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Meta- analysis and Consolidation of 
Farnesoid X Receptor Chromatin 
Immunoprecipitation Sequencing Data 
Across Different Species and Conditions
Emilian Jungwirth,1-4 Katrin Panzitt,1 Hanns- Ulrich Marschall,5 Gerhard G. Thallinger,2-4 and Martin Wagner 1,3,4

Farnesoid X receptor (FXR) is a nuclear receptor that controls gene regulation of different metabolic pathways and 
represents an upcoming drug target for various liver diseases. Several data sets on genome- wide FXR binding in differ-
ent species and conditions exist. We have previously reported that these data sets are heterogeneous and do not cover 
the full spectrum of potential FXR binding sites. Here, we report the first meta- analysis of all publicly available FXR 
chromatin immunoprecipitation sequencing (ChIP- seq) data sets from mouse, rat, and human across different condi-
tions using a newly generated analysis pipeline. All publicly available single data sets were biocurated in a standardized 
manner and compared on every relevant level from raw reads to affected functional pathways. Individual murine data 
sets were then virtually merged into a single unique “FXR binding atlas” spanning all potential binding sites across 
various conditions. Comparison of the single biocurated data sets showed that the overlap of FXR binding sites be-
tween different species is modest and ranges from 48% (mouse- human) to 55% (mouse- rat). Moreover, in vivo data 
among different species are more similar than human in vivo data compared to human in vitro data. The consolidated 
murine global FXR binding atlas virtually increases sequencing depth and allows recovering more and novel potential 
binding sites and signaling pathways that were missed in the individual data sets. The FXR binding atlas is publicly 
searchable (https://fxrat las.tugraz.at). Conclusion: Published single FXR ChIP- seq data sets and large- scale integrated 
omics data sets do not cover the full spectrum of FXR binding. Combining different individual data sets and cre-
ating an “FXR super- binding atlas” enhances understanding of FXR signaling capacities across different conditions. 
This is important when considering the potential wide spectrum for drugs targeting FXR in liver diseases. (Hepatology 
Communications 2021;5:1721-1736).

Farnesoid X receptor (FXR) is bile acid- activated 
nuclear receptor and transcription factor that 
coordinates nutritional inputs and metabolic 

outputs of the liver and intestine.(1,2) In addition to 
transcriptional regulation of metabolic genes, FXR 

has anti- inflammatory and antifibrotic properties. 
This array of established effects has put FXR in the 
spotlight as a novel therapeutic target for various 
metabolic liver diseases, including bile acid disorders 
and fatty liver disease.(3) However, on a genomic level, 
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FXR occupancy is not limited to these established 
metabolic pathways but spans a much wider range 
of largely unrecognized binding sites that might be 
occupied only under certain (patho)physiological con-
ditions or after ligand activation.(4,5) Understanding 
precise genomic FXR binding and transactivation of 
genes is important to fully reconstruct FXR signaling, 
particularly when targeted by therapeutic drugs in dis-
eased conditions.

Chromatin immunoprecipitation (ChIP) fol-
lowed by next- generation sequencing (ChIP- seq) is 
a method to identify genome- wide binding sites of 
a specific transcription factor and to gain informa-
tion about transcriptional gene regulation, regulated 
pathways, and distinct binding motifs. Several FXR 
ChIP- seq data sets for different species, conditions, 
and cell lines have been reported, and this has helped 
to extend understanding of the molecular and physi-
ological actions of FXR.(4- 11) Comparative ChIP- seq 
studies on rodents and humans are largely lacking 
and divergent. One study compared FXR binding 
between primary human hepatocytes in vitro and 
mouse liver in vivo and found that the global FXR 
binding patterns were largely similar for mouse livers 
and human hepatocytes.(9) Another study compared 
only the transcriptomic effects of FXR activation for 
mouse liver and human precision- cut liver slices and 
found a surprisingly low number of overlapping genes 
in mouse and human.(7) However, these individual 

studies show that the technical quality of single exper-
iments and analyses have markedly evolved over the 
last decade and, importantly, that metabolic and tissue 
backgrounds as well as an underlying disease signifi-
cantly determine FXR binding. Because the metabolic 
background (e.g., normal liver, fatty liver, inflamed or 
fibrotic liver) can change over a lifetime, FXR bind-
ing and effects of ligand activation may also change 
according to the metabolic/diseased background. An 
apprehension of global FXR binding possibilities, 
which takes the sum of information from the different 
individual experiments into consideration, is lacking. 
This information would be of particular importance 
for the nuclear receptor FXR, which is a promising 
drug target for liver diseases with various metabolic 
backgrounds.

A drawback of the single studies is that they are less 
accessible to bench biologists. Therefore, large- scale 
databases, such as Transcriptomine,(12) the follow- up 
database Signaling Pathways Project,(13) or the Chip 
Atlas,(14) have been established that integrate several 
thousand cistromic, epigenomic, and transcriptomic 
data sets and make the data points online accessible 
and searchable for bench biologists. However, they 
only include a subset of the published FXR data sets. 
Moreover, pooling various data sets, which increases 
binding depth and enables extraction of novel infor-
mation and noise reduction, is not possible in these 
large web resources.
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Our aim was to answer the scientific question 
“What are the global binding sites of FXR that are 
accessible under all possible conditions?” To achieve 
this, we created a global FXR binding atlas inde-
pendent of the experimental or metabolic condition. 
This global FXR binding atlas can be used for fur-
ther extended downstream analyses of FXR signaling 
properties and is publicly searchable.

Materials and Methods
Data sets

We searched public sources (National Center for 
Biotechnology Information [NCBI] Sequence Read 
Archive [SRA],(15) Encyclopedia of DNA Elements 
[ENCODE],(16) University of California, Santa Cruz 
[UCSC],(17) The Signaling Pathways Project,(13) 
Cistrome Data Browser,(18) and the ChIP Atlas(14)) 
for available FXR ChIP- seq data sets. By April 2020, 
five in vivo FXR ChIP- seq data sets were available for 
mouse,(4- 8) one in vivo data set for rat,(10) and one in 
vitro data set for primary human hepatocytes.(9) We also 
had access to our own in vivo FXR ChIP- seq data set 
from human liver tissue.(11) The basic characteristics of 
the various data sets, including the study label, which 
consists of an abbreviation of the species (H, M, R) and 
the last author initials (GG,(4) JK,(5) JS,(10) MW,(11) PL,(8) 
SK,(7) TO(6)) from the respective data set, are shown in 
Table 1. Raw reads were available from NCBI SRA(15) 
for all data sets except data sets M_GG and M_TO. For 
M_GG, only called peak tracks were available, which 
were shared by Grace Guo (GG).(4) For M_TO, only 
mapped read tracks were available, which were provided 
by Chong et al.(6) The eight individual data sets included 
different ChIP- seq experiments (Table 1) so that a total 
number of 25 individual FXR ChIP- seq samples were 
available. An overview of the individual samples from 
the various data sets can be found in Supporting Table 
S1. Individual sample names from the different data sets 
are a combination of the abbreviations for their species 
(S), condition (CCCC: NORM, normal; OBES, obese), 
treatment (TTT: BD (1,5,E), ligated bile duct for 1,5 or 
14 days; GW4064, 3- (2,6- dichlorophenyl)- 4- (3ʹ- carbox
y- 2- chlorostilben- 4- yl)oxymethyl- 5- isopropylisoxazole; 
MET, metformin; OCA, obeticholic acid; SH (1,5,E), 
1,5 or 14 days after sham surgery; TCA, taurocholic acid; 
T+M, TCA+MET; VEH, vehicle), laboratory (LL), and 

identification (I) within the data set. This leads to a uni-
form naming format (S_CCCC_TTT_LL_I).

Chip- seq analysis
Raw read handling and read mapping information 

are provided in the Supporting Materials and Methods.
We used MACS2(19,20) (version 2.1.1) for FXR 

peak calling, applying various commonly used param-
eter combinations to evaluate effects on peak call-
ing and determine the most reliable settings. These 
parameter settings included Q- value cutoffs 0.01 or 
0.05; using input DNA, immunoglobulin G (IgG), 
or no control sample; using a fixed or estimated 
fragment length; and two commonly used effective 
genome sizes for human samples (2.45 and 2.7 gigab-
ase pairs [Gbp]). Peaks were further filtered using the 
ENCODE blacklist regions, which represent a com-
prehensive set of genomic regions with a high noise 
level in next- generation sequencing data independent 
of cell line or experiment.(21)

peaK to gene annotation 
anD patHWay analysis

Filtered peaks were annotated to UCSC known 
genes using the R package ChIP- Seeker (version 
1.18.0).(22) Each gene was defined as potentially regu-
lated by FXR if a peak overlapped with the gene or its 
promotor (the following promotor sizes were tested: 
1  kilobase pair [kbp], 5  kbp, 10  kbp, and 20  kbp 
upstream from the transcription start site [TSS]). 
Genes annotated using a promotor size of 1 kbp were 
subjected to a REACTOME(23) pathway analysis 
using the R package ReactomePA (version 1.28.0).(24)

Data set CompaRison
We compared the data sets on the read and peak level 

based on the quality metrics proposed in ENCODE 
and other authoritative ChIP- seq guidelines.(25,26) 
Similarity between the various peak calling results 
and their associated genes was determined using the 
Jaccard distance.(27) We calculated the Jaccard distance 
based on the genes associated with the called peaks. 
The pairwise Jaccard distances were visualized with a 
heatmap. Genes were mapped to corresponding ortho-
logues of other species to correctly estimate the simi-
larity between different species. The Human Genome 
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Organisation Gene Nomenclature Committee 
(HGNC) Comparison of Orthology Predictions 
(HCOP) database was used to find the orthologous 
genes for mouse and rat in humans.(28) In the case of 
multiple orthologues for one gene, the one with the 
highest support was taken. Support was defined by the 
number of databases that contained the orthologue. 
Enrichment of pathways across samples is shown with 
dot plots created with ReactomePA.(24) Additional 
pathway trees for each sample with enriched pathways 
were created to investigate the branch and subtree 
differences between the samples. An overview of this 
workflow is given in Supporting Fig. S1.

geneRation oF a pooleD Data 
set

For pooling, we selected the following eight indi-
vidual mouse samples that were generated using 
the same FXR antibody (sc- 13063; Table 1): (M_
NORM_VEH_PL_1, M_NORM_TCA_PL_2, 
M_NORM_MET_PL_3, M_NORM_T+M_PL_4, 
M_NORM_OCA_SK_1, M_NORM_OCA_SK_2, 
M_NORM_VEH_SK_3, M_NORM_VEH_SK_4). 
We combined the filtered and mapped reads of these 
samples into a new pooled data set, M_POOL_ALL_
MW_1. For samples with more than 10 million dedu-
plicated mapped reads, 500 subsamples were created 
by randomly selecting 10 million reads, which is 
the ENCODE guideline threshold for moderate 
ChIP- seq samples (an exception was made for sam-
ple M_NORM_OCA_SK_2, which had 9.8 million 
deduplicated mapped reads). The subsamples of the 
individual samples were merged to create 500 techni-
cal mouse- pool replicates. Peak calling was performed 
for each of those mouse- pool replicates. Peaks were 
recentered around their summit and resized to 500 bp 
using DiffBind(29) (version 2.10.0). Finally, only peaks 
present in at least 251 of the 500 mouse- pool repli-
cates (“majority rule”) were used as the final mouse- 
pool peaks and all subsequent analyses. The technical 
mouse- pool replicates were necessary to ensure that the 
signal for the recovered peaks (potential FXR binding 
sites) is conserved within the individual data sets.

motiF analysis
We performed a de novo motif analysis for the top 

500 scoring peaks using the MEME suite (version 

4.12.0.0).(30) Sequences flanking the peak summit 
by 100 bp on either side were examined with default 
parameters. Additionally, a motif scan for the canonical 
inverted repeat 1 (IR1) (AGGTCAxTGACCT)(31) and 
everted repeat 2 (ER2) (TGACCTxxAGGTCA)(4,32) 
FXR motifs was performed using the tool FIMO from 
the MEME suite. The scan was performed for the 
HOMER(33) IR1 and the ER2(32) FXR motifs across 
the narrow peaks and wider peak regions. Potential 
binding of FXR to any other motifs was not assessed. 
The narrow and wider peak region were defined as 
250 bp and 1,000 bp upstream and downstream from 
the peak summit.

patHWay anD gene seaRCH 
tool

For easy access to our results, we developed a web- 
based search tool. The search tool gives access to the 
combined/pooled data set and allows comparing the 
individual samples for each potential FXR binding site 
across various treatment conditions as well as for binding 
strength. Binding strength is represented by the num-
ber of filtered deduplicated ChIPed reads within the 
potential binding site normalized to the total number 
of filtered deduplicated ChIPed reads. The mouse Mus 
musculus 10 (mm10) assembly was used as the reference.

Results
Preliminary results, which report the heterogene-

ity of the single data sets and attempts to unify data 
sets from different resources, were presented at the 
thirteenth annual conference on Health Informatics 
Meets Digital Health in Vienna in 2019, and the 
extended meeting abstract has been reported in the 
conference proceedings.(34) Inputs from the meeting 
led to our new analysis strategies and the develop-
ment of the searchable FXR binding tool.

inDiViDual Data sets
FXR ChIP- seq data sets from three different spe-

cies are publicly available; these are five for mice,(4- 8) 
one for rat,(10) one for human primary hepatocytes,(9) 
and one from human liver biopsy samples.(11) Data 
sets included baseline FXR binding and FXR binding 
under pharmacologic treatment (i.e., FXR activation 
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with different ligands) or diseased conditions (i.e., 
diet- induced nonalcoholic fatty liver disease or 
cholestasis) (Table 1; Supporting Table S1). Baseline 
quality criteria among the different single data sets 
were heterogeneous (Supporting Table S3).

impaCt oF DiFFeRent analysis 
paRameteRs on Results oF 
inDiViDual Data sets

All data sets where raw reads were available (M_
JK, M_PL, M_SK, R_JS, and H_MW) as well as data 
set M_TO were analyzed in a uniform manner using 
different variables to determine the optimal analysis 
strategy. The human data set H_MW also included 
both an input and IgG control sample, which was 
critical for analyzing the impact of different control 
samples in ChIP- seq experiments. The significant 
impact of different parameter settings on ChIP- seq 
fidelity has been reported in detail.(35)

Cutoff for Q Value and Fragment size
Changing the fragment size (Fig. 1A), which defines 

the minimum peak width, or Q- value cutoffs (Fig. 
1B) can have a substantial impact on the number of 
called peaks.(35) This is best exemplified for the sample 
M_NORM_VEH_JK_1. Using an IgG control sample 
and estimating the fragment size by MACS2 resulted 
in 40,829 (Fig. 1A, green) and 5,189 (not shown) 
peaks for a Q- value cutoff of 0.05 and 0.01, respec-
tively. However, setting the fragment size to window 
size, as described in Lee et al.,(5) results in only 6,320 
(Fig. 1B, green) and 1,888 (Fig. 1B, green) peaks for 
a Q- value cutoff of 0.05 and 0.01, respectively. In this 
scenario, the fragment size estimated by MACS2 is 
much smaller (67 bp) than the actual one (200 bp). 
Apparently, many small peaks with Q < 0.05, which are 
probably noise because they are shorter than the actual 
window size, lead to additionally called peaks.

impact of Control samples
Background normalization by a control sample 

should remove noise and false- positive peaks and 
should result in a lower number of called peaks, which 
are more reliable.(36) Background normalization is usu-
ally performed using an IgG or input DNA control, 
ideally from the same sample from which the ChIP 

has been performed. However, we found that the 
input and/or IgG control samples may also introduce 
additional noise rather than remove it. When using an 
IgG or input DNA control sample, additional peaks 
can be called, which then have a very low signal com-
pared to their neighborhood. Using IgG, input DNA, 
or no control sample for the H_NORM_VEH_MW_1 
sample results in 4,301, 53,429, or 6,261 called peaks, 
respectively at a Q- value cutoff of 0.05 (Fig. 1A,B, 
red). The significant impact on peak calling depend-
ing on the control sample has also been reported.(35) 
Overall, this suggests that background normalization 
can potentially introduce further bias, particularly 
when comparing results derived from different nor-
malization methods. With respect to the samples we 
analyzed in this study, some of the data sets did not 
include a control sample, some an input DNA con-
trol, and some an IgG control (Table 1). To ensure 
comparable results, we decided to analyze all samples 
without a control sample, as has been suggested.(8) In 
this case MACS estimates the background from the 
ChIP- seq sample itself. Because two different set-
tings for effective genome size are commonly used for 
human samples (2.45 Gb and 2.7 Gb), we also deter-
mined the impact of the genome size on the number 
of called peaks. Depending on background normal-
ization, the numbers of called peaks markedly differ 
between the two genome sizes (Fig. 1C).

The number of peaks called for in the differ-
ent parameter settings in all samples is listed in 
Supporting Table S4. Based on the quality criteria and 
a comparison of the results with already established 
FXR targets, we considered the following parameter 
combination as the most reliable: (i) Q ≤ 0.05; (ii) no 
control sample; (iii) a fixed- fragment length; and (iv) 
an effective human genome size of 2.7 Gbp (hg19) 
for the human samples. These parameters were used 
for all further analyses.

BinDing motiFs
FXR preferentially binds to an IR1 motif consisting 

of AGGTCAxTGACCT. This canonical IR1 motif 
was present in 3.9% (M_OBES_VEH_JK_3) to 55.8% 
(M_NORM_VEH_TO_1) of narrow peaks (defined 
as a 500- bp- wide region) and 20.2% (M_OBES_
VEH_JK_3) to 64.5% (M_NORM_VEH_TO_1) 
in wider peak regions (defined as a 2,000- bp- wide 
region) for the different data sets. The ER2 motif 
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was present in 5.4% (M_OBES_VEH_JK_3) to 39.0% 
(M_NORM_VEH_TO_1) of narrow peaks (defined as 
a 500- bp- wide region) and 30.7% (M_OBES_VEH_
JK_3) to 61.6% (M_NORM_VEH_TO_1) in wider 
peak regions (defined as a 2,000- bp- wide region) for 
the different data sets (Supporting Table S5).

similaRity oF tHe DiFFeRent 
Data sets

Principal component analysis (PCA) based on asso-
ciated human orthologue genes shows that samples of 

the same data set cluster together rather than samples 
from the same condition/treatment from different data 
sets (Fig. 2). The impact of the data set appeared to be 
even stronger than the impact of the species. Of note, 
the human in vivo samples (H_MW) were closer to 
the rodent in vivo samples than to the human in vitro 
samples (H_GG). The Jaccard distance is an alternative 
measure for the dissimilarity of different data sets or 
samples. In line with the PCA, hierarchical clustering 
of the Jaccard distances based on the annotated genes 
also showed that samples preferentially cluster with 
samples of the same data set (Supporting Fig. S2).

Fig. 1. Impact of different analysis settings on the number of peaks. (A) Impact of the fragment size on number of peaks. Three 
representative samples are shown (mouse sample in green, rat sample in blue, and human sample in red). Background normalization was 
separately performed (dependent on availability) with input (DNA) control, no control, and IgG control. The Q value is set to 0.05 for all 
samples. Left bar represents number of peaks with estimated fragment size by MACS2 (est) and the right bar with fixed fragment size set 
to window size (set). If the fragment size estimation by MACS2 is close to the expected fragment size (window size), there are only minor 
differences between the two settings. (B) Impact of the Q value on number of peaks. Three representative samples are shown (mouse sample 
in green, rat sample in blue, and human sample in red). Background normalization was separately performed (dependent on availability) with 
input (DNA) control, no control, and IgG control. Fixed fragment size was set to window size. Left bar represents number of peaks with 
a Q- value cutoff of 0.01 and the right bar with a cutoff of 0.05. Generally, the number of peaks increases with the increase of the Q- value 
threshold. Depending on the control sample, the differences can be remarkable (e.g., input sample for the H_NORM_VEH_MW_1 sample), 
suggesting introduction of bias. (C) Impact of effective genome size on number of peaks. Two different standard effective genome sizes are 
available for the human samples (2.45 Gb and 2.7 Gb). The Q value is set to 0.05 for all analyses. Depending on background normalization 
(Input) the number of called peaks markedly differ between the two genome sizes. Abbreviation: SH1, 1 day after sham surgery.
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pooling oF inDiViDual Data 
sets anD CHaRaCteRiZation 
oF tHe ComBineD Data set

To virtually increase sequencing depth and thereby 
detect potentially new FXR binding sites as well as to 
determine the global FXR binding capacity across dif-
ferent conditions, we created a pooled sample from all 
individual mouse samples that had at least a moderate 
number of reads according to ENCODE standards (i.e., 
10 million reads). This criterion was only met by eight 
samples from data sets M_SK and M_PL but included 
different experimental conditions. By pooling these 
samples on the read level and creating 500 random 
technical replicates from this mouse pool, a summation 
of the individual FXR signals was achieved. The sum-
mation of the FXR signals allows detection of weaker 
FXR binding sites, which are not detected in the indi-
vidual samples because they are below the noise level. As 
the data sets are from different laboratories, only limited 
summation of technical noise was expected and rela-
tively weak biological signals should be amplified. This 
analytical procedure combined with the strict filtering 
of the raw reads was expected to lead to a high- quality 
virtually deep- sequenced FXR ChIP- seq data set.

For the pooled data set, the number of called 
peaks was 13,599 and the number of associated genes 
6,701. The pooled data set confirmed known FXR 
targets, such as nuclear receptor subfamily 0 group B 
member 2 (Nr0b2; alias Shp) and solute carrier fam-
ily 51 subunit beta (Slc51b; alias Ost- β) (Fig. 3A,B). 
Enhancement of weak signals after virtually increas-
ing sequencing depth leads to the calling of novel 
peaks, such as peaks adjacent to ALX homeobox 1 
(Alx1) and lysophosphatidylcholine acyltransferase 4 
(Lpcat4) (Fig. 3C,D). The pooled data set revealed 
2,557 new potential FXR binding sites that were not 
called in the individual mouse samples used for the 
pooled data set. However, 1,171 (46%) of these addi-
tional binding sites were called in at least one of the 
samples that were not included in the pooled data 
set. In addition, about 66% of the liver FXR ChIP- 
seq genes from the M_NORM_GW4_GG_1 data set, 
which was not included in the combined/pooled data 
set because only the peak tracks were available, were 
present in the combined data set. Furthermore, 23% 
of the M_NORM_GW4_GG_1 genes, which were 
not present in any other individual mouse sample, 
were present in the pooled data set. This confirms the 
detection strength and validity of the pooling strategy. 

Fig. 2. Similarity between data sets of different FXR ChIP- seq studies. PCA based on the presence/absence of genes with potential FXR 
binding site for the samples. PCA shows clustering primarily according to data sets and secondarily to species. Rodent genes are mapped 
to their human orthologues to allow comparison of samples with different origins.
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On the contrary, 5,640 binding sites (34% of all dis-
tinct binding sites in the individual data sets) were 
called only in the individual samples. A high propor-
tion of these peaks were likely false positives that were 
filtered out during the pooling process.

In the pooled data set, the IR1 motif was pres-
ent in 3,737 (27.4%) narrow peak and 5,613 (41.2%) 
wider peak regions (Supporting Table S5). The 
most prevalent motif identified by a de novo search 
within the top 500 peaks was the canonical FXR IR1 

Fig. 3. FXR binding peaks and motif of the pooled mouse data set. (A- D) Examples of called peaks and ChIP read coverage. Established 
FXR targets (A) Nr0b2 (Shp) and (B) Slc51b (Ost- β). Two examples, (C) Alx1 and (D) Lpcat4, are only called in the pooled data set 
(M_POOL_ALL_MW_1) but not in any individual sample. The called peak track of the pooled data sets (dark red) and the mean read 
coverage track of the pooled data set (M_Pool; dark red) are shown at the top. The called peak track of individual samples and the read 
coverage track (black) are presented below. (E) A de novo motif analysis reveals the canonical IR1 FXR response element and an additional 
adjacent IR1motif with a spacing of two bases; an ER2 motif is built between the two IR1 motifs. Overall, this forms a tetrameric motif 
with four half sites (AGGTCA) that was found in 288 of the top 500 peaks by MEME suite. Abbreviations: Alx1, ALX homeobox 1; 
Lpcat4, lysophosphatidylcholine acyltransferase; Mb, megabase; Slc51b, solute carrier family 51 subunit beta.
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motif (AGGTCAxTGACCT). In line with a previ-
ous report,(4) we also detected an additional nuclear 
receptor binding site in the immediate proximity of 
the canonical FXR IR1 motif. This additional site can 
correspond either to two IR1 motifs or to an ER2 
motif with accompanying nuclear receptor half sites 
on both ends, forming a tetrameric motif (Fig. 3E). 
The putative tetrameric motif could be recovered in 
28% (when using the default P- value threshold of 1e– 
4) of all mouse- pool FXR peaks.

Peaks were assigned to a gene if they overlapped 
with the gene body or the gene promotor. Depending 
on different promoter definitions, we could annotate 
6,719, 7,297, or 7,959 genes for 1 kbp, 5 kbp, or 10 kbp 
upstream of the TSS, respectively (Fig. 4A; Supporting 
Table S6). The pooled data set recovered more genes 
than any individual mouse sample (Fig. 4A). On aver-
age, the increase of annotated genes was small compared 
to the increase of promotor size, e.g., increasing the pro-
motor size from 1 kbp to 20 kbp increases the number 
of annotated genes on average by merely 40% (Fig. 4B).

Comparison of rat and human data sets to the 
mouse pool data set according to the peak- to- gene 
profile showed that only 33% (5,309 of the overall 
15,944) of annotated genes were present in at least 
one sample of each species. The highest overlap 
was between mouse and rat where 54.9% of anno-
tated genes overlapped. The overlap between human 
and mouse was 47.9% and between human and rat 

47.7% (Fig. 5A; note that these numbers represent 
the overlap between two species, whereas in the fig-
ure, numbers are based on the overlap of all three 
species).

Based on the annotated genes using a promotor size 
of 1  kbp, we performed a REACTOME(23) pathway 
analysis (Fig. 5B; Supporting Table S7). Within the 
pooled data set, 83 significantly enriched pathways were 
found. Most of the significantly enriched pathways 
belonged to the “Metabolism” or “Signal Transduction” 
top layer pathways (Fig. 5B,C). Pathway trees for each 
sample are available in Supporting Figs. S3- S25). 
The pathway analysis of the pooled data set revealed 
significantly enriched pathways, such as the “Notch- 
HLH transcription” pathway, that are not present in 
any of the individual mouse data sets. Some of those 
additional pathways are also present in samples of the 
two other species; an example is the “Macroautophagy” 
pathway, which is present in human and rat samples 
(Table 2; Supporting Table S8). This demonstrates 
both a conservation of FXR dependency of that path-
way across multiple species and validity of additional 
pathways identified by the combined data set.

patHWay anD gene seaRCH 
tool

Based on our pooled FXR binding atlas, we devel-
oped an online search tool (https://fxrat las.tugraz.at) 

Fig. 4. Impact of different promotor sizes on the total number of annotated genes per sample. (A) The number of annotated genes 
increases with the analyzed promotor size. The number of annotated genes in the combined/pooled data set is higher than the number 
of annotated genes in the individual mouse samples (red horizontal line marks the number of annotated genes in the mouse pool data set 
with a promotor size of 1 kbp upstream from the TSS). (B) The relative increase in the number of genes is small compared to the relative 
increase of the promotor size. Graphs show interquartile range (box), median (horizontal line), and outliers (whiskers). Abbreviations: BD 
(1,5,E), ligated bile duct for 1,5 or 14 days; CHOL, cholesterol; SH (1,5,E), 1,5 or 14 days after sham surgery.

https://fxratlas.tugraz.at
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that allows searching for FXR binding sites within 
genes or pathways of interest. It also allows for easy 
comparison between different conditions and treat-
ments (Fig. 6). The user can access data from the 
pool, from an individual sample, from all samples, 
or from a specific condition. Genes and their associ-
ated peaks (potential binding sites of the mouse pool 
M_POOL_ALL_MW_1) are displayed on a genome 
track. The number of reads within a peak normalized 
to the library size is presented in a bar chart to com-
pare the occupancy between the samples for a given 
peak. A summary table for individual genes or entire 
pathways is available for download to further enhance 
the accessibility for the user.

Discussion
Mapping FXR to its genomic binding loci allows 

a global prediction of functional pathways that are 
potentially affected by FXR binding. Mapping of FXR 
binding has been performed in several species and 
under various conditions with interesting results.(4- 11) 

Here, we report the first meta- analysis of all publicly 
available FXR ChIP- seq data sets together with the 
combination of individual data sets; this provides a 
high- quality global picture of all FXR binding sites 
across various conditions with detection of several 
new potentially FXR- regulated genes and pathways.

Eight FXR ChIP- seq data sets consisting of 25 
single FXR ChIP- seq experiments are publicly avail-
able from mouse, rat, and human(4- 11) under different 
experimental conditions. These data sets were ana-
lyzed initially with considerably different parameter 
settings. As peak calling is highly sensitive to these 
settings, we defined a standardized set of parame-
ters that we used in our re- analysis. Most influential 
proved the choice of the control sample, which is gen-
erally underestimated in the studies. A low- quality 
control sample can have significant impact on peak 
calling results even if the ChIP- seq sample is of good 
quality. This influence of control samples on peak 
calling results was also reported in other studies.(35,37) 
Because a control sample was not available for all 
samples, we performed peak calling without control 
to ensure comparable results. With our standardized 
analysis pipeline, we could assess and compare all cri-
teria and observed that the ENCODE thresholds are 
often not reached, which could influence subsequent 
peak calling as well.

An unexpected finding of our comparative analysis 
was that even after standardized analysis the individual 
samples clustered by study rather than by treatment or 
condition. This emphasizes the influence of laboratory 
procedures(38,39) and calls for extended quality control 
in the ChIP- seq workflow. It is known that the anti-
bodies used for ChIP account for a considerable pro-
portion of the variability in the ChIP- seq workflow(40) 
and consequently could also affect our pooled data set. 
This is, however, not the case as the same antibody was 
used for all individual samples used for pooling.

taBle 2. numBeR oF pool genes/patHWays 
not pResent in inDiViDual mouse samples. 

genes anD patHWays tHat aRe only pResent 
in tHe ComBineD (pool) mouse Data 

set But not pResent in tHe inDiViDual 
mouse samples aRe CompaReD to genes 

anD patHWays pResent in Rat anD Human 
Data sets. most oF tHe mouse genes anD 

patHWays oVeRlap WitH tHe Results oF tHe 
Rat anD Human samples

Not in Mouse 
Samples

Overlap With

Rat Human

Genes 180 109 91

Pathways 10 8 7

Fig. 5. Gene and pathway comparison among different species. (A) Overlap of annotated genes between mouse, rat and human. Each circle 
represents all annotated genes (black) and protein coding genes (gray) across all samples within the respective species. Rodent genes are mapped 
to their human orthologues to allow comparison of different species. The highest overlap is observed between mouse and rat. (B,C) Dot plot of 
the (B) overall and (C) metabolic top enriched pathways. Rodent genes are mapped to their human orthologues. The orthologue genes are used 
for the enriched pathway analysis in the Reactome pathway database. Pathway analysis is limited to a gene set size between 10 and 500 and a Q- 
value cutoff of 0.05. The total number of enriched pathways is provided at the bottom. Abbreviations: BD (1,5,E), ligated bile duct for 1,5 or 14 
days; HS- GAG, heparan sulfate/glycosaminoglycan; IP, inositol phosphate; NADE, p75 neurotrophin receptor- associated cell deathexecutor; 
NRAGE, neurotrophin receptor– interacting melanoma- associated antigen; NRIF, nuclear receptor interacting factor; PI, phosphatidylinositol; 
PLC, phospholipase C; PPARA, peroxisome proliferator activated receptor alpha; PwCov, Pathway Coverage -  ratio of genes from a pythway 
found in a sample; SH (1,5,E), 1,5 or 14 days after sham surgery; SREBF, sterol regulatory element- binding transcription factor; SREBP, sterol 
regulatory element- binding transcription protein; SUMO, small ubiquitin- like modifier; TP63, tumor protein 63.
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Individual data sets often exhibit a sequencing 
depth that is too low to identify weak/rare binding 
sites, but deeper sequencing significantly increases 
experimental costs. In this study, we combined all suit-
able mouse reads to create a virtually deeply sequenced 
“FXR- binding- atlas” for a further robust downstream 
analysis of FXR signaling capacities. A potential bias 
within the combined data set might be the varying 
library size of the individual single data sets, which 
ranged from approximately 500,000 to 21,000,000 
deduplicated reads. To overcome this potential bias, 
we aimed to create a pooled data set in which each 
individual sample contributes to the same extent to 
the overall result. We therefore randomly subsampled 
larger samples to a moderate number of reads (i.e., 
10 million) and pooled these reads to create techni-
cal replicates. Using only consistent potential binding 
sites (which were called in the majority of the repli-
cates) resulted in the pooled data set that was closest 
to an ideally merged data set with equal contribution 
of the individual samples. An important external val-
idation was the high overlap with mouse samples, for 
which raw reads were not available and thus were not 
included in the combined data set. Additionally, about 

75% and 70% of the annotated genes of the combined 
murine data set could be found as orthologues in at 
least one of the rat and human samples, respectively.

More genes were detected within the pooled data 
set than within the individual data sets alone, although 
we only used binding sites present in more than half of 
the technical replicates created for the pooled data set. 
The genes of those consistent binding sites revealed 
pathways that were not enriched in the individual 
samples. For example, the “macroautophagy” pathway 
is one of 10 pathways that are only enriched in the 
pooled mouse data set but not in the individual mouse 
samples. This is another important validation of our 
data because autophagy has been identified as a cen-
tral FXR- regulated pathway in several studies.(11,41,42) 
Conversely, some peaks, genes, and pathways present in 
one or more individual mouse samples are not present 
in the pooled data set. An example is the testis- specific 
and Y chromosome- encoded murine pseudogene 
“Tspy- ps,” which is not present in the pooled mouse 
data set although it is present in eight of the individual 
mouse samples. Signals for peaks that are not present 
in the pooled data set are not consistently found in the 
individual samples. This could be explained either by 

Fig. 6. Online pathway and gene search tool. The screenshot shows the search results for the FXR target gene Nr0b2 (Shp) with the 
selected promotor size 1 kb. There is a single peak (potential binding site) within the 1- kbp upstream region of the gene (❶). Selectable 
promotor sizes are 1 kbp, 5 kbp, and 10 kbp (❷). For each sample, the number of reads within the peak normalized to the library size 
(cpm) is presented in the bar chart (❸). The mean cpm and SD for this peak is plotted as a horizontal red line and area, respectively (❹). 
As an alternative to the cpm, it is also possible to select the raw read count only (❺). Samples with a called peak are colored red, the others 
are colored blue. In the case of Nr0b2, the peak within the 1- kb promotor is called for the pooled data set and nine of the 13 individual 
samples (red bars). In this given example, all 14 samples are displayed by default, but it is possible to deselect certain conditions (❻) and 
treatments (❼). Abbreviation: cpm, counts per million.
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a weak signal that is only present under very specific 
conditions, which were only met in a single sample, or 
by peaks that were incorrectly called due to noise in 
the individual sample.

Comparing different species revealed that FXR 
binding and binding- associated genes vary consid-
erably. Although the well- known and established 
genes and pathways of bile acid and cholesterol 
metabolism are shared among the different species, 
approximately 2,200, 1,700, and 1,200 genes are each 
unique to human, mouse, or rat, respectively. This is 
important to consider when rodent models are used 
to establish FXR as a drug target for various disease 
conditions. However, this observation is not specific 
to FXR but has been described for other nuclear 
receptors, such as peroxisome proliferator- activated 
receptor gamma.(43) Interestingly, the human in vivo 
liver samples were more similar to rodent in vivo 
samples than to in vitro human primary hepatocytes. 
Because we only had a single in vitro data set for 
comparison, it is not yet clear whether the differ-
ences are indeed true differences in binding between 
the in vivo and in vitro conditions or due to tech-
nically related issues. It has to be kept in mind that 
liver tissue is composed not only of hepatocytes but 
also of additional cells that harbor FXR, such as 
cholangiocytes, Kupffer cells, endothelial cells, and 
stellate cells. Potential differences in culturing con-
ditions between in vitro and in vivo findings repre-
sent important confounders that must be considered 
when interpreting in vitro data.

De novo motif analysis of the pooled data set sug-
gested a tetrameric motif. It consists of two canonical 
IR1 motifs separated by two bases; this forms an ER2 
motif in the motif ’s center. Overlapping IR1 and ER2 
motifs have been reported for FXR.(4,9) However, it 
is currently not clear whether this tetrameric motif is 
an artefact caused by the overlap of the IR1 and ER2 
motifs or represents a true response element for FXR.

A major drawback of the published genomic FXR 
data is that handling of these data sets and searching for 
specific binding sites requires bioinformatic expertise. 
Furthermore, from the eight published FXR data sets, 
only four are present in the large transcription factor 
web resources.(13,14) We, therefore, developed an easy 
to use, web- based, FXR ChIP- seq search tool com-
prising all currently available FXR data sets (https://
fxrat las.tugraz.at) that allows (i) searching whether or 

not a specific gene of interest harbors FXR binding 
sites, (ii) comparing binding sites across different con-
ditions, and (iii) searching for FXR binding- enriched 
genes within biological pathways of interest.

There are limitations to our study and the pooled 
data set. First, as with any ChIP- seq data, binding 
of a nuclear receptor does not necessarily result in 
altered transcription of the potentially regulated 
gene. A common strategy to overcome this draw-
back is the integration of ChIP- seq data with either 
transcriptomic data or additional ChIP- seq data 
that mark active transcription sites, such as RNA 
polymerase II (PolII) and/or distinct histone modi-
fications.(26) Because our pooled data set is the vir-
tual consolidation of different single ChIP- seq data 
sets, no integration with additional data sets was 
possible. Second, this study was intended as an in 
silico study only, and thus wet- bench validation of 
novel FXR targets and pathways have to be per-
formed in future investigations. Third, analysis has 
been undertaken in liver tissue, which is a mixture 
of different cell lineages. This study therefore gives 
no information of FXR binding within a specific cell 
lineage. Fourth, large- scale databases that integrate 
thousands of data sets and that are publicly search-
able exist(12- 14,44) but have limited FXR coverage. In 
contrast, our study is focused on FXR and covers 
all publicly available FXR data sets and represents 
a unique resource because it combines very differ-
ent data sets. While the large databases only reflect 
data from individual studies, we created a new data 
source based on our pooling approach with novel 
additional information on extensive FXR binding.

In summary, we generated a biocurated global FXR 
binding atlas that encompasses all potential FXR bind-
ing sites across various experimental conditions in mice. 
The FXR binding atlas is publicly available and will help 
wet- bench biologists to specifically search for FXR- 
regulated genes and pathways under various conditions.

Acknowledgment: We thank Lorenz Lilg for setting up 
the host server for our pathway and gene search tool 
and the debaters of the thirteenth annual conference 
on Health Informatics Meets Digital Health (dHealth 
2019, Vienna, Austria) for the fruitful inputs to gener-
ate a solid analysis pipeline across the different hetero-
geneous data sets and to create a common accessible 
searchable tool. We thank Maria Nievoll (Y’plus) for 
critically reading the manuscript.

https://fxratlas.tugraz.at
https://fxratlas.tugraz.at


Hepatology CommuniCations, Vol. 5, no. 10, 2021 JUNGWIRTH ET AL.

1735

ReFeRenCes
 1) Massafra V, van Mil SWC. Farnesoid X receptor: a “homeostat” 

for hepatic nutrient metabolism. Biochim Biophys Acta Mol Basis 
Dis 2018;1864:45- 59.

 2) Fickert P, Wagner M. Biliary bile acids in hepatobiliary injury -  
what is the link? J Hepatol 2017;67:619- 631.

 3) Alawad AS, Levy C. FXR agonists: from bench to bedside, a guide 
for clinicians. Dig Dis Sci 2016;61:3395- 3404.

 4) Thomas AM, Hart SN, Kong B, Fang J, Zhong XB, Guo GL. 
Genome- wide tissue- specific farnesoid X receptor binding in 
mouse liver and intestine. Hepatology 2010;51:1410- 1419. 
Erratum in: Hepatology 2010;52:402.

 5) Lee J, Seok S, Yu P, Kim K, Smith Z, Rivas- Astroza M, et al. 
Genomic analysis of hepatic farnesoid X receptor binding sites 
reveals altered binding in obesity and direct gene repression by 
farnesoid X receptor in mice. Hepatology 2012;56:108- 117.

 6) Chong HK, Infante AM, Seo Y- K, Jeon T- I, Zhang Y, Edwards 
PA, et al. Genome- wide interrogation of hepatic FXR reveals an 
asymmetric IR- 1 motif and synergy with LRH- 1. Nucleic Acids 
Res 2010;38:6007- 6017.

 7) Ijssennagger N, Janssen AWF, Milona A, Ramos Pittol JM, 
Hollman DAA, Mokry M, et al. Gene expression profiling in 
human precision cut liver slices in response to the FXR agonist 
obeticholic acid. J Hepatol 2016;64:1158- 1166.

 8) Lien F, Berthier A, Bouchaert E, Gheeraert C, Alexandre J, Porez 
G, et al. Metformin interferes with bile acid homeostasis through 
AMPK- FXR crosstalk. J Clin Invest 2014;124:1037- 1051.

 9) Zhan LE, Liu H- X, Fang Y, Kong BO, He Y, Zhong X- B, et al. 
Genome- wide binding and transcriptome analysis of human 
farnesoid X receptor in primary human hepatocytes. PLoS One 
2014;9:e105930.

 10) Sutherland JJ, Webster YW, Willy JA, Searfoss GH, Goldstein 
KM, Irizarry AR, et al. Toxicogenomic module associations with 
pathogenesis: a network- based approach to understanding drug 
toxicity. Pharmacogenomics J 2018;18:377- 390.

 11) Panzitt K, Jungwirth E, Krones E, Lee JM, Pollheimer M, 
Thallinger GG, et al. FXR- dependent Rubicon induction im-
pairs autophagy in models of human cholestasis. J Hepatol 
2020;72:1122- 1131.

 12) Becnel LB, Ochsner SA, Darlington YF, McOwiti A, Kankanamge 
WH, Dehart M, et al. Discovering relationships between nuclear 
receptor signaling pathways, genes, and tissues in Transcriptomine. 
Sci Signal 2017;10:eaah6275.

 13) Ochsner SA, Abraham D, Martin K, Ding W, McOwiti A, 
Kankanamge W, et al. The signaling pathways project, an inte-
grated ’omics knowledgebase for mammalian cellular signaling 
pathways. Sci Data 2019;6:252.

 14) Oki S, Ohta T, Shioi G, Hatanaka H, Ogasawara O, Okuda Y, 
et al. ChIP- Atlas: a data- mining suite powered by full integration 
of public ChIP- seq data. EMBO Rep 2018;19:e46255.

 15) Leinonen R, Sugawara H, Shumway M; International Nucleotide 
Sequence Database Collaboration. The sequence read archive. 
Nucleic Acids Res 2011;39:D19- D21.

 16) Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank 
I, et al. The Encyclopedia of DNA elements (ENCODE): data 
portal update. Nucleic Acids Res 2018;46:D794- D801.

 17) Karolchik D, Hinrichs AS, Kent WJ. The UCSC Genome 
Browser. Curr Protoc Bioinformatics 2012;Chapter 1:Unit1.4.

 18) Zheng R, Wan C, Mei S, Qin Q, Wu Q, Sun H, et al. Cistrome 
Data Browser: expanded datasets and new tools for gene regula-
tory analysis. Nucleic Acids Res 2019;47:D729- D735.

 19) Feng J, Liu T, Qin B, Zhang Y, Liu XS. Identifying ChIP- seq en-
richment using MACS. Nat Protoc 2012;7:1728- 1740.

 20) Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein 
BE, et al. Model- based analysis of ChIP- Seq (MACS). Genome 
Biol 2008;9:R137.

 21) Amemiya HM, Kundaje A, Boyle AP. The ENCODE black-
list: identification of problematic regions of the genome. Sci Rep 
2019;9:9354.

 22) Yu G, Wang LG, He QY. ChIPseeker: an R/Bioconductor pack-
age for ChIP peak annotation, comparison and visualization. 
Bioinformatics 2015;31:2382- 2383.

 23) Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, 
Garapati P, et al. The Reactome pathway knowledgebase. Nucleic 
Acids Res 2018;46:D649- D655.

 24) Yu G, He Q- Y. ReactomePA: an R/Bioconductor package 
for reactome pathway analysis and visualization. Mol BioSyst 
2016;12:477- 479.

 25) Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli 
F, Batzoglou S, et al. ChIP- seq guidelines and practices of 
the ENCODE and modENCODE consortia. Genome Res 
2012;22:1813- 1831.

 26) Shin H, Liu T, Duan X, Zhang Y, Liu XS. Computational meth-
odology for ChIP- seq analysis. Quant Biol 2013;1:54- 70.

 27) Jaccard P. Lois de distribution florale dans la zone alpine. Bull Soc 
Vaudoise Sci Nat 1902;38:69- 130.

 28) Eyre TA, Wright MW, Lush MJ, Bruford EA. HCOP: a 
searchable database of human orthology predictions. Brief 
Bioinformatics 2007;8:2- 5.

 29) Ross- Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali 
HR, Dunning MJ, et al. Differential oestrogen receptor bind-
ing is associated with clinical outcome in breast cancer. Nature 
2012;481:389- 393.

 30) Bailey TL, Elkan C. Fitting a mixture model by expectation max-
imization to discover motifs in biopolymers. Proc Int Conf Intell 
Syst Mol Biol 1994;2:28- 36.

 31) Laffitte BA, Kast HR, Nguyen CM, Zavacki AM, Moore DD, 
Edwards PA. Identification of the DNA binding specificity and 
potential target genes for the farnesoid X- activated receptor. J Biol 
Chem 2000;275:10638- 10647.

 32) Ramos Pittol JM, Milona A, Morris I, Willemsen ECL, van der 
Veen SW, Kalkhoven E, et al. FXR isoforms control different 
metabolic functions in liver cells via binding to specific DNA mo-
tifs. Gastroenterology 2020;159:1853- 1865.e1810.

 33) Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. 
Simple combinations of lineage- determining transcription factors 
prime cis- regulatory elements required for macrophage and B cell 
identities. Mol Cell 2010;38:576- 589.

 34) Jungwirth E, Panzitt K, Marschall HU, Wagner M, Thallinger 
GG. A Comprehensive FXR signaling atlas derived from 
pooled ChIP- seq data. Stud Health Technol Inform 2019;260: 
105- 112.

 35) Chen Y, Negre N, Li Q, Mieczkowska JO, Slattery M, Liu T, et al. 
Systematic evaluation of factors influencing ChIP- seq fidelity. Nat 
Methods 2012;9:609- 614.

 36) Vega VB, Cheung E, Palanisamy N, Sung WK. Inherent signals 
in sequencing- based Chromatin- ImmunoPrecipitation control li-
braries. PLoS One 2009;4:e5241.

 37) Marinov GK, Kundaje A, Park PJ, Wold BJ. Large- scale 
quality analysis of published ChIP- seq data. G3 (Bethesda) 
2014;4:209- 223.

 38) Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, 
Johnson WE, et al. Tackling the widespread and critical im-
pact of batch effects in high- throughput data. Nat Rev Genet 
2010;11:733- 739.

 39) Čuklina J, Pedrioli PGA, Aebersold R. Review of batch effects 
prevention, diagnostics, and correction approaches. Methods Mol 
Biol 2020;2051:373- 387.



Hepatology CommuniCations, october 2021JUNGWIRTH ET AL.

1736

 40) Kidder BL, Hu G, Zhao K. ChIP- Seq: technical considerations 
for obtaining high- quality data. Nat Immunol 2011;12:918- 922.

 41) Lee JM, Wagner M, Xiao R, Kim KH, Feng D, Lazar MA, et al. 
Nutrient- sensing nuclear receptors coordinate autophagy. Nature 
2014;516:112- 115.

 42) Seok S, Fu T, Choi S- E, Li Y, Zhu R, Kumar S, et al. 
Transcriptional regulation of autophagy by an FXR- CREB axis. 
Nature 2014;516:108- 111.

 43) Schmidt SF, Jorgensen M, Sandelin A, Mandrup S. Cross- species 
ChIP- seq studies provide insights into regulatory strategies of 
PPARγ in adipocytes. Transcription 2012;3:19- 24.

 44) Becnel LB, Darlington YF, Ochsner SA, Easton- Marks JR, 
Watkins CM, McOwiti A, et al. Nuclear receptor signaling atlas: 
opening access to the biology of nuclear receptor signaling path-
ways. PLoS One 2015;10:e0135615.

Supporting Information
Additional Supporting Information may be found at 

onlinelibrary.wiley.com/doi/10.1002/hep4.1749/suppinfo.

http://onlinelibrary.wiley.com/doi/10.1002/hep4.1749/suppinfo

