
Medical Image Analysis 47 (2018) 153–163 

Contents lists available at ScienceDirect 

Medical Image Analysis 

journal homepage: www.elsevier.com/locate/media 

A work flow to build and validate patient specific left atrium 

electrophysiology models from catheter measurements 

Cesare Corrado 

a , ∗, Steven Williams a , Rashed Karim 

a , Gernot Plank 

b , Mark O’Neill a , 
Steven Niederer a 

a Division of Imaging Sciences & Biomedical Engineering, King’s College London, London SE17EH, United Kingdom 

b Department of Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria 

a r t i c l e i n f o 

Article history: 

Received 29 September 2017 

Revised 16 February 2018 

Accepted 19 April 2018 

Available online 27 April 2018 

Keywords: 

Atria 

Patient specific 

Biophysical modelling 

Validation 

a b s t r a c t 

Biophysical models of the atrium provide a physically constrained framework for describing the current 

state of an atrium and allow predictions of how that atrium will respond to therapy. We propose a work 

flow to simulate patient specific electrophysiological heterogeneity from clinical data and validate the 

resulting biophysical models. In 7 patients, we recorded the atrial anatomy with an electroanatomical 

mapping system (St Jude Velocity); we then applied an S1–S2 electrical stimulation protocol from the 

coronary sinus (CS) and the high right atrium (HRA) whilst recording the activation patterns using a 

PentaRay catheter with 10 bipolar electrodes at 12 ± 2 sites across the atrium. Using only the activation 

times measured with a PentaRay catheter and caused by a stimulus applied in the CS with a remote 

catheter we fitted the four parameters for a modified Mitchell–Schaeffer model and the tissue conduc- 

tivity to the recorded local conduction velocity restitution curve and estimated local effective refractory 

period. Model parameters were then interpolated across each atrium. The fitted model recapitulated the 

S1–S2 activation times for CS pacing giving a correlation ranging between 0.81 and 0.98. The model was 

validated by comparing simulated activations times with the independently recorded HRA pacing S1–S2 

activation times, giving a correlation ranging between 0.65 and 0.96. The resulting work flow provides 

the first validated cohort of models that capture clinically measured patient specific electrophysiological 

heterogeneity. 

© 2018 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Atrial fibrillation (AF) is a supra-ventricular tachyarrhythmia

hat is characterised by an uncoordinated activation of the atrial

issue ( Skanes et al., 1998; Konings et al., 1994 ), with a consequent

eterioration of mechanical function, Reant et al. (2005) . AF is as-

ociated with an increased incidence of other cardiovascular dis-

ases, stroke and premature death, Chugh et al. (2013) . In drug re-

ractory patients, AF is commonly treated by radio-frequency abla-

ion ( Haïssaguerre et al., 20 0 0; Oral et al., 2002 ). In many patients

he mechanisms underpinning AF are unknown and there are no

onsensus guidelines for treating all patients ( Marchlinski, 2008;

osío, 2011 ), with many patients requiring multiple procedures to

chieve sinus rhythm ( Cappato et al., 2005 ). 

Local tissue properties, identified by fractionated electrograms

 Nademanee et al., 2004 ), and a heterogeneous atrial substrate,
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’Neill et al. (2006) have been proposed to play a significant role

n initiating and sustaining AF. However, measuring these patient

haracteristics and linking them to AF sustenance and treatment

emain challenging. 

Patient specific models have been proposed as a novel ap-

roach to combine anatomical and electrical data to identify the

echanisms underpinning AF in individual patients and to pre-

ict the optimal therapy on a case by case basis, Colli Fran-

one et al. (2006) , Kneller et al. (2002) , Aslanidi et al. (2011) .

hese frameworks brought to light the importance of including

he electrophysiological heterogeneity of the substrate for predict-

ng activation patterns in the atrium, Kneller et al. (2002) and

slanidi et al. (2011) , consistent with clinical observations,

’Neill et al. (2006) . 

Recent advances in medical imaging have resulted in mod-

ls that capture individual anatomy and regions of fibrotic tis-

ue ( McDowell et al., 2012 ) but no modelling framework has cap-

ured individual electrophysiological properties and the distribu-

ion of these properties across the atrium. Data assimilation tech-

iques have been proposed to infer heterogeneous model param-
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.media.2018.04.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2018.04.005&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:cesare.corrado@kcl.ac.uk
https://doi.org/10.1016/j.media.2018.04.005
http://creativecommons.org/licenses/by/4.0/


154 C. Corrado et al. / Medical Image Analysis 47 (2018) 153–163 

Fig. 1. Schematic procedure followed to generate a computational model of the human atrium. The activation map, the local CV and the simulated LATs are depicted on an 

unfolded geometry, Karim et al. (2014) ; the gold dots corresponds to the location where bipolar electrograms were recorded. 
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eters in the ventricles directly from clinical data in individual pa-

tients, Corrado et al. (2015) . These techniques however relied upon

activation and repolarisation data, which are not available from

conventional atrial electrocardiogram recordings, and involve a fit-

ting process that is computationally expensive. 

Previously we have proposed a robust and rapid pacing proto-

col and a model-fitting algorithm for personalising atrial electro-

physiological models, Corrado et al. (2016a) . We have developed a

refined cell model ( Corrado and Niederer, 2016 ) that does not ex-

hibit pacemaker behaviour, removing the need to test for ectopic

beats in model fitting and demonstrated that this model can be

robustly used to infer local material properties from clinical data,

Corrado et al. (2016b) . 

In this paper we present a work-flow that applies our proposed

local electrophysiological fitting approach to several sites of the left

atrium and then generates locally personalised electrophysiology

models of atrial electrophysiology that span the whole left atrium.

Previous studies ( Krueger et al., 2013 ) built patient-specific models

of the atrial anatomy and personalised the electrophysiology using

one catheter location only. We then validate the work-flow with 7

clinical cases by comparing the data activation times from clinical

experiments with predicted activation times generated from sim-

ulations. The predicted and the clinical data showed a correlation

ranging between 0.65 and 0.96 when planar propagation was con-

sidered: this work-flow paves the way to the personalisation of the

procedure treating AF as it enables predictions on the possible out-

comes. 

2. Method 

The atrial model is made in six steps as depicted in Fig. 1 .

First, we record clinical data ( Section 2.1 ). Second, we process the

electro-anatomical mapping data and the corresponding electro-

grams (EGM) to identify the local activation times (LATs) for each

pacing protocol ( Section 2.2 ) and estimate the local effective re-

fractory period (ERP) and the local conduction velocity (CV) at each

coupling interval ( Section 2.3 ). The cell and local tissue activation
odel are described in Section 2.4 . Third, we fit the cell model

arameters and the tissue conductivity to the ERP and the local

V restitution ( Section 2.5 ). The proposed modelling framework for

imulating the left atrium is described in Section 2.6 . Next, we in-

erpolate and extrapolate the local cell model and tissue parame-

ers across the regions of the atrium where no measurements are

vailable ( Section 2.7 ). In step five a simulation of the atrial acti-

ation and repolarisation is implemented ( Section 2.8 ) for an ex-

ernal stimulus on the left atrium located to minimise the activa-

ion error at the largest coupling interval ( Section 2.9 ). Finally, we

alidate the computational model ( Section 2.10 ) by comparing the

easured LATs, with the set of LATs obtained from the numerical

imulations of the clinical pacing procedure. 

.1. Clinical measurements 

Data for this study were collected as part of

illiams et al. (2017b) . Here we provide a brief summary of

he clinical methods. 

.1.1. Patient selection and clinical procedures 

In this paper, we considered clinical patients suffering from

hort, intermittent AF (paroxysmal) and undergoing first time atrial

brillation ablation. None of the cases presented large regions of

ow voltage ( < 0.3 mV). Ethical approval was granted by the Na-

ional Research Ethics Service (10/H0802/77) and all participants

ave written informed consent for inclusion in the study. The re-

earch conformed to the principles described in the Declaration of

elsinki. Patients with ischemic heart disease, cardiac surgery or

tructural heart disease were excluded. Anti-arrhythmic drugs, in-

luding calcium channel blockers, were stopped at least 5 half-lives

efore ablation. Amiodarone was stopped at least 6 weeks prior

o ablation. All clinical procedures were performed under general

naesthesia. Following femoral access and trans-septal puncture,

wo 8.5 French SR0 long sheaths and a PentaRay mapping catheter

Biosense Webster, CA, 1mm electrode size, 4-4-4mm spacing)

ere advanced into the LA. Decapole (St Jude Medical, MN) and



C. Corrado et al. / Medical Image Analysis 47 (2018) 153–163 155 

p  

i

2

 

i  

t  

s  

w  

2  

v  

w  

o  

o  

s  

f  

r  

C  

e  

l

2

 

t  

f  

t  

i  

a  

s  

fi  

l  

C  

C

 

 

 

 

 

 

 

 

 

 

 

p  

(  

a

2

 

c  

t  

p  

r  

p  

i  

t

c  

t  

v  

i  

t  

W  

S  

E  

t

i

v  

n

2

 

i  

N  

(  

r  

t  

I  

m  

e

 

t  

m  

P  

l  

i

2

 

t  

C  

g  

i  

s  

c  

t  

P  

t  

v  

p  

fi  

t  

t  

e  

t  

C  

d  

u  

r  

r  

i

 

t

∂

w  

d  

t  

t  

c  

e  

p  

t  
entapole (Bard Electrophysiology, MA) catheters were positioned

n the coronary sinus and high right atrium, respectively. 

.1.2. Pacing protocol 

The pacing protocol was delivered using a custom-built,

nstitutionally-approved stimulator and consisted of a 2-beat drive

rain ( s 1 = 470 ms ) followed by a single premature extra stimulus

 2 < s 1 . The s 1 s 2 coupling interval was reduced continuously and

ithout operator interference in 2% steps from 343 ms to either

00 ms or loss of capture. All pacing stimuli were delivered at a

oltage of at least twice the threshold voltage and with a pulse

idth of 2 ms. Pacing stimuli were delivered from either the CS

r the HRA, while the activation times were recorded in the body

f the LA using a PentaRay catheter. The PentaRay catheter was

equentially manoeuvred to multiple sites on the endocardial sur-

ace of the LA; bipolar electrograms were recorded throughout in

esponse to complete s 1 s 2 pacing trains, delivered from the mid-

S or HRA. Details on the number of the recorded data points for

ach patient and for each stimulus location is described in the on-

ine supplement. 

.2. Processing electrograms 

We processed the atrial bipolar electrograms from the Pen-

aRay using an in-house developed MATLAB graphical user inter-

ace (GUI). This interface reads in the output files from the elec-

roanatomical mapping system (Ensite Velocity St Jude) and reg-

sters the positions of the recording electrodes to the mapped

trial geometry. For each bipolar pair of electrodes and for each

 1 s 2 coupling interval, we evaluated LATs as the time that the

rst peak (or valley) on the electrogram trace occurs. On bipo-

ar electrodes, where measurements are available, we evaluated

V using a piecewise linear approach, similar to that described in

antwell et al. (2015) and summarised below as follows: 

1. On the site identified by the electrodes forming the PentaRay

catheter, we interpolate the LATs measured at the 10 bipo-

lar electrodes using piecewise-linear polynomia and a Delaunay

triangulation. 

2. We locally compute the gradient of the interpolated LATs and

then we evaluate the modulus of the local CV as the inverse of

the modulus of the gradient. 

3. On each electrode that captured a signal and for each prema-

ture extra stimulus s 2 , we identified the local CV as the me-

dian of the computed CV values within a circular region of ra-

dius R = 2 . 5 cm around the electrode. This radius corresponds

to twice of the length of a catheter spline and removes spurious

CV values from the fitting. 

All calculated fields (LAT and CV at each electrode for each

acing protocol) and the anatomy are then exported to VTK files

 Schroeder et al., 2004 ) providing the input for the model person-

lisation process. 

.3. Generating the input for the fitting algorithm 

From the local CV values, described above, we generated lo-

al CV restitutions using the PentaRay electrograms at each elec-

rode and for each s 1 s 2 pacing protocol when the atrium was

aced in the CS. Plots of the measured CV restitutions at rep-

esentative points of the atria are depicted in the online sup-

lement. We defined CV values to be outside of the physiolog-

cal range if they were greater than 200 cm/s. We determined

his value by first plotting the CV distribution for all the s 2 
oupling intervals and all the clinical data considered, then fit-

ing that distribution to a normal distribution and rounding the

alue that corresponds to the mean + 2SD. The distribution in CV
s presented in the on-line supplement and is consistent with

hose reported in Okano et al. (2010) and Fukumoto et al. (2016) ;

eber et al. (2011) on the left atrium and with those reported in

chilling et al. (2001) for the right atrium. We estimated the local

RP value as the largest s 2 interval that did not produce a local ac-

ivation at the PentaRay electrode. This value was termed S 1 S 2 block 

n Williams et al. (2017b) . Since the pacing protocol uses a single s 1 
alue, only one ERP value is estimated at each PentaRay electrode,

ot a restitution curve. 

.4. Modelling the local electrophysiology 

We characterised the local electrophysiology with the mod-

fied Mitchell–Schaffer (mMS) model presented in Corrado and

iederer (2016) . Like the classical Mitchell-Schaeffer (MS) model

 Mitchell and Schaeffer, 2003 ), this model is described by 4 pa-

ameters ( τ in , τ out , τ open , τ close ), each representing the charac-

eristic time constant of 4 distinct phases of the action potential.

mportantly and in contrast to the original MS model, the mMS

odel does not demonstrate pacemaker behaviour, for any param-

ter combination. 

The chosen cell model is able to capture the measured resti-

ution properties with the smallest number of parameters. The

odel complexity was selected to reflect the available clinical data.

hysiological mechanisms, including cardiac memory and intracel-

ular calcium handling were not recorded and so were not included

n the model. 

.5. Fitting local electrophysiology parameters 

We determined the values of the parameters characterising the

issue electrophysiology by applying the algorithm described in

orrado et al. (2016a,b) . This algorithm fits the restitution curves,

enerated from clinical recordings with the procedure described

n Section 2.3 , to a set of pre-computed restitutions, obtained by

olving a computational model that numerically reproduces the

linical procedure. In this paper, we fit the model parameters to

he CV and ERP derived from activation waves measured at the

entaRay electrode locations and caused by a stimulus applied in

he CS. We estimated the local ERP value as the largest s 2 inter-

al that did not produce a local activation. Differently from the

rocedure described in Corrado et al. (2016a,b) , in this work we

t one ERP as the pacing protocol has a single s 1 , value and not

hree as used previously to generate a restitution curve. We in-

roduced a regularisation on the space distribution of the param-

ters by first evaluating the median values of the parameters on

he electrodes and then introducing in the procedure described in

orrado et al. (2016a,b) a penalisation term, proportional to the

ifference between the candidate parameters and the median val-

es. For each clinical case, the measured CV restitutions and the

estitution curves obtained with the fitting process, prior to the

egularisation step and with the spatial regularisation are depicted

n the online supplement. 

We obtained the pre-computed restitutions from the solution of

he following 1D monodomain mMS electrophysiology problem: 

 t v m 

= D∂ xx v m 

+ I ion ( v m 

, h ) + I app 

here v m 

denotes the trans-membrane potential, D denotes the

iffusion coefficient, h denotes the gate variable, I ion ( v m 

, h ) denotes

he reaction term characterising the ionic current and I app denotes

he externally applied stimulus triggering the depolarisation. We

onsidered a 1D domain with a length L = 10 cm , stimulated at one

nd, on a region of length L stim 

= 0 . 5 mm and following the pacing

rocedure. We discretised the problem in space with a characteris-

ic mesh size h = 200 μm ; we dealt with non-linarites through the
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Table 1 

Parameter values used for building the data set. A set of parameter values ranging 

from the minimum to the maximum value in increments of the step value is cre- 

ated. The data set of candidate solutions was generated by models with each of the 

permutations of the Cartesian products of all of the parameter value sets. 

CV max (cm/s) τ in (ms) h min (adim) τ open (ms) APD max (ms) 

Min 10 0.01 [0.01; 0.1] 65 120 

Max 300 0.31 [0.09; 0.5] 215 270 

Step 10 0.03 [0.02; 0.1] 10 15 
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splitting scheme described in Keener and Sneyd (1998) ; we discre-

tised the cell model with a forward Euler scheme and a time step

dt ODE = 10 μs , while we solved the diffusivity problem with a sec-

ond order Crank–Nicholson scheme and a time step dt PDE = 100 μs .

We then computed the extracellular potential by solving the 1D

equation of the extracellular potential φe : 

d 2 

dx 2 
( v m 

+ 2 φe ) = 0 

obtained by assuming uniform conductivity in the monodomain

model. We assume a mean extracellular potential of zero, as de-

scribed in the on-line supplement in Corrado et al. (2016a) and

thus calculated the bipolar signal is the difference of the extracel-

lular potential evaluated at the two poles forming the electrode.

We computed the bipolar signals for two bipolar pairs of elec-

trodes separated by a distance of 2 mm and a distance of 7 mm

between the barycentre of the two pairs of electrodes, located in

the middle of the domain L to minimise boundary effects. Finally

we evaluated the CV restitutions. Differently from Corrado et al.

(2016a,b) , in this paper we created a data set by sweeping on the

parameter set defined by the maximum value of the action po-

tential duration, APD max , the minimum value of the gate variable

on the null-cline, h min defined in Corrado and Niederer (2016) , the

maximum conduction velocity, CV max , and the τ in and τ open ionic

parameters; we obtained the original set of parameters character-

ising the mMS model by inverting the analytical leading order for-

mulations for CV max , APD max and h min . Details on the procedure

can be found in the online supplement. Even though leading or-

der approximations contain errors, this procedure presents the fol-

lowing two benefits: first, leading order approximations provide

the order of magnitude of the biophysical marker involved and

thus improve the building of a bespoke data set; second, since the

sweeping is performed on the observed quantities, the sensitivity

of the observations on the parameter variations is implicitly ob-

tained. 

In this paper, we evaluated a data set of pre-computed restitu-

tions for a total of 580,800 parameter combinations, characterised

by the values summarised in Table 1 . For the parameter h min , we

chose the candidate values with a step of 0.02 within the interval

[0.01, 0.09] and with a step of 0.1 within the interval [0.1, 0.5]. 

Locally, the tissue is characterised by the conductivity and the

4 characteristic time constants of the mMS model, while the gate

potential was fixed to a value v gate = 0 . 1 (dimensionless). 

2.6. Modelling the left atrium 

In this paper, we describe the atrium as a 2D tissue shell.

The electrophysiology is modelled using the isotropic monodomain

equations, Keener and Sneyd (1998) , this reduces the diffusion ten-

sor to a single scalar value. The model of the atrium aimed to cap-

ture the level of complexity reflected in the available clinical data

and how these data are interpreted by cardiologists. Measurements

are recorded solely on the endocardial surface and despite the po-

tential for transmural activation and the complex fibre structure of

the atrium to play a role in AF, these effects are not considered

(routinely) during clinical procedures and so we do not consider
hem here. For these reasons we represent the atrium in the sim-

lest model possible, given the available clinical data: an isotropic

hell model, with heterogeneous material properties. 

.7. Interpolating local parameters across the whole atrium 

We determined the heterogeneous material properties from

linical measurements as described in Section 2.5 . Measurements

ere not performed across the entire atrium, leaving areas where

o directly measured material properties were available. To infer

he parameters across the entire atrial domain, we characterised

ach geometrical point of the computational mesh produced by

he electro anatomical mapping system (St. Jude) by the param-

ter values estimated at the closest electrodes with respect to the

uclidean distance. We also tested applying a Gaussian filter and a

oisson based interpolation scheme, to estimate the atrial proper-

ies on locations where no direct measurements of material prop-

rties were available; these different approaches were more com-

lex and produced results that were either equivalent or worse to

hose obtained with the nearest neighbour criterion. Results are re-

orted in the online supplement. The models of the atrium were

efined in the Cardiac Arrhythmias Package (CARP) ( Niederer et al.,

011a; Vigmond et al., 2003, 2008 ). In this framework, the con-

uctivities are defined on element groups. In each case, the inter-

olated and smoothed continuous conductivities were binned into

00 element sets with distinct values. For each clinical case, the

istributions of the values of each parameter considered in this pa-

er are depicted in the online supplement. 

.8. The computational model 

We obtained a smoothed geometric mesh ( Niederer et al.,

011b ) by smoothing the electro-anatomical mapping system

natomical mesh with the Poisson filter implemented in the

ESHLAB library, CNR and then clipping the pulmonary veins

nd the mitral annulus with the tools provided by the VMTK

ibrary, Antiga et al. (2008) . With the same library, we gener-

ted a regular triangulation by imposing an edge length of h =
15 μm , and finally we mapped the model parameters from the

riginal mesh to the smooth refined one using a nearest neigh-

our projection. Details on the generated computational meshes

an be found in the online supplement. The model was discre-

ised in space with linear finite elements; the non-linear term de-

cribing the ionic current was treated with a splitting technique,

athmanathan et al. (2012) and Whiteley (2006) . The cell model

as discretised in time with a forward-Euler scheme and a time

tep of dt ODE = 5 μs , while the diffusive parabolic PDE was im-

lemented with a Crank–Nicholson scheme and a time step of

t PDE = 50 μs . We performed numerical simulations with Cardiac

rrhythmias Package (CARP), an electrophysiology solver suitable

or high-performance computing. 

.9. External stimulus 

To initiate the numerical simulations, we apply an external

timulus of intensity I app = 4 m s −1 (this units reflects the dimen-

ions of the model equations introduced in Mitchell and Schaeffer,

003; Corrado and Niederer, 2016 ) and duration t stim 

= 0 . 6 ms, on

 circular region of radius R stim 

= 1 cm . The activation region was

efined as a 1cm disk to reflect the uncertainty in the activation

ocation. This current approximates the activation of the LA from

he wave propagating from the pacing site (CS or HRA) in the clin-

cal procedure. As activation times were not recorded across the

ntire LA we cannot determine the location of the first point of

ctivation in the LA directly from the clinical data. For both CS and
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o  
RA stimulations the stimulus was applied at the first point of ac-

ivation on the LA endocardium. As these two electrodes are not in

irect contact with the left atrial endocardium the activation site

as estimated. To determine the first activation site in the LA and

ence the location of the stimulus in the model we apply the fol-

owing procedure. First, on the computational mesh produced by

he electroanatomical mapping system, we extrapolated the local

V at the largest coupling interval ( s 2 = 343 ) over the whole do-

ain using the nearest-neighbours criterion, as described above

or the model parameters. We then use the CV values to estimate

he LATs over the entire LA using an eikonal model solved with a

raph-based method ( Wallman et al., 2012; Corrado and Zemzemi,

018 ). Second, to identify the point in the mesh where the acti-

ation starts, we loop over each point in the mesh predicting the

AT pattern if the candidate point was the first point to be acti-

ated. This gives an LAT map corresponding to each point in the

esh. Third, to exclude any systematic error produced by the time

equired by the electrical stimulus to reach the simulated stimu-

ation position from the real stimulation position, we shifted the

omputed LATs with an offset equal to the mean difference be-

ween the measured and the computed LATs. Forth, we then evalu-

ted for each point the mean absolute error between the measured

ATs and the times computed with the eikonal model. Finally, we

dentified the centre of the external stimulus as the point that pro-

uced the minimum error. Further details of this procedure can be

ound in the online supplement. 

.10. Validating the atrium models 

We validated the patient specific models generated for each

linical case by comparing the LATs measured during the clinical

rocedure and the LATs obtained from the numerical simulations.

e first tested if the model was able to reproduce the data used to

uild the patient specific model; we thus simulated the LATs ob-

ained when the stimulus is applied on the CS and then we com-

ared the numerical solution with the data recorded during the

linical procedure. Next, we tested the predictive performance of

he personalised model by reproducing the HRA pacing activation

ime of measurements that were not used to constrain the param-

ters. None of the patients considered in this study received an

RI, so we do not have anatomical information to describe either

he location of the heart relative to the torso, or the location and

he shape of the right atrium relative to the left atrium. Thus, we

ave not simulated the right atrium, and we are unable to perform

eaningful simulations of P waves to inform the validation pro-

ess. As before, we shifted the computed LATs with an offset equal

o the mean difference between the measured and the computed

ATs. 

For each coupling interval s 2 , we evaluated the correlation coef-

cients between the measured LATs and the LATs at the electrodes

btained from numerical simulations; some simulations presented

egions that were not activated as a consequence of local refrac-

oriness; this acted as a functional block and prevented the ac-

ivation wave propagating further. In some cases, this resulted in

ownstream electrodes not being stimulated and hence not acti-

ating. The proportion of non-activating electrodes in model simu-

ations are reported in the function block index. We took into ac-

ount this type of error, defining the error on the functional block

s the ratio between the total number of functional block occur-

ences at the electrodes in the numerical simulations, and the total

umber of available LATs measurements at the electrodes. We eval-

ated the following quantities with the measured and computed

ATs on all the electrodes and for all the considered values of s : 
2 
• The regression line , y = mx + q . As the coefficient m is close to

1 and the coefficient q is close to 0, as the model better repre-

sents the experiments. 
• The Pearson correlation coefficient , r . As this coefficient is close to

1 as the simulations are a better representation of the patient. 
• The “covariance slender ratio”, sl. This coefficient corresponds to

the ratio between the two principal components of the covari-

ance matrix. As this coefficient is close to 0, as the model is a

better representation of the data. The covariance between mea-

sured and computed LATs is graphically represented with the

red ellipses depicted on Figs. 5 and 6 . 
• The functional block error , fblock error. This coefficient is a mea-

sure of the electrodes in the computational model where an ac-

tivation was not measured. This error is expressed as a percent-

age and it is defined as follows: 

fblock error = 100 ·
∑ 

i s 2 
Np eval , block 

i s 2 ∑ 

i s 2 
Np meas 

i s 2 

where, fixed the coupling interval s 2 , Np meas 
i s 2 

is the number of

electrodes where an LATs was measured and Np eval , block 
i s 2 

is the

number of electrodes where no activation was measured in the

computed solution. 

The distributions of the absolute and relative errors between

he simulated and the measured LATs, together with their mean

nd standard deviations can be found in the online supplement. 

. Results 

In this section, we present the validation of the locally per-

onalised models on the 7 clinical cases characterised by the

natomies shown in Fig. 2 . On the same figure, we marked with

old spheres the recording electrodes presenting at least one EGM

race. For each site the catheter was manoeuvred, we evaluated a

ircular region centred at the barycentre of the catheter electrodes

nd with radius equal to the mean distance between the electrodes

nd the electrodes barycentre. We considered the union of these

ircular regions as the atrial surface covered by the catheter dur-

ng the procedure and marked in blue on Fig. 2 . 

We apply the validation procedure described in Section 2.10 for

ach of the 7 clinical cases; Figs. 3 and 4 show an example of LATs

btained from numerical simulations for s 2 = 343 ms and the ex-

ernal stimulus applied in the CS or in the HRA. On the same fig-

re, we depicted 10 ms equally spaced isochrones. 

We first tested how the model reproduces the CS pacing LATs

hat we used to constrain the model parameters. In this case, the

orrelation between measured and simulated LATs ( Fig. 5 ) ranged

etween 0.81 and 0.98. The model did not predict 2.59% of the

ctivations (case 3) as reported in Table 2 . 

Next, we validated the model against the LATs we measured

uring HRA pacing by simulating the HRA pacing protocol in the

odel. Since this set of data was not used to constrain the model

arameters, this test allows us to assess the predictive performance

f the personalised models. In this case, the correlation between

easured and simulated LATs ( Fig. 6 ) ranged between 0.65 and

.96. In one case (case 1, Table 2 ), the model did not predict 41.18%

f the activations. In the proximity of the external stimulus, we

easured a region with a large ERP (ERP > 300 ms): as we in-

erpolated the parameters with a nearest neighbour criterion, we

btained an overestimation of the size of the region with this large

RP value, that superimposed on most of the region were stimulus

s applied causing a large area not to be activated. This large er-

or is likely due to insufficient data and small coverage, especially

n the anterior wall. Hence, at least 50 data points covering most

f the regions of LA are required for making a model. For each
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Fig. 2. Anatomies for clinical cases 1–7. The gold spheres represent the position of the electrodes. The blue region represents the atrium surface covered by measurements. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. LATs evaluated by numerical simulations when s 2 = 343 ms and stimulus is applied in the CS. Isochrones are equally spaced with 10 ms intervals. 
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Fig. 4. LATs evaluated by numerical simulations when s 2 = 343 ms and stimulus is applied at HRA. Isochrones are equally spaced with 10 ms intervals. 

Table 2 

Left: indicators used to estimate the accuracy in reproducing the experiments when a model with locally personalised 

electrophysiology is adopted (CS); right: indicators used to estimate the accuracy in reproducing the experiments with 

the same model and pacing on HRA. 

Case ( q, m ) r sl fblock error (%) Case ( q, m ) r sl fblock error (%) 

1 (17.52, 0.8) 0.87 0.07 0 . 00 1 (11.23, 0.96) 0.90 0.05 41 . 18 

2 (11.88, 0.84) 0.98 0.01 0 . 0 2 (17.88, 0.85) 0.65 0.19 0 . 00 

3 (5.93, 0.93) 0.91 0.05 2 . 59 3 ( −1 . 23 , 1.02) 0.86 0.07 0 . 00 

4 (0.12, 1.0) 0.94 0.03 1 . 1 4 (21.36, 0.84) 0.73 0.15 0 . 00 

5 ( −3 . 12 , 1.05) 0.97 0.02 0 . 00 5 (36.44, 0.68) 0.73 0.15 9 . 73 

6 ( −0 . 06 , 1.0) 0.91 0.05 1 . 12 6 (1.74, 0.99) 0.92 0.04 1 . 48 

7 (5.24, 0.95) 0.81 0.10 0 . 65 7 (1.43,0.99) 0.96 0.02 0 . 0 

c  

T  

4

 

a  

s  

a  

t  

u  

a  

t  

t  

l  

v  
ase, the quantities introduced in Section 2.10 are summarised in

able 2 for the models with pacing on CS (left) and on HRA (right).

. Discussion 

In this paper, we validated a method to generate locally person-

lised computational models of the left atrium from clinical mea-

urements. When planar propagation was considered, we obtained
 correlation between the predicted and the measured atrial func-

ion ranging between 0.65 and 0.96 (median 0.86) with a level of

ncertainty on the predicted activation ranging between the 2%

nd 19% (median 7%) of the data variability. The maximum value of

he absolute error on the local activation times was 60 ms when

he stimulus was applied in the CS and 80 ms when the stimu-

us was applied in the HRA (online supplement). The standard de-

iation of the absolute error in the model ranged from 12.84 ms
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Fig. 5. Measured vs estimated activation times for the personalised model (CS). Each point represents a measured vs computed LATs at each electrode and for each s 2 ; each 

colour represents the measurements taken at the electrodes for a fixed s 2 value. 

Fig. 6. Measured vs estimated activation times for the personalised model (HRA). Each point represents a measured vs computed LATs at each electrode and for each s 2 ; 

each colour represents the measurements taken at the electrodes for a fixed s 2 value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

c

 

m  

d  

m  

s

 

s  

t

 

3  

o  

2

 

s  
to 25.79 ms in the model fitting and 12.99 ms to 27.13 ms in

the model validation (online supplement). Further, these values are

comparable with those reported in Sermesant et al. (2012) for ven-

tricles. These numbers need to be placed within the context of

the size of the bipolar electrode (7 mm) and the mean conduc-

tion velocity ( ∼ 1 m/s) so the activation time across the electrode

itself is 7ms. This study makes four main contributions. First, we

have proposed a data assimilation technique for combining elec-

troanatomical mapping data across the atrium into a single com-

mon physically constrained framework. Second, we have extended

our clinical parameter estimation method using the mMS model

and determined the database parameter span based on leading or-

der approximations of physiological readouts. Third, we used an

eikonal method to identify the first point of activation from sparse

LAT clinical recordings. Forth, we have shown that it is possible

to generate and validate patient specific models of atrial electro-
a  
hysiology that capture frequency response and electrophysiologi-

al heterogeneity using electroanatomical mapping recordings. 

Data distributions. Globally, when we stimulated in the CS, we

easured conduction velocities with a mean of 88 cm/s and a stan-

ard deviation of 35 cm/s; when we stimulated in the HRA, we

easured conduction velocities with a mean of 112 cm/s and a

tandard deviation of 49cm/s. 

For each coupling interval s 2 , the conduction velocities obtained

timulating in the HRA presented mean values ∼ 20 cm/s faster

han those obtained when stimulating in the CS. 

The effective refractory periods spanned between 200 and

22 ms, with a mean value of 239 ms and a standard deviation

f 30 ms (CS), and between 212 and 322 with a mean value of

46 ms and a standard deviation of 24 ms (HRA). 

When we stimulated in the CS, on the Anterior wall we mea-

ured conduction velocities ranging between 50 and 133 cm/s, with

 mean standard deviation of 36 cm/s that varies with s 2 in the



C. Corrado et al. / Medical Image Analysis 47 (2018) 153–163 161 

r  

v  

d  

t  

t  

t  

F  

1  

w

 

i  

r  

v  

2  

3

 

s  

a  

r  

v  

d  

t  

t  

t  

F  

1  

w

 

w  

2  

t  

v  

w

 

f  

K  

d  

u  

a  

o  

e  

e  

fi  

t  

m  

d  

n  

a  

p  

t  

a  

w  

c

 

b  

t  

(  

t  

t  

s  

p  

q  

o  

p  

s  

p  

t  

b  

b  

m  

o  

o  

d

 

c  

m  

t  

i  

t  

t  

r  

2  

l  

p  

d  

fi  

d  

p  

e  

e  

a  

n  

K  

t  

u  

(  

e  

m  

d  

s

5

 

d  

t  

w  

c  

i  

t  

c

 

t  

s  

e  

a  

c  

o  

a  

b  

b  

s  

i  

n

 

t  

p  

s  

m  

t  

m  

a  
ange 3–59 cm/s; on the Posterior wall we measured conduction

elocities ranging between 76 and 98 cm/s, with a mean standard

eviation of 16 cm/s that varies with s 2 in the range 5–29 cm/s. On

he left atrial Roof, we measured conduction velocities ranging be-

ween 49 and 94 cm/s, with a mean standard deviation of 33 cm/s

hat varies with s 2 in the range 8–56 cm/s. Finally, on the left atrial

loor, we measured conduction velocities ranging between 64 and

15 cm/s, with a mean standard deviation of 22 cm/s that varies

ith s 2 in the range 9–37 cm/s. 

On each of the regions considered here, we measured a min-

mum value of the ERP of 200 ms. For the Anterior wall, Poste-

ior wall, atrial Roof and atrial Floor we measured maximum ERP

alues of 280, 316, 316 and 304 ms, respectively, mean values of

30 252 228 and 236 ms and standard deviations of 20, 30 25 and

1 ms, respectively. 

When we stimulated in the HRA, on the Anterior wall we mea-

ured conduction velocities ranging between 59 and 118 cm/s, with

 mean standard deviation of 34 cm/s that varies with s 2 in the

ange 3–88 cm/s; on the Posterior wall we measured conduction

elocities ranging between 82 and 126 cm/s, with a mean standard

eviation of 31 cm/s that varies with s 2 in the range 6–52 cm/s. On

he left atrial Roof, we measured conduction velocities ranging be-

ween 54 and 143 cm/s, with a mean standard deviation of 26 cm/s

hat varies with s 2 in the range 2–47 cm/s. Finally, on the left atrial

loor, we measured conduction velocities ranging between 79 and

33 cm/s, with a mean standard deviation of 37 cm/s that varies

ith s 2 in the range 15–50 cm/s. 

For the Anterior wall, Posterior wall, atrial Roof and atrial Floor,

e measured minimum values of the ERP of 212 220 212 and

08 ms respectively, maximum values of 298 274 304 286, respec-

ively, mean values of 249 244 257 and 241 ms and standard de-

iations of 27, 21 31 and 22 ms, respectively. The median values

ere 244 234 257 and 234 ms, respectively. 

Data Assimilation. Inferring heterogeneous parameter values

rom sparse data is challenging. Previous methods based on

alman filtering ( Corrado et al., 2015 ) require solving one or more

irect problems and then sequentially modify the parameter val-

es proportionally to the discrepancy between the measurements

nd the model. This procedure requires the subdivision of the my-

cardium into a set of regions characterised by uniform param-

ters, limiting the resolution on the degree of heterogeneity. At

ach sampling iteration, the algorithm implementing the Kalman

lter inverts a covariance matrix that is full and with a size equal

o the number of parameters to estimate; the computational de-

ands of this process, in particular as far as the solution of the

irect problems is concerned, hampers the application of this tech-

ique to clinical applications. We have developed a computation-

lly efficient and robust method that relies on a large pre com-

uted database of results ( Corrado et al., 2016a ) to ensure an op-

imal parameter set can be found at each location. This method

llows local tissue properties to be inferred, independent of the

hole organ model and allows parameters to be constrained on a

linical time scale. 

Cell model. We described the electrical activity of the cell mem-

rane with the mMS cell model ( Corrado and Niederer, 2016 );

his model was proven to be stable to pacemaker behaviour

 Corrado and Niederer, 2016 ), and to furnish spiral waves charac-

erising tachycardia and AF, Corrado et al. (2016b) equivalent to

hose obtained adopting the MS model ( Corrado et al., 2016a ). The

tability to pacemaker behaviour reduces the time required to ap-

ly the whole process since tests on the stability are no longer re-

uired. Using the mMS model personalisation allows cellular read-

uts (CV, ERP) to be analytically estimated using leading order ap-

roximations. Even though inaccurate, the leading order expres-

ions approximates the value of the cellular readouts for a chosen

arameter set and their sensitivities with respect to the parame-
ers. As the CV and APD are physiological properties with known

ounds it is possible to use this information to constrain the distri-

ution of the parameter estimation data set and to adopt an incre-

ent on the parameter values that produces a significant variation

n measurements. This ensures that the database covers a physi-

logically plausible space and that parameters in the database are

istributed evenly over that space. 

Stimulus location. To perform numerical simulations of electri-

al activation the location of the electrical stimulus must be deter-

ined. When the stimulus is applied at the CS this point is still on

he left atrium, however, the location of the catheter along the CS

s not known; when the stimulus is applied on the HRA one has

o identify the region where the activation front propagates from

he right atrium and then first enters the left atrium. The coarse

esolution of the measurements used in this study ( Williams et al.,

017a ), the partial coverage of the atrial surface and the irregu-

ar geometry of the atrium anatomies prevent using the method

roposed in Fitzgerald et al. (2005) , where stimulus locations are

etermined evaluating the divergence of the conduction velocity

eld. We determined the stimulus location by approximating the

epolarisation front propagation with an eikonal model and com-

aring the predicted LATs with the measured ones considering

ach point of the electroanatomical mesh as onset. To obtain an

stimate of the heterogeneous CV distribution across the whole

trium, we interpolated the values of CV with the same nearest

eighbour criterion adopted for the parameters. Differently from

onukoglu et al. (2011) , in this study we did not model the uncer-

ainty on the parameters on the region where measurements were

navailable, while we adopted an efficient graph-based algorithm

 Wallman et al., 2012; Corrado and Zemzemi, 2018 ) for solving the

ikonal model; this enabled testing each point of the tetrahedral

esh generated by the electroanatomical mapping as onset candi-

ate and then choosing the candidate yielding the minimum least

quare error evaluated at the electrode positions. 

. Limitations 

The challenge of making computational models from clinical

ata are significant. Patients are complex and require a lot of data

o constrain their individual physiology. At the same time recoding

ithin the clinical environment places clear constraints on the data

ollected. Here we discuss some of the challenges that we have

dentified in the collection and analysis of the data in our model

hat place clear caveats on the model and also provide practical

onsiderations for future data collection and model development. 

Clinical measurements are inherently noisy. Even using a Pen-

aRay catheter, often some electrodes are unable to capture any

ignal thus reducing the spatial resolution of the method. Param-

ters are interpolated on regions where no recordings are avail-

ble via a nearest neighbour criteria; when the spatial resolution of

linical measurements is too coarse, this method could present an

verestimation of regions characterised by a localised abrupt vari-

tion of the local electrophysiology properties, such as scar or fi-

rotic regions; a possible solution to reduce the uncertainty on the

oundaries of these regions could be represented by enriching the

patial distribution of the catheter data with data obtained by an

maging technique, such as MRI or CT scan. However this data was

ot available on the 7 cases we have considered here. 

Differently from the cases treated in Corrado et al. (2016a) , in

his paper the electrical stimulus is applied with a remote catheter,

laced either in the CS or in the HRA. This procedure presents

everal issues: first, since we adopt a bipolar configuration of the

easurement electrodes, we can no longer be sure that the ac-

ivation wave is propagating in an orthogonal direction from the

easurement catheter. Second, the probability that the tissue is

ctivated by the catheter stimulus rather than the normal sinus
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rhythm decreases when the distance between the pacing and the

recording sites increases. This may cause a discrepancy between

the applied s 2 and the locally experienced s 2 duration. However,

as we applied the stimulus in a continuous drive train it is unlikely

that we experienced significant sinus rhythm artefacts. Third, when

the distance between the pacing and the recording electrodes in-

creases, the restitution properties at the recording electrodes are

characterised by the local interval between two subsequent activa-

tions, A 1 A 2 , rather than the inter-pacing interval s 1 s 2 . As a con-

sequence, the inter-pacing interval at the electrode location de-

pends on the way the stimulus propagates across the tissue. For

shorter values of s 2 , the correlation between two subsequent stim-

uli s 1 s 2 and two subsequent activations, A 1 A 2 is no longer linear,

thus introducing an additional uncertainty. Fifth, when the stimu-

lus is applied at HRA, it is possible that the left atrium is activated

at more than one location leading to a depolarisation triggered by

two propagation fronts coming from two different directions. The

absence of local minima in the cost function is consistent with no

second stimulus being present in the areas covered by our mea-

surements. However, we are unable to rule out the presence of

second activation sites that have a limited impact on the proposed

cost function. Sixth: we have not included conduction anisotropy

in the model. Locally we did not see any compelling evidence for

tissue anisotropy in the activation patterns. However, this is po-

tentially due to the pacing protocol. When the stimulus is applied

on a remote electrode, the measuring tissue anisotropy requires

recording two activation waves that propagate over the same piece

of tissue, ideally from two orthogonal directions that align per-

fectly with the fibre and cross fibre direction. The pacing protocol

we adopted in this work was not optimised to generate anisotropy

measurements as pacing sites were chosen as two routine clini-

cal pacing locations. In future studies, pacing from the centre of a

PentaRay catheter and measuring a local elliptical activation pat-

tern is one option, but requires enough PentaRay splines to be

in contact to measure activation times spread around the stim-

ulating electrode, which is not guaranteed and may lead to bias

in the measurement locations. The atrium has a complex trans-

mural fibre orientation, while electro-anatomical mapping records

data on the endocardial surface only. Thus, endocardial recordings

are able to measure anisotropy in regions where transmural fi-

bres align to endocardial fibres; regions where transmural fibres

are orthogonal to endocardial fibres may appear as isotropic. As

part of the model creation process, we have performed a validation

study where we compare our model predictions to clinical data not

used to constrain the model. Despite the noise in the measure-

ments, the model limitations and the coverage and resolution of

the measurement, we obtain a strong consistency (see Figs. 5 and

6 and Table 2 ) between the predictions and measurements. Thus,

while anisotropy may be important in specific conditions it ap-

pears less important for predicting endocardial activation patterns

during pacing. 

Seventh: the model was fitted to a standard s 1 s 2 pacing pro-

tocol ( Murgatroyd, 2002; Narayan et al., 2008 ) with s 2 span-

ning 343 ms down to 200 ms, approaching activation intervals

close to the cycle lengths seen in some AF mapping studies

( Haïssaguerre et al., 2007 ). The activation pattern in AF is complex.

Depending on the driver of AF, (mother rotor, ectopic beats or mul-

tiple wavelets ( Schricker et al., 2014 )), the activation rates locally

may be more or less regular. The protocol we have chosen captures

the dynamic changes in pacing rate and may not characterise the

electrical dynamics at faster stable activation rates. However, the

cell model that we use captures the characteristic monotonic de-

creases in ERP and CV as pacing rate accelerates so that the model

provides a physiologically plausible estimate of the electrophysio-

logical dynamics at faster rates that may be seen in AF. 

 

. Conclusions 

In this paper, we presented a pipeline to generate locally per-

onalised computational model of the left atrium from multi-polar

atheter measurements, obtained during a clinical procedure. We

hen applied the method to 7 data sets recorded from paroxysmal

F patients undergoing pulmonary vein isolation. The method we

resented is able to predict personalised atrial activation times us-

ng models that capture an individuals heterogeneous electrophys-

ology and thus paves the way to the study of atrial fibrillation and

omputer guided radio-frequency ablation procedure. 
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