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In this study, we evaluate several nongradient (evolutionary) search strategies for minimizing mathematical function expressions.
We developed and tested the genetic algorithms, particle swarm optimization, and differential evolution in order to assess their
general efficacy in optimization of mathematical equations. A comparison is then made between the results and the efficiency,
which is determined by the number of iterations, the observed accuracy, and the overall run time. Additionally, the optimization
employs 12 functions from Easom, Holder table, Michalewicz, Ackley, Rastrigin, Rosen, Rosen Brock, Shubert, Sphere, Schaffer,
Himmelblau’s, and Spring Force Vanderplaats. Furthermore, the crossover rate, mutation rate, and scaling factor are evaluated to
determine the effectiveness of the following algorithms. According to the results of the comparison of optimization algorithms, the
DE algorithm has the lowest time complexity of the others. Furthermore, GA demonstrated the greatest degree of temporal
complexity. As a result, using the PSOmethod produces different results when repeating the same algorithmwith low reliability in
terms of locating the optimal location.

1. Introduction

A nongradient optimization method is a stochastic method,
which means that, unlike gradient optimization, the results
are heavily randomized. A scenario similar to Darwinian
evolution is simulated in which the closest point to a
maximum or a minimum value is selected as the optimal
point in a function [1–4]. Unlike gradient methods, evo-
lutionary optimization does not heavily rely on mathe-
matics, and the initial starting point does not have nearly as
much impact. Because of the random nature of evolutionary
optimization, it is mostly less efficient than gradient-based

optimization since it does not even guarantee an optimal
solution [5, 6]. However, the method is more aggressive and
considers more solutions than gradient methods do,
allowing it to findmultiple local minima points, which give it
some advantages. )e way evolutionary optimization works
is that first, one must generate a mathematical function to
create a scenario with specific conditions and then various
points will be randomly plotted throughout the function in
ideal locations [7–10].)e results will be compared and then
used to converge throughout the function.)ese results then
adapt and converge toward the optimized points chaotically
through trial and error.)e step size for updating unknowns
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is generally required when applying gradient-based opti-
mization algorithms [11, 12]. To achieve better generaliza-
tion and convergence, learning rate scheduling schemes
have been used in addition to the fixed learning rate.
Staircases [13] and exponential decay [40] are simple, but
popular schemes for reducing stochastic noises. AdaGrad
[14], AdaDelta [15, 16], RMSprop [17], and Adam [18] have
also been developed for parameterwise adaptive learning
rate scheduling. So while finding the optimal point is not
guaranteed, it is at least possible to find these points’ po-
tential locations.

Since evolutionary optimization has a variety of
starting points, it is not subject to the same weakness as
gradient optimization. Gradient optimization accurately
converges on the local minima. )e function, however,
does not know whether it has reached the global minima.
As a result, less-optimal solutions are often reached than
what is possible [18]. With evolutionary optimization,
starting points are all across the function, which raises the
probability of one starting near the global minima. )ey
all converge toward their local minima, and the results are
then compared. Based on these, we can more easily ap-
proximate the global minima within the bounds of our
function. )e best results, in general, can come from
combining gradient and nongradient-based optimization
to converge on the best solution, for this one would start
with the broad function and implement evolutionary
optimization [19, 20].Despite the fact that it is not very
analytical, it would often instinctively converge near the
global minima, providing an indication of the general
location. Afterward, a gradient-based algorithm may be
used with the determined area as a starting point. Using a
mathematical function, it will converge toward the global
minima and provide an accurate result. It is possible to
find the global minima for any function by combining the
two algorithm types accurately (see Table 1).

Multiobjective optimization has been applied in many
fields of science, including engineering, economics, and
logistics where optimal decisions need to be taken in the
presence of trade-offs between two or more conflicting
objectives. )ere are many applications in computer science
such as cloud computing [28–30], image processing, [31],
medical science [32], robotics andmechanics [33], controller
design [34], wireless sensor network [35–37], architectural
design [38], and metaheuristic methods convergence [39,
40]. )ere are some other applications for prediction
methods, Feynman's Path Integral [41], Semantic Segmen-
tation [42], Internet of things [43, 44], Signal processing
[45], distributed networks [46, 47], and Software Defect
Prediction [48]. Some other optimization methods are
adaptive regeneration framework [49], Mean Extra-Gradi-
ent [50], Bi-LSTMC [51], random key genetic algorithm
[52], and Complementary-Label Source Domain [53].
Moreover, signal processing fields include Ultrawideband
Rejection [53], GaAs technology [54], Visual question an-
swering [55], Visual Reasoning [56, 57], Semantic Network
[58, 59], attack detection [60], Smart Homes [61], Fog
computing [62], Neural Tracking [63], light detection [64],
Buffering Algorithm [65], decision making [66],

classification [57, 67–69], Growth Cycles [70], Remote
sensing [71], power generation [72–74], vehicle routing
problem [75], and structure design [76, 77].

2. Methods and Materials

2.1. Genetic Algorithm. )e genetic algorithm is a learning
program that mimics natural evolution concepts such as
reproduction crossover and mutation to produce what the
program considers optimal offspring. It is the most general
type of evolutionary optimization. It takes the general ideas
behind it and puts them into action. It starts with various
points spread randomly throughout the function, taking into
account the various possible solutions within the problem’s
parameters. It allows the program to consider various
possible solutions and focus on each of them to determine
the best one. Once the algorithm has its values, it calculates
each solution’s fitness generated in the function. )en a pair
of solutions can be selected so long as they increase the
chances of generating offspring; each parent can be used
more than once per iteration to generate offspring. Once the
points are selected, cross over them to create two new
potential solutions. Otherwise, plot the new points over the
parent points. Finally, you mutate the new points and
generate the resulting points.

)e way that selection occurs is by comparing potential
parents with potential partners in its local area. )e values
with a higher fitness value are more likely to produce off-
spring than those with lower fitness to better simulate
evolution. Selection is often made by random chance, with
the high fitness results being more likely to be picked. )e
probability of selection (pi) is represented by equation (1),
with fi being the fitness value of individual i and N being the
local population relative to a parent:

pi �
fi

􏽐
N
j�i fj

. (1)

)ealgorithm uses a crossover process to generate two new
values to plot into the next iteration when selection is complete.
)ese new values perturb old solutions as they try to steer away
from the flaws. )e general equation for the crossover stage is
shown below for yk and xk, respectively, where α is the
crossover blending factor and rk is the uniformly distributed
random number in the interval [0, 1]. However, some highly
successful members of the next iteration are allowed to remain
the same as they were beforehand:

yk � (1 + 2α)rk − α,

x
(i,t+1)
k � 1 − yk( 􏼁x

(1,t)
k + ykx

(2,t)
k , k � 1, . . . , n var.

(2)

To prevent the new iterations from becoming the same
and promote more out-of-the-box solutions, a mutation
factor is used to diversify the solutions and prevent the
population from becoming stagnant. A mutation is a de-
viation from the crossover logic, which randomizes the
solutions generated to hurl them closer or further from the
end goal or toward another goal. )e equations used to
determine the mutation effect is shown below, with r being a
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uniformly distributed number in the interval [0, 1], xl
k and

xu
k being the upper and lower bounds of x kT is the number

of generations, T is the maximum number of generations, b
is the strength of the mutation operator, and the function for
y is given by Δ(t, y):

x
(i,t+1)
k � x

(1,t)
k + Δ t, x

u
k − x

(2,t)
k􏼐 􏼑r≤ 0.5, k � 1, . . . , n,

x
(i,t+1)
k � x

(1,t)
k − Δ t, x

(2,t)
k − x

(2,t)
k􏼐 􏼑r> 0.5, k � 1, . . . , n,

Δ(t, y) � y 1 − r
1− t/T

􏼐 􏼑
b
.

(3)

2.2. Particle Swarm Optimization. In 1995, electrical en-
gineer Russel Eberhart and social psychologist James
Kennedy developed this alternative to the genetic algo-
rithm. )is nongradient algorithm considers the indi-
viduality and sociability of the population members.
Specifically, the idea came from watching birds look for a
nesting place. Not enough individuality led to too many
birds trying to nest in the same place. However, not
enough sociability led to many birds unable to find
suitable nesting places. In general, the program uses social
rules and individual deviations to find the ideal locations.
It is calculated by accounting for the velocity vector of
each particle as they travel. )e vector considers the pack
movement and individual instinct that goes into its

movement and adds it to the initial inertia of the iteration.
)e basic equation for particle swarm vector optimization
is shown below, with α being the inertia factor, β1 being
the individuality factor, β2 being the sociability factor, r

(i)
1

and r
(i)
2 being uniformly distributed numbers in the in-

terval [0, 1], X(i,t) being the individual’s vector, P(i) being
the best individual value and P(i) being the best value in
the population. Within the vector equation, αv(i,t) rep-
resents the inertia, β1r

(i)
1 (P(i) − X(i,t)) represents the in-

dividuality, and β2r
(i)
2 (P(g) − X(i,t)) represents sociability:

v
(i,t+1)

� αv
(i,t)

+ β1r
(i)
1 P

(i)
− X

(i,t)
􏼐 􏼑 + β2r

(i)
2 P

(g)
− X

(i,t)
􏼐 􏼑,

X
(i,t+1)

� X
(i,t)

+ v
(i,t+1)

.
(4)

Other than this, it functions like the genetic algorithm; it
begins with many solutions on the field. Each solution is
evaluated for fitness.)e result is compared to their previous
swarm fitness, and the previous individual fitness and its
position are updated accordingly. Its best individual fitness
and position are then used to calculate the next iteration.

All in all, particle swarm optimization edges out over the
genetic algorithm, namely, because it does not need to sort
fitness as the genetic algorithm does. It means that swarm
optimization requires less-computational power. It tends to be
cheaper to use than the genetic algorithm, especially withmany
values.

Table 1: Review of nongradient-based methods and their application.

Author Year Gradient-based method Application Results

Chen et al.
[21] 2022 Evolutionary optimization Learning variational quantum

reinforcement

It provided a natural way to compress the
input dimension efficiently, enabling further
quantum RL uses on noisy intermediate-scale

quantum devices

Zhang et al.
[2] 2021

Nongradient topology
optimization in acoustic meta-

materials

Realizing a complete and
directional bandgap design

)e optimized designs converged to show the
orderly material distribution and numerical
validations to show expected propagation

properties

Pazouki [22] 2021
Volume balance model and
multiobjective evolutionary
optimization algorithms.

Designing a practical surface
irrigation system

)e proposed model in most fields and
indicators achieve better results, and the

results are close together

Dhiman et al.
[23] 2021

A new evolutionary
multiobjective optimization

algorithm for global
optimization

To map out seagulls better than
modern optimization algorithms

)e empirical research indicates that the
EMoSOA algorithm works better than other

algorithms

Pan et al. [24] 2021 An efficient surrogate-assisted
hybrid optimization algorithm

Solving expensive optimization
problems

)e hybrid algorithm works better than
preexisting ones, able to solve problems that

were previously unattainable

Abualigah
et al. [25] 2021 A novel evolutionary arithmetic

optimization algorithm

Multilevel thresholding
segmentation of covid-19 ct

images

)e DAOA produces higher quality solutions
than other similar approaches and is ranked

the best for various test cases

Naeimi et al.
[26] 2021

A nature-inspired algorithm for
high-dimensional optimization

problems

To develop an algorithm based on
horses’ herding behaviors for high-

dimensional optimization

)e proposed algorithm proved to be highly
efficient for solving serious dimensional

global optimization problems, outperforming
the standard algorithms used today in terms

of accuracy and efficiency

Meraihi et al.
[27] 2021 Genetic algorithm optimization

To develop an algorithm based on
the foraging and swarming
behaviors of grasshoppers

)e GOA algorithm gives superior results for
most applications, having a high exploitation
ability and convergence and excelling at
preventing local minima stagnation.
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2.3. Differential Evolution. Differential evolution was de-
veloped around 1955 and was made to try simulating
Darwinian evolution. It combines the parents’ features to
form a child. However, unlike previous methods, the new
value may inherit features from multiple parents. It is the
closest to gradient optimization that evolution optimization
can get in this assignment. It is used for multidimensional
real-valued functions without needing it to be differentiable,
making it a robust algorithm.

Using two different parent equation values (P1 and
P2), the method produces a series of children (C1,. . .,Cn).
In these equations, α, β, and c are random parent features,
m is the mutation factor between 0.5 and 1, and δ1 and δ2
are binomial crosses over coefficients. CR is the crossover,
while R represents a random number with distribution [0,
1]:

Pn � α + m(β − c),

Cn � P2δ1 + P1δ2,

X
k+1
i � δ1X

k
i + δ2(α + m(β − c)),

δ1 � 0(if R<CR),

δ1 � 1(if R>CR),

δ2 � 0(if R>CR),

δ2 � 1(if R<CR).

(5)

It is an algorithm that only acts when the product of the
two-parent points produces a child with better fitness. When
weighing its options on its results, it always selects the
offspring with the excellent fitness. It abandons the rest,
increasing the efficiency of the evolution. Furthermore, any
improvements found by the function will be immediately
included. As a result, the general solution is often more
accurate than in either the genetic algorithm or particle
swarm optimization.

3. Results and Discussion

In this report, we used three meta-heuristic algorithms of
genetic algorithm, particle swarm optimization, and dif-
ferential evaluation as two nongradient-based methods for
optimization of some mathematical surfaces. In this report,

Table 2: )e properties of optimization functions.

Function Variable X domain Y domain Global minimum Optimum value
Ackley 2 − 5≤ x≤ 5 − 5≤ y≤ 5 x∗ � (0, 0) f(x∗)� 0
Easom 2 − 10≤ x≤ 10 − 10≤ y≤ 10 x∗ � (π, π) f(x∗)� − 1

Holder table 2 − 10≤ x≤ 10 − 10≤ y≤ 10

x∗ � (8.06, 9.66)
x∗ � (− 8.06, 9.66)
x∗ � (8.06, − 9.66)
x∗ � (− 8.06, − 9.66)

f(x∗)� − 19.21

Michalewicz 2 0≤ x≤ π 0≤ y≤ π x∗ � (2.20, 1.57) f(x∗)� − 1.80
Rastrigin 2 − 5≤ x≤ 5 − 5≤ y≤ 5 x∗ � (0, 0) f(x∗)� 0
Rosen 2 0≤ x≤ 6 0≤ y≤ 6 x∗ � (5.33, 5.33) f(x∗)� − 18.57
Rosenbrock 2 − 2≤ x≤ 2 − 5≤ y≤ 4 x∗ � (1, 1) f(x∗)� 0
Shubert 2 − 10≤ x≤ 10 − 10≤ y≤ 10 x∗ � (1.67, − 2.01) f(x∗)� − 186.73
Sphere 2 − 5≤ x≤ 5 − 5≤ y≤ 5 x∗ � (0, 0) f(x∗)� 0
Schaffer 2 − 10≤ x≤ 10 − 10≤ y≤ 10 x∗ � (0, 0) f(x∗)� 0
Himmelblau 2 − 6≤ x≤ 6 − 6≤ y≤ 6 x∗ � (3, 2) f(x∗)� 0
Spring force Vanderplaats 2 − 20≤ x≤ 20 − 20≤ y≤ 20 x∗ � (0, 0) f(x∗)� 0
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12 functions of Easom, Holder table, Michalewicz, Ackley,
Rastrigin, Rosen, Rosenbrock, Shubert, Sphere, Schaffer,
Himmelblau’s, and Spring Force Vanderplaats are employed
for the optimization. )e properties of these functions are as
follows (see Table 2):

In this report, we used GA to optimize Easom, Holder
table, Michalewicz, Ackley functions shown in Figures 1–12.
Moreover, Figures 5, 7, 9, and 11 illustrate the objective
function values in each generation of genetic algorithm and
plot of populations accumulation to find the optimum value.
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Figure 3: Holder table function.
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Figure 5: Genetic algorithm results for Ackley function: (a) objective function in each generation, (b) plot of populations accumulation.
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Figure 6: Genetic algorithm results for Ackley function: (a) error value based on increasing on crossover rate, (b) error value based on the
mutation rate, (c) number of generation vs. population, (d) Error value with increase in population.
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Figure 7: Genetic algorithm results for Easom function: (a) objective function in each generation, (b) plot of populations accumulation.
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Figure 8: Genetic algorithm results for Easom function: (a) error value based on increasing on crossover rate, (b) error value based on the
mutation rate, (c) number of generation vs. population, (d) error value with increase in population.
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Figure 10: Genetic algorithm results for holder table function: (a) error value based on increasing on crossover rate, (b) error value based on
the mutation rate, (c) number of generation vs. population, (d) error value with increase in population.
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Figure 12: Genetic algorithm results for Michalewicz function: (a) error value based on increasing on crossover rate, (b) error value based
on the mutation rate, (c) number of generation vs. population, (d) error value with increase in population.

Table 3: )e expressions of optimization problems.

Function Equations

Ackley f(x, y) � − 20e− 0.02
�����
x2+y2/2

√
− ecos(2πx)+cos(2πy)/2 + e + 20

Easom f(x, y) � − cosx. cosy. exp(− (x − π)2 − (y − π)2)

Holder table f(x, y) � − |sin x. cosy. exp(|1 −
��
x2

√
+ y2/π|)|

Michalewicz f(x, y) � − sinx.sin20(x2/π) − siny.sin20(2y2/π)

Rastrigin f(x, y) � 20 + x2 − 10 cos(2πx) + y2 − 10 cos(2πx)

Rosen f(x, y) � 0.25x4 − 3x3 + 11x2 − 13x + 0.25y4 − 3y3 + 11y2 − 13y

Rosenbrock f(x, y) � (1 − x)2 + 100(y − x2)2

Shubert f(x, y) � (􏽐
5
i�1(i cos(i + 1)x + i))(􏽐

5
i�1(i cos(i + 1)x + i))

Sphere f(x, y) � x2 + y2

Schaffer f(x, y) � 1/2 + sin2(x2 + y2) + 0.5/(1 + 0.001(x2 + y2))2

Himmelblau f(x, y) � f � (x2 + y − 11)2 + (x + y2 − 7)2

Spring force Vanderplaats f(x, y) � 4(

������������

x2 + (10 − y)2
􏽱

− 10)2 + 1/2(

������������

x2 + (10 − y)2
􏽱

− 10)2 − 5x − 5y
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Figure 13: Rastrigin function.
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Figure 14: PSO results for Rastrigin function: (a) objective function in each generation, (b) plot of populations accumulation, (c) error value
with variation f swarm size, (d) error value with repetition of a single run.
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Figure 15: Rosen function.
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Figure 16: PSO results for Rosen function: (a) objective function in each generation, (b) plot of populations accumulation, (c) error value
with variation f swarm size, (d) error value with repetition of a single run.
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Furthermore, Figures 6, 8, 10, and 12 show the genetic al-
gorithm error value based on increasing on crossover rate
mutation rate. In the number of generations versus pop-
ulation, error values increase with increase in population.
Based on the analysis results, the best value of crossover rate

for optimization of Ackley function is 0.4–0.5, and mutation
rate is 0.6–0.7 (Table 3).

Moreover, based on Figure 6(c), it can be estimated that
with the increase of the population to 10,000, there is no
significant increase/decrease in the number of generations in
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Figure 17: Rosenbrock function.
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Figure 18: PSO results for Rosenbrock function: (a) objective function in each generation, (b) plot of populations accumulation, (c) error
value with variation f swarm size, (d) error value with repetition of a single run.
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Figure 19: Shubert function.
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Figure 20: PSO results for Shubert function: (a) objective function in each generation, (b) plot of populations accumulation, (c) error value
with variation f swarm size, (d) error value with repetition of a single run.
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Figure 22: DE results for sphere function: (a) objective function in each generation, (b) plot of population accumulation, (c) error value with
the variation of crossover probability, (d) error value changing of scaling function.
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Figure 23: Schaffer function.
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Figure 24: DE results for Schaffer function: (a) objective function in each generation, (b) plot of population accumulation, (c) error value
with the variation of crossover probability, (d) error value changing of scaling function.
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Figure 25: Himmelblau function.
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Figure 26: DE results for Himmelblau function: (a) objective function in each generation, (b) plot of population accumulation, (c) error
value with the variation of crossover probability, (d) error value changing of scaling function.
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Figure 27: Spring force Vanderplaats function.
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Figure 28: DE results for spring force Vanderplaats function: (a) objective function in each generation, (b) plot of populations accu-
mulation, (c) error value with the variation of crossover probability, (d) error value changing of the scaling function.
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Ackley function. )erefore, GA can find the optimum value
with the minimum population value. )e GA method is low
complexity in finding the global minimum of the Ackley
function. Furthermore, based on Figure 6(d), the minimum
population value for reaching the best complexity is 1000.
Easom and Holder table functions results are shown in
Figures 7–10. Based on the results, there are no significant
effects between changing crossover, mutation rate, and error
value because with the small population and 100 genera-
tions, GA can find the minimum value of the function.
Regarding the results of Michalewicz function with the
increase of the number of populations, generation is
decremented. However, there is no optimum value of
crossover mutation rate for this function because of less
complexity of GA for optimization of these functions.

For testing the PSO, the effects of swarm size are
compared for each of Rastrigin, Rosen, Rosen Brock, Shu-
bert functions (Figures 13–17. Based on the results, two of 60
and 85 swarms have not accurate results. )erefore, we
repeat the optimization 1000 times with a specific swarm
size. It can be seen that 1% of evaluations cannot find the
optimum value of Rastrigin function (seen Figure 18(d)).

However, for the Rosen function, 100% of runs are accurate.
One of the complicated formulas in optimization is the
Rosenbrock function, based on the results, many runs are
not accurate results regarding Figure 19(d). Moreover, there
is no relationship between swarm size and optimization
accuracy, because sometimes PSO cannot find the optimum
value. )ese results are also repeated in the Shubert function
in Figure 20 based on the results, PSO does not have higher
robustness for finding the optimum value of these function
types because it can no longer be reliable results at least these
equations.

For analysis of DE algorithms, four Sphere, Schaffer,
Himmelblau’s, and Spring Force Vanderplaats are used.
Figures 21–24 depict the 3D surface of the following equations,
and Figures 25–28 illustrate theDE evaluation results.We tested
the crossover rate and scaling factor in the accuracy of the DE
method. Based on the results for optimization Sphere, the best
scaling factor is 0.3. )ere is no relationship between error and
crossover rate for crossover rate. Overly, one of the properties of
DE is using a lower number of initial populations with lower
time complexity to find the optimum value of the functions.
However, it is sensitive in choosing the crossover rate. Based on
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Figure 29: )e comparison of GA, PSO, and DE.

Table 4: )e comparison of GA, PSO, and DE using error and runtime metrics.

No Function
GA PSO DE

Error Runtime Error Runtime Error Runtime
1 Ackley 0.012625 21.00289 0.001218 10.63231 0.010042 4.467835
2 Easom 0.000807 4.485303 0.000836 4.488985 0.013936 4.121538
3 Holder table 0.000082 10.84023 0 8.384456 0.000012 4.529235
4 Michalewicz 0.000303 30.27151 0.00188 6.489204 0.001643 4.065657
5 Rastrigin 0.000894 39.14045 0.002408 10.31332 0.001909 4.802492
6 Rosen 0.000541 3.833337 0.000124 6.523122 0.000042 3.013651
7 Rosenbrock 0.00014 45.31977 0.003471 9.796138 0.024601 4.906589
8 Sphere 0.001576 6.141895 0.001154 4.310654 0.018867 3.522635
9 Himmelblau’s 0.004158 33.9344 0.000077 6.249301 0.00119 5.255951
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Figure 27, the optimum crossover value is 0.3, and the scaling
factor is 0.45. Moreover, in DE, there is no relationship between
the crossover and scaling factor rate on error for the spring force
Vanderplaats function (see Figure 29).

In the next step all the nine (1) Ackley, (2) Easom, (3)
Holder table, (4) Michalewicz, (5) Rastrigin, (6) Rosen,
(7) Rosenbrock, (8) Sphere, and (9) Himmelblau’s are
tested using GA, PSO, and DE algorithm. For all the
functions, number of the population is identical and 20
(see Table 4).

Based on the comparison results between the optimi-
zation methods, the DE algorithm has the lowest time
complexity among other methods. Moreover, GA illustrated
the highest time complexity. However, the PSO algorithm
has lower reliability to find the optimum point.

4. Conclusion and Future Works

)e objective of this report is to evaluate nongradient-based
methods for optimizing some mathematical surfaces by
applying three meta-heuristic algorithms, including genetic
algorithms, particle swarm algorithms, and differential
evaluation algorithms. In this report, 12 functions of Easom,
Holder table, Michalewicz, Ackley, Rastrigin, Rosen, Rosen
Brock, Shubert, Sphere, Schaffer, Himmelblau’s, and Spring
Force Vanderplaats are used for optimization. We utilized
GA to optimize Easom, Holder tables, Michalewicz, and
Ackley functions in this report. )e number of generations
versus the population, error value as the population in-
creases. According to the results of the analysis, the best
crossover rate for optimization of the Ackley function is
0.4–0.5, and the best mutation rate is 0.6–0.7. For GA, it is
estimated that with the increase in population to 10,000,
there is no significant increase or decrease in the number of
generations in Ackley function. Consequently, GA is able to
find the optimal value with a minimum population value.
Using the GA method, the global minimum of the Ackley
function can be determined with a low degree of complexity.
Additionally, the minimum population value for the best
degree of complexity is 1000. )ere are no significant effects
of changing crossover, mutation rate, and error value for
Easom and Holder table functions. Michaelewicz function
shows that generation decreases with an increase in the
number of populations. Due to the simplicity of GA in
optimizing these functions, there is no optimal crossover
mutation rate for this function.

In order to test the PSO, the effects of swarm size are
compared for Rastrigin, Rosen, Rosenbrock, and Shubert
functions. )e optimization is repeated 1000 times with the
same swarm sizes. It can be seen that 1% of evaluations are not
able to determine the optimum value for the Rastrigin
function. In contrast, 100% of evaluations are able to de-
termine the Rosenbrock function.)e Rosenbrock function is
one of themost complex formulas in optimization. According
to the results, there is no relationship between swarm size and
optimization accuracy. )ese results indicate that PSO does
not have higher robustness for finding optimum values of
these function types since it is no longer able to produce
reliable results, at least for these equations. An analysis of DE

algorithms uses four Spheres, Schaffers, Himmelblaus, and
Spring Force Vanderplaats. To test the accuracy of the DE
method, we tested the crossover rate and scaling factor.
According to the results for optimization Sphere, the best
scaling factor is 0.30. In terms of the crossover rate, there is no
relationship between error and crossover rate. In general, one
of the characteristics of DE is that it uses fewer initial pop-
ulations with a shorter time complexity to find the optimal
values. It is sensitive to the crossover rate, however. Fur-
thermore, there is no relationship between the crossover and
the scaling factor rate on error for the spring force Van-
derplaats function in DE. Comparing the results of the op-
timization methods, it appears that the DE algorithm has the
lowest time complexity. )e GA algorithm has the highest
time complexity. In contrast, the PSO algorithm is less reliable
for finding the optimum point.

)e use of meta-heuristics has enabled engineers to solve
several engineering problems that could not be solved with
standard optimization approaches. Examples include the
simplicity with which they can be combined in finite element
software in any domain, where the combination/permuta-
tion of solutions available to each method enables the dis-
covery of optimum projects without the need of explicit
functions. Literature contains numerous examples of this
phenomenon. Developing a meta-heuristic that can ac-
complish this with fewer populations and iterations (lower
processing costs) and more accuracy is the point of con-
tention in the literature between new algorithms attempting
this goal. If the algorithm is evolutionary in nature, swarms,
behaviors, and physical occurrences are all features that
contribute to the primary purpose outlined above. I believe
that the universal law of time will reveal those algorithms
that are truly superior and distinguishable from the others.
Additionally, as a reviewer, you may request tests such as
Wilcoxon to determine whether the way each meta-heuristic
operates has changed.

Nomenclature

pi: Probability of selection
f: Objective function
N: Number of populations
α: Crossover blending factor
rk: Random number
t: Generation
β1: Individuality factor
β2: Sociability factor
α: PSO inertia factor
δ1 and δ2: Random parent features.
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