C4—C12—H12	108.00
O1—C9—C10	125.3 (7)	C13—C12—H12	108.00
C1—C10—C9	117.5 (7)	C14—C12—H12	108.00
C13—C12—C14	108.9 (5)	C12—C13—H13A	109.00
C4—C12—C13	115.2 (5)	C12—C13—H13B	109.00
C4—C12—C14	108.9 (5)	C12—C13—H13C	109.00

O2—C14—N1	123.5 (6)	H13A—C13—H13B	110.00
O2—C14—C12	122.3 (6)	H13A—C13—H13C	109.00
N1-C14-C12	114.2 (6)	H13B—C13—H13C	110.00
O3—C15—N2	122.3 (5)	C17—C18—H18	120.00
N2-C15-C16	116.4 (5)	C19—C18—H18	120.00
O3—C15—C16	121.3 (5)	C18—C19—H19	120.00
C15—C16—C21	122.3 (5)	С20—С19—Н19	120.00
C17—C16—C21	119.3 (6)	С19—С20—Н20	120.00
C15—C16—C17	118.4 (5)	C21—C20—H20	120.00
O4—C17—C18	116.7 (5)	C16—C21—H21	120.00
C16—C17—C18	120.0 (6)	C20—C21—H21	120.00
C11—O1—C9—C8	-176.3 (6)	C5—C6—C7—C8	-179.9 (7)
C11—O1—C9—C10	1.3 (10)	C1—C6—C7—C8	0.9 (11)
N2-N1-C14-O2	0.8 (9)	C6—C7—C8—C9	-1.2 (11)
C14—N1—N2—C15	70.7 (7)	C7—C8—C9—O1	178.8 (7)
N2-N1-C14-C12	177.5 (5)	C7—C8—C9—C10	1.2 (12)
N1-N2-C15-C16	-164.0 (5)	O1—C9—C10—C1	-178.1 (6)
N1—N2—C15—O3	16.3 (8)	C8—C9—C10—C1	-0.8 (11)
C10-C1-C6-C7	-0.5 (10)	C4—C12—C14—N1	-102.1 (6)
C6—C1—C2—C3	0.0 (11)	C13—C12—C14—O2	-51.7 (8)
C2-C1-C6-C5	0.3 (10)	C13-C12-C14-N1	131.6 (6)
C2-C1-C10-C9	-179.6 (7)	C4—C12—C14—O2	74.7 (7)
C6-C1-C10-C9	0.5 (10)	O3—C15—C16—C17	-17.0 (9)
C10-C1-C2-C3	-179.9 (7)	O3-C15-C16-C21	164.9 (6)
C2-C1-C6-C7	179.6 (7)	N2-C15-C16-C17	163.3 (6)
C10-C1-C6-C5	-179.8 (6)	N2-C15-C16-C21	-14.9 (9)
C1—C2—C3—C4	-0.6 (12)	C15—C16—C17—O4	4.0 (9)
C2-C3-C4-C12	179.4 (7)	C15—C16—C17—C18	-175.6 (6)
C2—C3—C4—C5	0.9 (11)	C21—C16—C17—O4	-177.8 (6)
C5-C4-C12-C14	78.8 (7)	C21—C16—C17—C18	2.6 (9)
C3—C4—C12—C14	-99.7 (7)	C15—C16—C21—C20	176.1 (6)
C12—C4—C5—C6	-179.2 (6)	C17—C16—C21—C20	-2.0 (9)
C3—C4—C12—C13	22.9 (9)	O4—C17—C18—C19	178.8 (6)
C5—C4—C12—C13	-158.6 (6)	C16—C17—C18—C19	-1.5 (9)
C3—C4—C5—C6	-0.7 (10)	C17—C18—C19—C20	-0.2 (9)
C4—C5—C6—C7	-179.2 (7)	C18—C19—C20—C21	0.8 (9)
C4—C5—C6—C1	0.1 (10)	C19—C20—C21—C16	0.3 (9)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1 <i>N</i> ····O2 ⁱ	0.87 (3)	2.19 (3)	2.974 (8)	149 (5)
N2—H2N····O4 ⁱⁱ	0.86 (5)	2.31 (5)	3.072 (8)	149 (5)
O4—H4…O3	0.82 (5)	1.83 (5)	2.618 (7)	161 (6)
C12—H12…O2 ⁱ	0.98	2.36	3.274 (9)	155
C21—H21···O3 ⁱⁱⁱ	0.93	2.54	3.465 (9)	174

Symmetry codes: (i) x-1, y, z; (ii) -x+2, y-1/2, -z+1/2; (iii) -x+1, y-1/2, -z+1/2.