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Dogs with spontaneous high-grade gliomas increasingly are being proposed as

useful large animal pre-clinical models for the human disease. Hypoxia is a critical

microenvironmental condition that is common in both canine and human high-grade

gliomas and drives increased angiogenesis, chemo- and radioresistance, and acquisition

of a stem-like phenotype. Some of this effect is mediated by the hypoxia-induced

expression of microRNAs, small (∼22 nucleotides long), non-coding RNAs that can

modulate gene expression through interference with mRNA translation. Using an in

vitro model with three canine high-grade glioma cell lines (J3T, SDT3G, and G06A)

exposed to 72 h of 1.5% oxygen vs. standard 20% oxygen, we examined the global

“hypoxamiR” profile using small RNA-Seq and performed pathway analysis for targeted

genes using both Panther and NetworkAnalyst. Important pathways include many

that are well-established as being important in glioma biology, general cancer biology,

hypoxia, angiogenesis, immunology, and stem-ness, among others. This work provides

the first examination of the effect of hypoxia on miRNA expression in the context of canine

glioma, and highlights important similarities with the human disease.
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INTRODUCTION

Glioblastomas are malignant primary brain tumors that comprise∼1/5 of all primary brain tumors
in adult humans and are associated with a rapid clinical decline and short survival time after
diagnosis, with or without treatment (1). Canine patients also suffer from malignant gliomas, with
tumors that are largely similar in histopathological appearance, clinical progression, and some
key molecular features (2–5). Dogs are increasingly of interest in comparative glioma research as
potential animal models, owing to the fact that gliomas develop in these patients in the context
of a large, complex brain, an intact immune system, increased genomic similarity to humans as
compared to rodent models, and similar environmental exposures (6–11). Because the pathology
classification of canine gliomas has recently undergone a revision as part of the efforts of the
Comparative Brain Tumor Consortium in the Comparative Oncology Program of the National
Institute of Health’s National Cancer Institute (6, 12), in discussions here, the canine tumors
will be referred to by the broader appellation “high-grade gliomas,” while the human tumors
will retain their more specific designations when available and appropriate. Like many solid
tumors, gliomas in vivo exhibit considerable phenotypic heterogeneity related to both acquired
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mutation-induced genetic heterogeneity and methylation
patterns, as well as regional phenotypic differences secondary
to microenvironmental influences such as oxygen level, pH,
and extracellular matrix stiffness (13–17). The role of the
microenvironment, especially hypoxia, is of significant interest
because of the profound impact that it can have on tumor
progression, the success of targeted therapeutic modalities,
and the expression level of biomarkers. Hypoxia secondary
to ineffective tumor vascularization and tissue infarction is
common in both human and canine high-grade gliomas, and is
an extremely important driver of tumor growth, invasiveness,
chemo- and radioresistance, and acquisition of a stem-like
phenotype (18–22).

When cells are exposed to hypoxic stress, they temporarily
arrest in the cell cycle, decrease their energy consumption,
secrete survival factors, and increase expression of proangiogenic
genes (23). Transcriptional, translational, and post-translational
mechanisms contribute to these responses, and the primary
modulators of gene regulation in response to hypoxia are the
hypoxia-inducible factors (HIFs). The HIFs are members of
the basic helix-loop-helix/Per-Arnt-Sim (bHLH/PAS) family of
transcription factors that function as heterodimers composed
of an oxygen-labile α subunit and a constitutively-expressed β

subunit. Mammalian species possess three α isoforms: HIF1α,
HIF2α, and HIF3α. HIF1α and, to a lesser extent, HIF2α,
are the best characterized and most structurally similar, while
HIF3α’s function is less clear as it exists as multiple splice
variants, some of which exert inhibitory transcriptional control
over the other isoforms (24). In normoxic conditions, HIF
proteins have a short half-life of <5min (25, 26), being targeted
for ubiquitination and proteasomal degradation by the von
Hippel-Lindau tumor suppressor protein after hydroxylation of
specific proline residues within an oxygen-dependent domain
by HIFα-specific prolyl hydroxylases (PHDs) (27–29). Under
hypoxic conditions, oxygen is unavailable to PHDs as a co-
substrate, and HIFα subunits are stabilized and subsequently
translocate to the nucleus where they form heterodimers with
the constitutively expressed β subunits. These heterodimers
then bind to hypoxia-response elements (HREs) of the genome
containing a core RCGTG sequence, as well as to HIF ancillary
sequences composed of imperfect tandem repeats that recruit
transcription factor complexes other than HIF as well (30). More
than 70 genes have been identified as bona fide direct HIF
targets containing an HRE, and more than 200 genes have been
identified using microarray as being affected by hypoxia and
therefore direct or indirect targets of HIFs (31).

MicroRNAs (miRNAs, miRs) are a class of small (∼22
nucleotides long), non-coding RNAs that can modulate gene
expression through interference with mRNA translation (32).
They are key factors in the regulation of gene expression in
both normal and neoplastic tissue, and they are being actively
explored as prognostic indicators, biomarkers, and diagnostic
and therapeutic targets (33–35). ManymiRs are highly conserved
across species, especially within the so-called “seed” region
that serves as the main determinant of target specificity (36).
Hypoxia is a potent regulator of miRNA expression (reviewed
in (37, 38)), and miRNAs in turn are potent regulators of

many aspects of glioblastoma behavior (39–41). The hypoxic
miRNA signatures (designated by the authors as “hypoxamiRs”)
of the human glioblastoma cell line U87 in experimental
hypoxia, in conjunction with a limited number of patient-
derived tumors, were profiled by Agrawal et al. using small RNA-
Seq, with identification of several hypoxamiRs that promote
hypoxic survival and chemoresistance (42). One of the most
interesting identified miRNAs in this study was miR-210-3p
(100% sequence similarity with canine miRNA-210), which
targets HIF3α, the previouslymentioned negative regulator of the
important oxygen-labile HIFα subunits 1 and 2. To date there has
been no published work examining the miRNA profile of canine
high-grade gliomas in response to hypoxia.

In the present study, we evaluated the effect of hypoxia on
the miRNA expression profile of the canine high-grade glioma
cell lines J3T, SDT3G, and G06A using small RNA-Seq. The
J3T line was derived from a tumor originally classified as an
anaplastic astrocytoma, in a 10-year-old male Boston Terrier
(43). The SDT3G and G06A lines were derived from tumors
originally classified as glioblastomas, in a 12-year-old male
Bulldog (SDT3G) and a 2-year-old female ovariohysterectomized
Australian Shepherd (G06A) (44). In a study examining
hierarchical clustering of specimens based on chromosomal
aberrations, the J3T and G06A cells clustered most closely with
other tumors classified morphologically as glioblastoma, while
the SDT3G cells clustered most closely with tumors classified
morphologically as anaplastic oligodendroglioma (high grade
oligodendroglioma) and an oligoastrocytoma (undefined glioma)
(3). None of these cell lines is commercially available, and were
generously offered by the original investigators, Drs. Michael
Berens (J3T) and Dr. Peter Dickinson (SDT3G, G06A).

MATERIALS AND METHODS

Cell Lines
All canine glioma cell lines were cultured in standard two-
dimensional culture in media consisting of Dulbecco’s Modified
Eagle Medium with high glucose and glutamine, supplemented
with 10% heat-inactivated fetal calf serum and 100 units/mL
of penicillin, 100µg/mL of streptomycin, and 0.25µg/mL of
amphotericin B. Following transfer to our laboratory from
the laboratory of the original investigators, cells were initially
expanded and aliquots of 1 x 106 cells were frozen at −180◦C
to create a stock of early-passage cells. Routine testing for
mycoplasma using various commercially available kits on initial
and subsequent random aliquots of cells was negative, and cells
were confirmed to be purely of canine origin using previously
published multiplex PCR primers (45). Cells were used in assays
within ten passages of this initial passage. “Normoxic” cells were
incubated under standard conditions of 37◦C, 20% oxygen, 5%
CO2, and 100% humidity. “Hypoxic” cells were incubated in
conditions described below.

Hypoxic Conditions
Hypoxic conditions were produced using a proprietary
commercial hypoxia chamber with dual-gas controller (C-
chamber with Pro-Ox gas controller, BioSpherix Ltd., Parish,
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NY, USA). Briefly, this system consists of a self-contained
fully adjustable and continuously monitored and regulated
chamber that sits within a standard CO2 incubator. “Hypoxic”
conditions in these experiments consisted of an atmosphere
that was 1.5% oxygen, 5% CO2, and 100% humidity, while
“normoxic” conditions consisted of 20% oxygen, 5% CO2, and
100% humidity.

RNA Extraction
All canine high-grade glioma cell lines were seeded at previously
optimized density in three wells of a tissue culture-treated
rigid six-well polystyrene plate and allowed to attach and rest
for approximately 12–18 h prior to having media refreshed
and being incubated in experimental oxygen concentrations
for 72 h. Each experiment was performed three separate times,
with samples in technical triplicate for each condition in each
experiment. RNA from each of the replicates was extracted using
a commercial column-based kit (Qiagen miRNANeasy with on-
column RNase-free DNase treatment) and stored at −80◦C until
shipment on dry ice to HudsonAlpha Institute for Biotechnology
Genomic Services Laboratory (HAIB-GSL). At HAIB-GSL, RNA
was quality assurance tested using an Agilent Bioanalyzer to
generate an RNA integrity number (RIN). Samples that passed all
minimum quality testing benchmarks as set by HAIB-GSL were
put into the sequencing pipeline, with technical replicates pooled
prior to entering the sequencing pipeline (Figure 1).

Sequencing
Total RNA from each sample was taken into a small RNA library
preparation protocol using a NEBNext Small RNA Library Prep
Set for Illumina (New England BioLabs Inc., Ipswich, MA, USA)
according to the manufacturer’s protocol. Briefly, 3‘ adapters
were ligated to total input RNA followed by hybridization
of multiplex SR RT primers and ligation of multiplex 5‘
SR adapters. Reverse transcription (RT) was performed using
ProtoScript II RT for 1 h at 50◦C. Immediately after the RT
reaction, PCR amplification was performed for 15 cycles using
LongAmp Taq 2X master mix. Illumina indexed primers were
added to uniquely barcode each sample. Post-PCR material was
purified using a QIAquick PCR purification kit (Qiagen Inc.,
Valencia, CA, USA). Post-PCR yield and concentration of the
prepared libraries were assessed using a Qubit 2.0 Fluorometer
(Invitrogen, Carlsbad, California, USA) and DNA 1000 chip
on an Agilent 2100 Bioanalyzer (Applied Biosystems, Carlsbad,
CA, USA), respectively. Size selection of small RNA was done
using a 3% dye free agarose gel cassette on a Pippin prep
instrument (Sage Science Inc., Beverly, MA, USA). Post-size
selection yield and concentration of the libraries were assessed
using Qubit 2.0 Fluorometer and DNA High sensitivity chip on
Agilent 2100 Bioanalyzer, respectively. Accurate quantification
for sequencing applications was performed using the qPCR-
based KAPA Biosystems Library Quantification kit (Kapa
Biosystems, Inc., Woburn, MA, USA). Each library was diluted
to a final concentration of 1.25 nM and pooled in equimolar
ratios prior to clustering. Single End (SE) sequencing (50 bp)
was performed to generate at least 15 million reads per sample

on an Illumina HiSeq2500 sequencer (Illumina, Inc., San Diego,
CA, USA).

Post-processing of the sequencing reads from small RNA-
Seq experiments from each sample was performed as per the
HAIB-GSL unique in-house pipeline. Briefly, quality control
checks on raw sequence data from each sample was performed
using FastQC (Babraham Bioinformatics, London, UK). Raw
reads were imported on a commercial data analysis platform
AvadisNGS (Strand Scientifics, CA, USA). Adapter trimming
was done to remove ligated adapter from 3’ ends of the
sequenced reads with only one mismatch allowed, poorly
aligned 3’ ends were also trimmed. Sequences shorter than
15 nucleotides length were excluded from further analysis.
Trimmed Reads with low qualities (base quality score <30,
alignment score <95, mapping quality <40) were also removed.
Filtered reads were then used to extract and count the small
RNA which was annotated with miRNAs from the miRNA
database miRDB (46). The quantification operation carries
out measurement at both the gene level and at the active
region level. Active region quantification considers only reads
whose 5’ end matches the 5’ end of the mature miRNA
annotation. Samples were then grouped as identifiers and
the differential expression of each miRNA was calculated on
the basis of their fold change observed between different
groups (hypoxia vs. normoxia), with a 1.5-fold threshold.
Canine miRNA sequences were evaluated for homology with
specific human miRNAs (Supplemental Table 1), then those
homologous miRNA sequences were input into miRDB (46,
47) to look for predicted gene targets with a target score of
≥80%. Initial pathway analysis was conducted by inputting
these predicted gene targets into the Panther database version
14.1 (www.pantherdb.org)(48) Additional pathway enrichment
analysis was conducted with this same set of target genes
using NetworkAnalyst 3.0, which utilizes KEGG pathways in its
analysis (49). The adjusted P < 0.05 was used as a cutoff for the
significantly enriched pathways in NetworkAnalyst.

RESULTS

Principle component analysis of samples indicated that they
clustered separately, with the hypoxic and normoxic samples of
a given cell line clustering closer to each other than between
cell lines (Figure 2). When comparing miRNA expression in
hypoxia compared to normoxia, the J3T, SDT3G, and G06A
cell lines all had both unique and overlapping differentially
expressed (1.5-fold up or down) miRNAs (Figure 3). Of these
differentially regulated miRNAs, J3T had a total of 128, G06A
had 139, and SDT3G had 167. Ninety eight miRNAs were
differentially regulated in at least two of the three cell lines, and
21 miRNAs were differentially regulated in all three cell lines
(Figures 3, 4).

When examining the target gene set from the 21 miRNAs
differentially expressed in all three cell lines using the Panther
tool, the highest number of hits were in the Wnt signaling
pathway, followed by the pathways listed inTable 1 (minimum of
10 hits) and in Supplemental Table 2 (all hits), many of which are
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FIGURE 1 | Workflow for a single cell line in a single experiment. All cell lines were subjected to three separate experiments on three separate days, within which there

were three technical replicates for each condition. RNA was extracted and subjected to quality control processes separately from each technical replicate, and then

technical replicates were pooled to enter the sequencing pipeline.

FIGURE 2 | Principal component analysis plot of samples. All sample types cluster separately, with a closer relationship of cell line samples (normoxia and hypoxia)

with each other. The triangles indicate normoxic samples, while squares indicate hypoxic samples.

known to be involved in cancer biology, progression, metastasis,
or acquisition or maintenance of a stem-like phenotype.
Because there is some degree of bias inherent in any pathway-
prediction database, predicted gene targets for miRNAs that were

differentially upregulated in all three cell lines were also analyzed
for involvement in specific pathways using NetworkAnalyst,
including miR-1-3p, miR-122-5p, miR-134-5p, miR-183-
5p, miR-193a-5p, miR-204-5p, miR-210-3p, miR-215-5p,
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FIGURE 3 | Venn diagram of numbers of unique and overlapping differentially

expressed miRNAs in hypoxia vs. normoxia for all cell lines.

miR-216b-5p, miR-323a-3p, miR-379-5p, miR-381-3p,
miR-382-3p, miR-410-3p, miR-421, miR-451a, miR-485-5p,
miR-494-3p, and miR 543. Target genes of miR-127-3p and
miR-187-3p were excluded, as the number of total target genes
was fewer than ten. Many target genes are involved in cancer-
related pathways, and many others are involved in pathways
that share genes with developmental or cancer-related pathways
(Supplemental Table 3).

In particular, some target genes of certain miRNAs are
significantly enriched in some pathways (adjusted P < 0.05,
Table 2). The target genes of miR-204-5p are significantly
enriched in longevity regulating pathway; the target genes
of miR-323a-3p are significantly enriched in gap junction;
the target genes of miR-382-3p are significantly enriched in
oocyte meiosis, tight junction, progesterone-mediated oocyte
maturation and hippo signaling pathway; the target genes of
miR-485-5p are significantly enriched in longevity regulating
pathway (similar to miR-204-5p); the target genes of miR 543
are significantly enriched in osteoclast differentiation, salmonella
infection, cGMP-PKG signaling pathway, circadian entrainment,
choline metabolism in cancer and vasopressin-regulated water
reabsorption. It is important to bear in mind that although
enrichment of some pathways as determined by statistical
analysis is of interest, less-frequently involved pathways may
still be of significant biological relevance. Additionally, pathways
listed as developmental or degenerative (ex. “oocyte meiosis”)
may share genes with cancer-related pathways.

DISCUSSION

Because a comprehensive review of every differentially regulated
miRNA and pathway in this data set is beyond the scope

of a single manuscript, for the purposes of discussion we
have chosen to present a brief overview of some of the most
highly differentially regulated miRNAs and those that may
be relevant from a comparative cancer biology or therapeutic
targeting perspective. Because so little canine-specific miRNA
experimental data exists in the literature, information about these
selected miRNAs in dogs, if available, is therefore presented
along with available information on human glioma, general
cancer biology, developmental physiology, and/or hypoxia-
related physiology. Of the miRNAs upregulated in one or more
canine cell lines in hypoxia, many have been associated with
differential regulation in human cancer cell lines in hypoxia,
human glioblastomas as compared to normal brain, or human
tumors with poorer clinical outcomes, and many have had
hypoxia response elements identified within their promoters.

miR-210: Upregulated in Hypoxia in Canine
High-Grade Glioma Cell Lines
miR-210 is well-recognized as being highly upregulated in
hypoxia in a variety of solid tumors including glioblastomas
(42, 50–58), a finding which has been further confirmed
mechanistically by both the identification of a hypoxia response
element (HRE) in its promoter (42) and the close correlation
of miR-210 expression with vascular endothelial growth factor
(VEGF) expression (53). In human glioblastoma cells, increased
miR-210 expression leads to decreased apoptosis and increased
cell proliferation (58). When comparing human patient-derived
glioblastoma samples with normal brain, miR-210 expression is
highly overexpressed in the tumors, and expression is highly
correlated with both hypoxia markers VEGF and carbonic
anhydrase 9 (CA9) (58). In addition to glioblastomas, miR-210
overexpression has been documented in breast, lung, head and
neck, and pancreatic carcinomas (55, 59, 60), and is associated
with poor outcomes as determined by disease-free survival,
progression-free survival, and relapse-free survival in a variety
of cancers including glioblastoma (61–65). In one examination of
miRNAs in a dataset of 480 human glioblastomas included in The
Cancer Genome Atlas (TCGA), low levels of miRs 210, 155, 329,
and 323 in tumors were associated with longer overall survival of
these patients (65). In terms of its utility in diagnostic pathology,
miR-210 is markedly overexpressed in human glioblastomas
when compared to oligodendrogliomas, primarily due to a
more frequent incidence of promoter methylation in the latter
(66). Whether this will be recapitulated in the context of the
extensively necrotic high-grade oligodendrogliomas that are
much more common in canine patients than human patients
deserves further investigation.

Angiogenesis is robust in high-grade gliomas, and both
human and canine tumors are characterized by proliferations of
microvasculature that is florid but also paradoxically ineffective.
Experimentally, miR-210 overexpression in human umbilical
vein endothelial cells (HUVECs) in normoxia enhances both
angiogenesis and VEGF-driven cell migration (67). In non-
neoplastic tissues within the context of brain injury, miR-210
expression levels are increased in brain tissue after ischemia
(68). Beyond reinforcing the importance of this miRNA in
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FIGURE 4 | Fold-change regulation for miRNAs differentially regulated in all three cell lines. Parentheses indicate members of the miR-154 family.

hypoxia, this also raises concerns for tumor-tissue crosstalk in
glioma in vivo, since exosome-mediated transfer of miR-210 from
glioblastoma cells to neighboring cells has been documented (69).
In addition to the previously mentioned target of HIF3α, other
identified miR-210 target genes are myriad and are involved in
a wide variety of biological processes and pathways including
but not limited to hypoxia, angiogenesis, proliferation, apoptosis,
neurogenesis, cell differentiation, and complex tumor type-
dependent roles as both an oncogene and tumor suppressor
(70, 71).

Gene targets of miR-210 in our data set are involved in the
Huntington’s disease, Ras signaling, MAPK signaling, PI3K-Akt
signaling, and IGF signaling pathways, among others (Figure 5).
The last four are well-established important cancer pathways.
The Huntington’s pathway, while less intuitive based on the
name, contains many cancer-relevant genes including those
involved in oxidative phosphorylation, movement of brain-
derived neurotrophic factor by molecular motors, glutamate
receptor binding, p53 signaling, and CREB binding. Additionally,
there is an intriguingly low cancer incidence in human patients
with Huntington’s disease and a body of work examining the
role of mutant and wild-type huntingtin protein in cancer
development and progression (46). Marked upregulation of
this “master” hypoxamiR in these three canine high-grade
glioma cell lines serves as confirmation of experimental hypoxia
induction and also confirms that glioma-bearing canine patients
may be useful models for studying therapies directed at this
target (72, 73).

miR-323: Upregulated in Hypoxia in Canine
High-Grade Glioma Cell Lines
Like miR-210, miR-323 contains a hypoxia response element
within its promoter, and low levels of miR-323 are associated
with longer overall survival in human glioblastoma patients

(65). Intriguingly, of the 21 miRNAs that are differentially
regulated in all three cell lines, five (miR-323, miR-381, miR-
382, miR-410, and miR-494) are all members of the miR-154
family. Targets of miR-323 in Panther pathway analysis have the
highest number of hits in the integrin signaling and platelet-
derived growth factor (PDGF) signaling pathways, followed by
ubiquitin proteasome,Wnt, and EGFR. InNetworkAnalyst, there
is significant enrichment in gap junction pathways. An important
target of miR-323 is the antisense non-coding RNA in the INK4
locus (ANRIL) (74). Single-nucleotide polymorphisms within the
tumor suppressor p16(INK4a)/p14(ARF) 3’ untranslated region
are associated with multiple cancers including glioblastoma,
and in breast cancer the CG allele is linked to more
aggressive tumors with higher levels of ANRIL (75). Within
the context of human prostate cancer, miR-323 enhances tumor
angiogenesis, and ectopic expression of miR-323 promotes cell
proliferation and colony formation in vitro and tumor growth
in in vivo xenograft mouse models (76, 77). Finally, miR-
323 is upregulated in ischemia/reperfusion-injured neurons and
oxygen-glucose deprived neurons (78), further supporting its role
as a hypoxamiR.

miR-1: Upregulated in Hypoxia in Canine
High-Grade Glioma Cell Lines
Within the context of embryonic development, miR-1 is critical
for the differentiation of embryonic stem cells into vascular
smooth muscle cells (79). A primary target of this miRNA is the
Kruppel-like factor 4 transcription factor (KLF4), which inhibits
epithelial-to-mesenchymal transition through the regulation
of E-cadherin gene expression (80). miR-1 appears to have
divergent roles as either tumor-suppressive or oncogenic based
on tumor type, with some tumors overexpressing and others
underexpressing. Regulation is complex, via copy number
variation, epigenetic, transcriptional, and post-transcriptional
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TABLE 1 | miRNA-targeted gene pathway analysis using Panther with a minimum

of 10 hits.

Wnt signaling pathway (P00057) 16

Apoptosis signaling pathway (P00006) 14

FGF signaling pathway (P00021) 14

Gonadotropin-releasing hormone receptor pathway (P06664) 14

Huntington disease (P00029) 14

Inflammation mediated by chemokine and cytokine signaling pathway

(P00031)

14

Muscarinic acetylcholine receptor 1 and 3 signaling pathway (P00042) 14

P53 pathway feedback loops 1 and 2 (P04392) 14

Alzheimer disease-presenilin pathway (P00004) 13

Angiogenesis (P00005) 13

Axon guidance mediated by semaphorins (P00007) 13

EGF receptor signaling pathway (P00018) 13

TGF-beta signaling pathway (P00052) 13

Heterotrimeric G-protein signaling pathway-Gi alpha and Gs alpha

mediated pathway (P00026)

12

Integrin signaling pathway (P00034) 12

PDGF signaling pathway (P00047) 12

Beta2 adrenergic receptor signaling pathway (P04378) 11

CCKR signaling map (P06959) 11

Ionotropic glutamate receptor pathway (P00037) 11

Metabotropic glutamate receptor group III pathway (P00039) 11

p53 pathway (P00059) 11

VEGF signaling pathway (P00056) 11

5HT2 type receptor mediated signaling pathway (P04374) 10

Cadherin signaling pathway (P00012) 10

Heterotrimeric G-protein signaling pathway-Gq alpha and Go alpha

mediated pathway (P00027)

10

Insulin/IGF pathway-protein kinase B signaling cascade (P00033) 10

Oxytocin receptor mediated signaling pathway (P04391) 10

p38 MAPK pathway (P05918) 10

Parkinson disease (P00049) 10

Ras Pathway (P04393) 10

Thyrotropin-releasing hormone receptor signaling pathway (P04394) 10

Ubiquitin proteasome pathway (P00060) 10

mechanisms (81). In the context of the experimental glioblastoma
microenvironment, miR-1 directly targets annexin A2 and the
proto-oncogene MET, and miR-1-loaded extracellular vesicles
lead to diminished invasion and proliferation in targeted
cells (82). Overexpression of the miR-1 target MET has
been documented in canine gliomas (83). miR-1 is markedly
downregulated in glioblastomas as compared to normal brain
and, despite its interaction with KLF4, restoration of miR-1 has
been proposed as a therapeutic modality (84). miR-1 is highly
downregulated in canine hepatocellular carcinoma as compared
to normal liver (85), and in osteosarcoma as compared to normal
bone (86). Top Panther targeted pathways for miR-1 in our
data set include the GNRH receptor pathway, inflammation
mediated by chemokine and cytokine signaling pathway, G-
protein coupled receptor signaling, Wnt signaling, as well as
CCKR, angiogenesis, and lesser numbers of hits for p53, FGF,

TABLE 2 | Significantly enriched pathways of target genes from the identified

miRNAs using NetworkAnalyst with p < 0.05.

microRNA name Enriched pathway FDR (adjusted

P-value)

miRNA-204-5p Longevity regulating pathway 0.0164

miRNA-323a-3p Gap junction 0.0160

miRNA-382-3p Oocyte meiosis 0.0262

Tight junction 0.0363

Progesterone-mediated oocyte maturation 0.0363

Hippo signaling pathway 0.0363

miRNA-485-5p Longevity regulating pathway 0.0095

miRNA 543 Osteoclast differentiation 0.0481

Salmonella infection 0.0481

cGMP-PKG signaling pathway 0.0481

Circadian entrainment 0.0481

Choline metabolism in cancer 0.0481

Vasopressin-regulated water reabsorption 0.0481

FIGURE 5 | Visual representation of primary pathways targeted by miR-210.

The size of the circles correlates roughly with the proportion of genes that are

involved in a particular pathway.

EGF, PDGF, and VEGF, among others. Despite the fact that this
miRNA is upregulated in hypoxia as compared to normoxia in
our model, preliminary work in our lab also shows much lower
levels of miR-1 in normoxic canine glioma cell lines as compared
to normoxic primary cultured astrocytes (unpublished data).

miR-134: Upregulated in Hypoxia in Canine
High-Grade Glioma Cell Lines
In Panther analysis of our predicted miR-134 target gene set,
top pathway hits include the integrin, angiogenesis, inflammation
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mediated by cytokine/chemokine, and EGFR signaling pathways.
miR-134 is overexpressed in glioblastomas as compared to
low-grade oligodendrogliomas in people, a finding which is
not related to differences in copy number (66). Much like
the overexpression of miR-210, the validation of this finding
in canine high-grade oligodendrogliomas, the vast majority of
which contain areas of extensive necrosis and its attendant
hypoxic microenvironment, deserves further investigation; the
oligodendroglial tumors in this human study by definition
lack significant necrosis. In a single study, miR-134 has been
reported as being overexpressed in human high-grade glioma
cell lines and tumors as compared to cultured astrocytes, but
experimental investigation of the effect of in vitro hypoxia was
not part of this work. In this same study, stimulation of the
epidermal growth factor receptor (EGFR) and platelet-derived
growth factor receptor (PDGFR) significantly repressed miR-
134 levels (87); in other words, there appeared to be an inverse
relationship between these growth factors and miR-134. Yet, in
other studies in human glioblastoma cell lines, hypoxia caused
increased expression of EGFR via HIF2α (88) and upregulation
of miR-134 expression (42). A positive correlation between
miR-134 expression and matrix metalloproteinase-9 (MMP-9)
exists in esophageal cancer, and high expression in tumors is
associated with shorter survival time (89). MMP-9 is known to
be overexpressed in gliomas, with higher expression associated
with higher grade (90), and it can serve as both a biomarker
and a predictor of survival in patients (91, 92). Increased levels
of MMP-9 have been documented in the cerebrospinal fluid of
dogs with intracranial tumors including histologically confirmed
gliomas (93, 94).

miR-494: Upregulated in Hypoxia in Canine
High-Grade Glioma Cell Lines
miR-494 is overexpressed in glioblastomas as compared to
normal brain, and is a statistically important miRNA with
regard to survival when patients are segregated according to
therapy vs. no-therapy (95). Target genes for this miRNA
reported in the literature include those involved in cell signaling,
metabolism, and apoptosis; increased expression of this miRNA
leads to increased cell proliferation and decreased apoptosis
of glioblastoma cell lines in vitro (95). miR-494 enhances
invasiveness of gliomas via EGFR upregulation, protein kinase B
(Akt) activation, and extracellular signal-regulated kinase (ERK)
activation, and downregulation of this miRNA in glioblastoma
stem-like cells leads to increased apoptosis and suppresses
invasion and proliferation (95). For this reason, it has been
proposed as a therapeutic target in human glioblastoma (96, 97)

miR-216b: Downregulated in Hypoxia in
Canine High-Grade Glioma Cell Lines
miR-216b is significantly downregulated in glioma cells and
tissues in comparison to normal brain, and ectopic expression
of this miRNA inhibits proliferation and invasion in both in
vitro and in vivo xenograft models (98). In this same study, the
authors identify forkhead box protein M1 (FOXM1) as a direct
target, and ectopic expression of miR-216b led to a decrease

in FOXM1 protein levels and percentage of Ki-67-positive cells
in xenograft models. A similar mechanism has been shown for
melanoma (99), hepatocellular carcinoma (100), non-small-cell
lung carcinoma (101), and osteosarcoma (102), and low miR-
216b levels in tumors are independent poor prognostic indicators
in many of these cancers. In pancreatic cancer, this miRNA
functions in a tumor-suppressive way by targeting translationally
controlled tumor protein (TPT1), and levels of this miRNA are
significantly associated with large tumor size and advanced TNM
stage (103). In breast cancer, the oncogene histone deacetylase
8 (HDAC8), which accelerates proliferation and progression, is
targeted by miR-216-5p via binding to the 3’UTR (104). Taken
together, there is strong evidence to suggest that downregulation
of this miRNA leads to proliferation and invasion in a wide
variety of cancers, including glioma.

In order to understand how dogs with spontaneously
occurring high-grade gliomas can best be used to study targeted
therapies that may of benefit to patients of both species, it
will be important to explore the similarities and differences
that are inherent in this and any other comparative model.
Microenvironmental conditions, especially hypoxia, are common
in high-grade gliomas of both species and drive the development
of many genotypic, phenotypic, and epigenetic traits that
conspire to thwart existing therapies. For that reason, hypoxia-
modulated pathways are tempting therapeutic targets. The fact
that canine tumors often have extensive necrosis (associated
with hypoxic or even anoxic environments) like their human
counterparts supports their use in helping to unravel the tangled
web of molecular interactions fueled by low oxygen levels. Here
we present the first published work examining the experimental
hypoxamiR landscape in canine high-grade glioma. Pathway
analysis of targeted genes in this model highlights the importance
of the Wnt pathway, and confirms the importance of hypoxia in
many other pathways known to be involved in general cancer as
well as glioma-specific oncogenesis, progression, metastasis, and
promotion of a treatment-resistant stem-like phenotype. Taken
together, the data offer further support for the use of dogs with
spontaneous high-grade gliomas as a useful comparative model.
In order to translate these in vitro results into clinically relevant
findings, future work should focus on evaluation of miRNA
expression in three-dimensional culture systems in serum-free
media and in canine tumors in vivo, as there are limitations
associated with standard cell culture practices and their effect on
gene expression.
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