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Abstract: Different authors have shown strong relationships between ordinal pattern based entropies
and the Kolmogorov–Sinai entropy, including equality of the latter one and the permutation entropy,
the whole picture is however far from being complete. This paper is updating the picture by
summarizing some results and discussing some mainly combinatorial aspects behind the dependence
of Kolmogorov–Sinai entropy from ordinal pattern distributions on a theoretical level. The paper is
more than a review paper. A new statement concerning the conditional permutation entropy will
be given as well as a new proof for the fact that the permutation entropy is an upper bound for the
Kolmogorov–Sinai entropy. As a main result, general conditions for the permutation entropy being a
lower bound for the Kolmogorov–Sinai entropy will be stated. Additionally, a previously introduced
method to analyze the relationship between permutation and Kolmogorov–Sinai entropies as well as
its limitations will be investigated.
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1. Introduction

The Kolmogorov–Sinai entropy is a central measure for quantifying the complexity of a
measure-preserving dynamical system. Although it is easy from the conceptional viewpoint,
its determination and its estimation from given data can be challenging. Since Bandt, Keller, and
Pompe showed the coincidence of Kolmogorov–Sinai entropy and permutation entropy for interval
maps (see [1]), there have been different attempts to approach the Kolmogorov–Sinai entropy by
ordinal pattern based entropies (see e.g., [2–6] and references therein), leading to a nice subject of study.
In this paper, we want to discuss the relationship of the Kolmogorov–Sinai entropy to the latter kind of
entropies. We respond to the state of the art and give some generalizations and new results, mainly
emphasizing combinatorial aspects.

For this, let (Ω, A , µ, T) be a measure-preserving dynamical system, which we think to be fixed in the
whole paper. Here, (Ω, A , µ) is a probability space equipped with a A -A - measurable map T : Ω→ Ω
satisfying µ(T−1(A)) = µ(A) for all A ∈ A . Certain properties of the system will be specified at the
places where they are of interest. It is suggested for the following to interpret Ω as the set of states of
a system, µ as their distribution, and T as a description of the dynamics underlying the system and
saying that the system is in state T(ω) at time t + 1 if it is in state ω ∈ Ω at time t.

In the following, we give the definitions of the central entropies considered in this paper.
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1.1. The Kolmogorov–Sinai Entropy

The base of quantifying dynamical complexity is to consider the development of partitions and
their entropies under the given dynamics. Recall that the coarsest partitions refining given partitions
P1,P2, . . . ,Pk and P ,Q of Ω are defined by

k∨

s=1

Ps :=

{
k⋂

s=1

Ps 6= ∅ | Ps ∈ Ps for s = 1, 2, . . . , k

}

and
P ∨Q := {P ∩Q 6= ∅ | P ∈ P , Q ∈ Q},

respectively. The entropy of a finite or countably infinite partition Q ⊂ A of Ω is given by

H(Q) := − ∑
Q∈Q

µ(Q) log µ(Q).

For a finite or countably infinite partition P := {Pi}i∈I ⊂ A of Ω and some k ∈ N, consider
the partition

P (k) :=
k−1∨

t=0
T−t(P) = {P(i) 6= ∅ | i ∈ Ik},

where

P(i) :=
k−1⋂

t=0
T−t(Pit)

for each multiindex i = (i0, i1, . . . , ik−1) ∈ Ik. The entropy rate of T with regard to a finite or countably
infinite partition P ⊂ A with H(P) < ∞ is defined by

h(P) := lim
n→∞

1
n

H(P (n)).

The Kolmogorov–Sinai entropy is then defined as

KS := sup
P

h(P),

where the supremum is taken over all finite or over all countably finite partitions P ⊂ A with
H(P) < ∞.

1.2. Ordinal Pattern Based Entropy Measures

As the determination and estimation of the Kolmogorov–Sinai entropy based on the given
definition are often not easy, there are many different alternative approaches to it, among them the
permutation entropy approach by Bandt and Pompe [7]. The latter is built up on the concept of ordinal
patterns, which we describe in a general manner now.

For this, let X = (X1, X2, . . . , Xd) : Ω → Rd be a random vector for d ∈ N. Here, each of the
random variables Xi can be interpreted as an observable measuring some quantity in the following
sense: If the system is in state ω at time 0, then the arschvalue of the quantity mesured at time t provides
Xi(Tt(ω)). This general approach includes the one-dimensional case that states and measurements
coincide, and this is that Ω ⊆ R and X = id is the identical map on Ω. This case, originally considered
in [7] and subsequent papers, is discussed in Section 3. We refer to it as the simple one-dimensional case.

Let
Πn := {(r0, r1, . . . rn−1) ∈ {0, 1, . . . n− 1}n | ri 6= rj for i 6= j}
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be the set of all permutations of length n. We say that a vector (x0, x1, . . . , xn−1) ∈ Rn has ordinal
pattern π = (r0, r1, . . . rn−1) ∈ Πn if

xri−1 < xri or xri−1 = xri and ri < ri−1

holds true for all i ∈ {1, 2 . . . , n− 1}. The n! possible ordinal patterns (compare Figure 1) provide a
classification of the vectors. We denote the set of points with ordinal pattern π1, π2, . . . , πd ∈ Πn with
regard to X1, X2, . . . , Xd, respectively, by

PX
π1,π2,...,πd

=
{

ω ∈ Ω |
(

Xi(ω), Xi(T(ω)), . . . , Xi(Tn−1(ω))
)

has ordinal pattern πi for i = 1, 2, . . . , d
}

and by
OPX(n) :=

{
PX

π1,π2,...,πd
: 6= ∅ | π1, π2, . . . , πd ∈ Πn

}

the partition of Ω into those sets.

Figure 1. Abstract visualization of all 24 possible ordinal patterns of length 4.

We are especially interested in three ordinal pattern based entropy measures. These are the lower
and upper permutation entropies defined as

PEX = lim inf
n→∞

1
n

H
(

OPX(n)
)

and
PEX

= lim sup
n→∞

1
n

H
(

OPX(n)
)

,

respectively, and the conditional entropy of ordinal patterns defined by

CEX = lim inf
n→∞

[
H
((

OPX(n)
)(2))

− H
(

OPX(n)
)]

.

We speak of the permutation entropy if the upper and lower permutation entropies coincide.
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1.3. Outline of This Paper

In Section 2, we will focus on the relationship between permutation and Kolmogorov–Sinai
entropies in the general setting. With Theorems 1 and 3, we will restate two known statements.
A new proof of Theorem 1 will be given in Appendix A.2. Theorem 3 is stated for completeness.
Theorem 2 establishes a new relationship between the conditional permutation entropy and the
Kolmogorov–Sinai entropy.

In Section 3, the relationship between permutation and Kolmogorov–Sinai entropies in the
one-dimensional case is investigated. Conditions are introduced, under which the permutation
entropy is equal to the Kolmogorov–Sinai entropy. The given conditions allow for a generalization
of previous results. We will explain why (countably) piecewise monotone functions satisfy these
conditions and consider two examples.

In Section 4, we will investigate a method to analyze the relationship between permutation
and Kolmogorov–Sinai entropies that was first introduced in [5]. We will use this method to
relate two different kinds of conditional permutation entropies in the general setting. Theorem 5
shows that this method cannot be used directly to prove equality between permutation and
Kolmogorov–Sinai entropies.

The results of the paper are summarized in Section 5. The proofs for all new results can be found
in the Appendix A.

2. Relating Entropies

2.1. Partitions via Ordinal Patterns

Given some d, n ∈ N and some random vector X = (X1, X2, . . . , Xd), the partition described
above can be defined in an alternative way, which is a bit more abstract but better fitting for the
approach used in the proof of Theorem 4:

We can determine to which set Pπ ∈ OPXi (n) a point ω ∈ Ω belongs to if we know whether
Xi(Ts(ω)) < Xi(Tt(ω)) holds true for all s, t ∈ {0, 1, . . . , n− 1} with s < t. Therefore, we can write

OPXi (n) =
n−1∨

s=0

n−1∨

t=s+1

{{
ω ∈ Ω | Xi(Ts(ω)) < Xi(Tt(ω))

}
,
{

ω ∈ Ω | Xi(Ts(ω)) ≥ Xi(Tt(ω))
}}

.

Throughout this paper, we will use the set

R := {(x, y) ∈ R2 | x < y}

to describe the order relation between two points. This notation allows us to write

OPX(n) =
d∨

i=1

n−1∨

s=0

n−1∨

t=s+1

(Ts, Tt)−1
(
(Xi × Xi)

−1
(
{R,R2 \ R}

))
.

2.2. Ordinal Characterization of the Kolmogorov–Sinai Entropy

To be able to reconstruct all information of the given system via quantities based on the random
vector X = (X1, X2, . . . , Xd)→ Rd, we need to assume that the latter itself does not reduce information.
From the mathematical viewpoint, this means that the σ-algebra generated by X is equivalent to the
originally given σ-algebra A , i.e., that

σ
({

Xi ◦ Tt | t ∈ N0, i ∈ {1, 2, . . . , d}
}) µ

= A (1)
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holds true, which is roughly speaking that orbits are separated by the given random vector.
For definitions and some more details concerning σ-algebras and partitions, see Appendix A.1.

The following statement saying that, under (1), ordinal patterns entailing the complete information
of the given system have been shown in [3] in a s slightly weaker form than given here.

Theorem 1. Let X : Ω→ Rd be a random vector satisfying (1). Then,

PEX ≥ lim
k→∞

h
(

OPX(k)
)
= KS (2)

holds true.

Note that the inequality in (2) is a relatively simple fact: Since the partition OPX(n) is finer than
the partition (OPX(k))(n−k) for all n ≥ k, we have

H
(

OPX(n)
)
≥ H

(
(OPX(k))(n−k)

)
.

Dividing both sides by n and taking n and subsequently k to infinity proves this inequality.
Proofs of the inequality PEX ≥ KS are also implicitly given in [1,8]. One-dimensional systems

with direct observation as considered there are discussed in Section 3 in detail.
We will give a proof of the equality in (2) in Appendix A.2 being alternative to that in [3].

2.3. Conditional Entropies

In the case that (1) holds and that KS and PEX coincide, in Appendix A.3, we will prove different
representations of the Kolmogorov–Sinai entropy by ordinal pattern based conditional entropies as
they are given in the following theorem.

Theorem 2. Let X : Ω→ Rd be a random vector satisfying (1). If KS ≥ PEX is true, then

KS = lim inf
n→∞

H
(

OPX(n) | T−1
(
(OPX(n))(k)

))

= lim inf
n→∞

H
(
(OPX(n + 1))(k) | (OPX(n))(k)

)

= PEX = PEX

holds true for all k ∈ N, in particular, in the case k = 1, one has KS = CEX = PEX = PEX.

2.4. Amigó’S Approach

Amigó et al. [2,8] describe an alternative ordinal way to the Kolmogorov–Sinai entropy, which
is based on a refining sequence of finite partitions. We present it in a slightly more general manner
as originally given and in the language of finite-valued random variables. Note that the basic result
behind Amigo’s approach in [2,8] is that the Kolmogorov–Sinai entropy of a finite alphabet source
and its permutation entropy given some order on the alphabet coincide (see also [9] for an alternative
algebraic proof of the statement).

Theorem 3. Given a sequence (Xk)k∈N of R-valued random variables satisfying

(i) #(Xk(Ω)) < ∞ for all k ∈ N,
(ii) σ(Xk) ⊆ σ(Xk+1) for all k ∈ N,

(iii) σ({Xk | k ∈ N}) µ
= A ,

then it holds
lim
k→∞

PEXk = KS.
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3. The Simple One-Dimensional Case

In the following, we consider the case that Ω is a subset of R with A coinciding with the Borel
σ-algebra B on Ω, and with X = id being the identical map on Ω. The X is superfluous here, which is
why we leave out each superscript X. For example, we write OP(n) instead of OPid(n).

3.1. (Countably) Piecewise Monotone Maps

We discuss some generalization of the results of Bandt, Keller, and Pompe that Kolmogorov–Sinai
entropy and permutation entropy coincide for interval maps (see [1]) on the basis of a statement given
in the paper [10]. The discussion sheds some light on structural aspects of the proofs given in that
paper with some potential for further generalizations.

Definition 1. Let Ω be a subset of R and B be the Borel σ-algebra on Ω and µ be a probability measure on
(Ω, B). Then, we call a partitionM = {Mi}i∈I of Ω ordered (with regard to µ), ifM⊂ B and

µ2 ((Mi1 ×Mi2) ∩ R
)
∈
{

0, µ2(Mi1 ×Mi2)
}

(3)

holds true for all i1, i2 ∈ I with i1 6= i2. Here, µ2 denotes the product measure of µ with itself.
We call a map T : Ω → Ω (countably) piecewise monotone (with regard to µ) if there exists a finite (or

countably infinite) ordered partitionM = {Mi}i∈I of Ω with H(M) < ∞ such that

µ2
(
(Mi ×Mi) ∩ R ∩ (T × T)−1(R)

)
∈
{

0, µ2 ((Mi ×Mi) ∩ R)
}

(4)

holds true for all i ∈ I.

Given a probability space (Ω, A , µ), for two families of sets P ,Q ⊆ A , we write

P ≺ Q

if, for all Q ∈ Q, there exists a P ∈ P with µ(Q \ P) = 0. If P = {Pi}i∈I andQ = {Qj}j∈J are partitions
of Ω in A , P ≺ Q is equivalent to the fact that for every i ∈ I there exists a set Ji ⊆ J such that Pi and⋃

j∈Ji
Qj are equal up to some set with measure 0.
Moreover, given a partitionM = {Mi}i∈I of a set Ω, let

M(m) ⊗M(m) := {Mi1 ×Mi2 | Mi1 , Mi2 ∈ M(m)}.

In Appendix A.4, we will show the following statement:

Theorem 4. Let Ω be a subset of R and A = B be the Borel σ-algebra on Ω, and assume that the following
conditions are satisfied:

Condition 1: There exists a finite or countably infinite ordered partition M = {Mi}i∈I ⊂ B with
H(M) < ∞ and some m ∈ N with

M(m) ⊗M(m) ∨ {R, Ω2 \ R} ≺ M(m) ⊗M(m) ∨
m∨

u=1

(T × T)−u
(
{R, Ω2 \ R}

)
. (5)

Condition 2: For all ε > 0, there exists a finite or countably infinite ordered partition Q with H(Q) <
∞ and

∑
Q∈Q

lim sup
n→∞

1
n

n

∑
l=1

µ(Q ∩ T−l(Q)) < ε. (6)
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Then,
PE ≤ KS

holds true.

Theorem 4 extracts the two central arguments in proving the main statement of [10] in the form
of Conditions 1 and 2. This statement is given in a slightly stronger form in Corollary 1. In the proof
of [10], the m in Condition 1 is equal to 1. We will discuss in Section 3.2 a situation where Condition 1
with m = 2 is of interest.

Corollary 1. Let Ω be a compact subset of R and A = B be the Borel σ-algebra on Ω. If T is (countably)
piecewise monotone, then

PE ≤ KS

holds true.

Since below we directly refer to the main statement in [10], which assumes compactness, and for
simplicity, the Theorem is formulated under this assumption, we however will discuss a relaxation of
the assumption in Remark A1.

To prove the above corollary, one needs to verify that Conditions 1 and 2 are satisfied for
one-dimensional systems if T is piecewise monotone. It is easy to see that Condition 2 holds true for T
being aperiodic and ergodic: If T is aperiodic, for any ε > 0, one can choose a finite ordered partition
Q such that µ(Q) < ε holds true for all Q ∈ Q. The ergodicity then implies

∑
Q∈Q

lim sup
n→∞

1
n

n

∑
l=1

µ(Q ∩ T−l(Q)) = ∑
Q∈Q

µ(Q)2 < ∑
Q∈Q

µ(Q) · ε = ε.

One can also show that Condition 2 is true for non-ergodic aperiodic compact systems (see Remark A1
and [10]).

If T is (countably) piecewise monotone, there exists a finite (or countable infinite) ordered partition
M = {Mi}i∈I with H(M) < ∞ satisfying (4), which is equivalent to

µ2
(

Mi ×Mi ∩ R ∩ (T × T)−1(R)
)
∈
{

0, µ2
(

Mi ×Mi ∩ (T × T)−1(R)
)}

for all i ∈ I. Therefore,

{Mi ×Mi} ∨ {R, Ω2 \ R} ∨ (T × T)−1
(
{R, Ω2 \ R}

) (4)
≺ {Mi ×Mi} ∨ (T × T)−1

(
{R, Ω2 \ R}

)
(7)

is true for all i ∈ I. BecauseM is an ordered partition, we have

{Mi1 ×Mi2} ∨ {R, Ω2 \ R}
(3)
≺ {Mi1 ×Mi2} (8)
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for all i1 6= i2 ∈ I. This implies

M⊗M∨ {R, Ω2 \ R}

=




∨

(i1,i2)∈I2 :
i1 6=i2

{Mi1 ×Mi2} ∨ {R, Ω2 \ R}


 ∨

(
∨

i∈I
{Mi ×Mi} ∨ {R, Ω2 \ R}

)

(8)
≺

∨

(i1,i2)∈I2 :
i1 6=i2

{Mi1 ×Mi2} ∨
(
∨

i∈I
{Mi ×Mi} ∨ {R, Ω2 \ R}

)

≺
∨

(i1,i2)∈I2 :
i1 6=i2

{Mi1 ×Mi2} ∨
(
∨

i∈I
{Mi ×Mi} ∨ {R, Ω2 \ R} ∨ (T × T)−1({R, Ω2 \ R})

)

(7)
≺

∨

(i1,i2)∈I2 :
i1 6=i2

{Mi1 ×Mi2} ∨
(
∨

i∈I
{Mi ×Mi}(T × T)−1({R, Ω2 \ R})

)

≺
∨

(i1,i2)∈I2

{Mi1 ×Mi2}(T × T)−1({R, Ω2 \ R})

=M⊗M∨ (T × T)−1({R, Ω \ R}).

Hence, Condition 1 holds true if T is (countably) piecewise monotone. To show that Corollary 1 holds
true if the dynamical system is not aperiodic, one splits the system into a periodic part and an aperiodic
part in the following way:

Let

Θ :=
∞⋃

t=1

{ω ∈ Ω | Tt(ω) = ω}

be the set of periodic points. Assume that µ(Θ) /∈ {0, 1} is true. Then,

PE ≤ lim sup
n→∞

1
n

H(OP(n) ∨ {Θ, Ω \Θ})

= lim sup
n→∞

1
n
[H(OP(n) ∨ {Θ, Ω \Θ})− H(Θ, Ω \Θ)]

= µ(Θ) · lim sup
n→∞

1
n
− ∑

Pπ∈OP(n)

µ(Pπ ∩Θ)

µ(Θ)
log
(

µ(Pπ ∩Θ)

µ(Θ)

)
(9)

+ µ(Ω \Θ) · lim sup
n→∞

1
n
− ∑

Pπ∈OP(n)

µ(Pπ \Θ)

µ(Ω \Θ)
log
(

µ(Pπ \Θ)

µ(Ω \Θ)

)
(10)

holds true, where (9) is the periodic part of the upper permutation entropy and (10) the aperiodic part.
One can use the aperiodic version of Corollary 1 to show that the Kolmogorov–Sinai entropy is an
upper bound for (10). The proof of Corollary 1 for non-aperiodic dynamical systems is complete with
Lemma A5 in Appendix A.4, which shows that (9) is equal to 0.

3.2. Examples

In order to illustrate the discussion in Section 3.1, we consider two examples. The first one reflects
the situation in Corollary 1, and the second one discusses the case m = 2 in Condition 1 in Theorem 4.
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Example 1 (Gaussian map). The map T : [0, 1]→ [0, 1] with

T(ω) =

{
1/ω mod 1, if ω > 0,

0, if ω = 0

is called a Gaussian map (see Figure 2a). This map is measure-preserving with regard to the measure µ, which is
defined by µ(A) = 1

log 2

∫
A

1
1+x dx for all A ∈ B [11]. The partitionM = {[ 1

n+1 , 1
n [| n ∈ N} ∪ {{0}} of

[0, 1] is a countably infinite partition into monotony intervals of T satisfying H(M) < ∞. This map is countably
piecewise monotone and ergodic. Thus, its Kolmogorov–Sinai entropy is equal to its permutation entropy.
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Example 2. Consider Ω = [0, 1[ and the Borel σ-algebra B on Ω. Set

S :=
∞

∑
i=0

1
(i + 1)(log(i + 1))2 ,

mi :=
1
S
· 1
(i + 1)(log(i + 1))2 for i ∈ N,

a0 := 0,

a1 := m1,

ai := 1− mi+1

m1
for i ≥ 2,

Mi := [ai−1, ai[ for i ∈ N.

The map T : Ω→ Ω is defined as piecewise linear on each set Mi (see Figure 2b) by

T(ω) =





ω
m1

, if ω ∈ M1,

ai−1 · ai−ω
ai−ai−1

+ ai−2 · ω−ai−1
ai−ai−1

, if ω ∈ Mi with i ∈ N \ {1}.

Let λ be the one-dimensional Lebesgue measure. Define a measure µ on (Ω, B) by

µ(A) :=
∞

∑
j=1

mj · λ(A ∩Mj)

λ(Mj)

for all A ∈ B.
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One can verify that T is measure-preserving and ergodic with regard to µ. The partitionM := {Mi}i∈N
does satisfy (5) for m = 1, but H(M) = ∞ holds true. Therefore, Condition 1 does not hold true for m = 1.
However, one can show that Condition 1 holds true for m = 2 and the partitionM′ := {M1,

⋃∞
m=2 Mi}, which

implies that the Kolmogorov–Sinai entropy is equal to the permutation entropy of this map due to Theorem 4.

4. A Supplementary Aspect

To determine under what conditions the Kolmogorov–Sinai entropy and the upper or
lower permutation entropies coincide remains an open problem in the general case, and in the
simple one-dimensional case of maps not being (countably) piecewise monotone the relation of
Kolmogorov–Sinai and upper and lower permutation entropies is not completely understood. There
is not even known an example where the entropies differ. Finally, we shortly want to discuss a
further approach for discussing the relationship of Kolmogorov–Sinai entropy and upper and lower
permutation entropies.

In [12], it was shown that under (1) the Kolmogorov–Sinai entropy is equal to the permutation
entropy if roughly speaking the information contents of ‘words’ of k ’successive’ ordinal patterns
of large length n is not too far from the information contents of ordinal patterns of length n + k− 1.
We want to explain this for the simple one-dimensional case and k = 2.

The ordinal pattern of some (x0, x1, . . . , xn) contains all information on the order relation between
the points x0, x1, . . . , xn. When considering the ‘overlapping’ ordinal patterns of (x0, x1, . . . , xn−1) and
(x1, x2, . . . , xn), one has the same information with one exception: The order relation between x0 and
xn is not known a priori. Looking at the related partitions, the missing information is quantified
by the conditional entropy H(OP(n + 1)|OP(n) ∨ T−1(OP(n))). There is one situation reducing this
missing information, namely that one of the xi; i = 1, 2, . . . , n− 1 lies between x0 and xn. Then, the
order relation between x0 and xn is known by knowing the ordinal patterns of (x0, x1, . . . , xn−1) and
(x1, x2, . . . , xn). Therefore, the following set is of some special interest:

Vn := {ω ∈ Ω | ω ≤ Tn(ω) and Ts(ω) /∈ (ω, Tn(ω)) for all s ∈ {1, 2, . . . , n− 1}}
∪ {ω ∈ Ω | Tn(ω) ≤ ω and Ts(ω) /∈ (Tn(ω), ω) for all s ∈ {1, 2, . . . , n− 1}} . (11)

The following is shown in Appendix A.5:

Lemma 1. Let Ω be a subset of R and A = B be the Borel σ-algebra on Ω. Then,

H
(

OP(n + 1)|OP(n) ∨ T−1(OP(n))
)
≤ log(2) · µ(Vn) (12)

holds true for all n ∈ N.

This indicates that analyzing the measure of Vn as defined in (11) can be a useful approach to gain
inside into the relationship between different kinds of entropies based on ordinal patterns. In particular,
the behavior of µ(Vn) for n→ ∞ is of interest.

Lemma 2. Let Ω be a subset of R and A = B be the Borel σ-algebra on Ω. If T is ergodic, then

lim inf
n→∞

µ(Vn) = 0

holds true, and, if (stronger) T is mixing, then

lim
n→∞

µ(Vn) = 0

holds true.
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The statement under the assumption of mixing has been shown in [5], and the proof in the ergodic
case is given in Appendix A.5.

One can show that in the simple one-dimensional case the Kolmogorov–Sinai entropy is equal to
the permutation entropy if

∞

∑
n=1

H
(

OP(n + 1)|OP(n) ∨ T−1(OP(n))
)
< ∞ (13)

holds true. Using (12), this is the case when ∑∞
n=1 µ(Vn) is finite, providing a fast decay of the µ(Vn).

However, we have ∑∞
n=1 µ(Vn) = ∞ as stated in Theorem 5, which will be proved in Appendix A.6.

Theorem 5. Let Ω be a subset of R, A = B be the Borel σ-algebra on Ω and T be aperiodic and ergodic. Then,

∞

∑
n=1

µ(Vn) = ∞

holds true.

Although formula ∑∞
n=1 µ(Vn) < ∞ is false, we cannot answer the question of whether or

when (13) is valid. Possibly, an answer to this question, and a better understanding of the kind of decay
of the µ(Vn), could be helpful in further investigating the relationship of Kolmogorov–Sinai entropy
and upper and lower permutation entropies, at least in the simple one-dimensional ergodic case.

5. Conclusions

With Theorem 1, we have slightly generalized a statement given in [3] by removing a technical
assumption and using more basic combinatorial arguments. The remaining assumption (1) on the
random vector X cannot be weakened in general.

In Section 2.3, we have shown that the equality of the permutation entropy and
the Kolmogorov–Sinai entropy implies the equality of conditional permutation entropy and
Kolmogorov–Sinai entropies as well. We considered two different kinds of conditional permutation
entropy, which have turned out to be equal in the cases considered in Section 2.3; it is however not
clear whether these two kinds of conditional permutation entropy are equal in the general.

In Section 4, we have established some condition under which these two kinds of conditional
entropy are equal, independently from of the equality between permutation and Kolmogorov–Sinai
entropies. This condition is based on a concept introduced in [5] that was originally introduced as a
tool for better understanding the relationship between permutation and Kolmogorov–Sinai entropies
in a general setting. However, with Theorem 5, we have shown that this tool cannot directly be
used to show the equality between permutation and Kolmogorov–Sinai entropies. It is an interesting
question of whether and how a clever adaption and improvement of it can allow for new insights in
the relationship between permutation and Kolmogorov–Sinai entropies.

In Section 3, we considered the simpler one-dimensional case. With Theorem 4, we have given
two conditions under which the permutation entropy is a lower bound for the Kolmogorov–Sinai
entropy. This theorem generalizes previous statements in [1] and slightly generalizes a statement
in [10]. One of the conditions (Condition 2) holds true for a large class of dynamical systems, while,
for the other one (Condition 1) to hold true, it is necessary that the system is in some sense ’order
preserving’. It is still an unsolved and interesting question, whether Condition 1 can be weakened,
especially since, to the best of our knowledge, there does not exist a counterexample to the equality of
permutation entropy and Kolmogorov–Sinai entropies. Finding a generalization of Theorem 4 to a
multidimensional setting is a further interesting question one could ask.
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Appendix A. Proofs

Appendix A.1. Preliminaries

Given a probability space (Ω, A , µ) and two σ-algebras A1, A2 ⊆ A , we write

A1

µ

⊆ A2

if for all A1 ∈ A1 there exists A2 ∈ A2 with µ(A1 \ A2) + µ(A2 \ A1) = 0. We write

A1
µ
= A2

if both A1

µ

⊆ A2 and A2
µ

⊆ A1 hold true.
For a collection of R-valued random variables {Xi}i∈I defined on some measure space (Ω, A ),

we denote by
σ ({Xi | i ∈ I})

the smallest σ-algebra containing all sets in {X−1
i (B) | i ∈ I, B ∈ B}, where B is the Borel σ-algebra

on R.
Given a family of disjoint sets P ⊆ A and some set Q ∈ A , we define

∆(P|Q) := {P ∈ P | µ(P ∩Q) > 0}

as those sets in P that are intersecting Q almost surely.
For two partitions P and Q of Ω in A , the number of elements in ∆(P|Q) can be used for an

upper bound of the conditional entropy H(P|Q) := H(P ∨Q)− H(Q):
Consider the function f : [0, 1]→ R with f (x) = x log(x). Since f is convex, Jensen’s inequality

provides

∑
P∈∆(P|Q)

µ(P ∩Q) log(µ(P ∩Q))

=#∆(P|Q) ∑
P∈∆(P|Q)

1
#∆(P|Q)

· f (µ(P ∩Q))

≥#∆(P|Q) · f


 ∑

P∈∆(P|Q)

1
#∆(P|Q)

· µ(P ∩Q)




=#∆(P|Q) · f
(

µ(Q)

#∆(P|Q)

)

=#∆(P|Q) · µ(Q)

#∆(P|Q)
· log

(
µ(Q)

#∆(P|Q)

)

=µ(Q) · (log(µ(Q))− log(#∆(P|Q)))
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for all Q ∈ Q. Using the above inequality implies

H(P ∨Q) = − ∑
Q∈Q

∑
P∈P

µ(P ∩Q) log(µ(P ∩Q))

= − ∑
Q∈Q

∑
P∈·(P|Q)

µ(P ∩Q) log(µ(P ∩Q))

≤ − ∑
Q∈Q

µ(Q) · (log(µ(Q))− log(#∆(P|Q)))

= H(Q) + ∑
Q∈Q

µ(Q) · log(#∆(P|Q)).

This is equivalent to
H(P|Q) ≤ ∑

Q∈Q
µ(Q) · log(#∆(P|Q)). (A1)

Appendix A.2. Proof of the Equality in Formula (2)

The proof is based on the following Lemma A1 and Corollary A1.

Lemma A1. Let X : Ω → R be a random variable and U a finite ordered partition of R with regard to the
image measure µX . Then, for P := X−1(U ), n ∈ N and all Pπ ∈ OPX(n)

#∆(P (n)|Pπ) ≤
(

n + #U − 1
#U − 1

)

holds true.

Proof. Set I = {1, 2, . . . , #U} and label the sets Ui ∈ U with i ∈ I in such a way that

i1 < i2 ⇒ µ2({(ω1, ω2) ∈ (X−1(Ui1)× X−1(Ui2)) : X(ω1) > X(ω2)}) = 0 (A2)

holds true for all i1, i2 ∈ I. Since U is assumed to be an ordered partition, this is always possible. Set
Pi := X−1(Ui) for all i ∈ I so that P = {Pi}i∈I .

Fix n ∈ N and Pπ ∈ OPX(n). Using

P(i) =
n−1⋂

t=0
T−t(Pit)

for all i = (i0, i1, . . . in−1) ∈ In, we have

#∆(P (n)|Pπ) = #{i ∈ In : µ(P(i) ∩ Pπ) > 0}.

There exists a permutation π = (r0, r1, . . . , rn−1) of {0, 1, . . . , n− 1} such that

X(Tr0(ω)) ≤ X(Tr1(ω)) ≤ . . . ≤ X(Trn−1(ω))

holds true for all ω ∈ Pπ . Using (A2), this implies

ir0 ≤ ir1 ≤ . . . ≤ irn−1
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for all i = (i0, i1, . . . in−1) ∈ In with µ(P(i) ∩ Pπ) > 0. Therefore,

#∆(P (n)|Pπ) = #{(i0, i1, . . . in−1) ∈ In : µ(P(i) ∩ Pπ) > 0}
≤ #{(i0, i1, . . . in−1) ∈ In : ir0 ≤ ir1 ≤ . . . ≤ irn−1}

=

(
n + #U − 1

#U − 1

)

holds true for all Pπ ∈ OPX(n).

The lemma can be used to directly prove the following result.

Corollary A1. Let X = (X1, X2, . . . , Xd) : Ω → Rd be a random vector and U a finite partition of R into
intervals. Then,

h

(
d∨

i=1

X−1
i (U )

)
≤ lim

k→∞
h
(

OPX(k)
)

holds true.

Proof. Take k, m ∈ N and set Pi := X−1
i (U ). Then,

H(P (mk)
i |(OPXi (k))(mk))

≤
m−1

∑
t=0

H(T−kt(P (k)
i )|(OPXi (k))(mk))

≤
m−1

∑
t=0

H(T−kt(P (k)
i )|T−kt(OPXi (k)))

= mH(P (k)
i |OPXi (k))

holds true for all i ∈ {1, 2, . . . , d}. Together with (A1) and Lemma A1, this provides

h

(
d∨

i=1

Pi

)
= lim

n→∞

1
n

H

(
d∨

i=1

P (n)
i

)
= lim

m→∞

1
mk

H

(
d∨

i=1

P (mk)
i

)

≤ lim
m→∞

1
mk

H

(
d∨

i=1

P (mk)
i ∨ (OPX(k))(mk)

)

= lim
m→∞

1
mk

[
H((OPX(k))(mk)) + H

(
d∨

i=1

P (mk)
i |(OPX(k))(mk)

)]

≤ lim
m→∞

1
mk

[
H((OPX(k))(mk)) +

d

∑
i=1

H
(
P (mk)

i |(OPX(k))(mk)
)]
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≤ lim
m→∞

1
mk

[
H((OPX(k))(mk)) +

d

∑
i=1

H
(
P (mk)

i |(OPXi (k))(mk)
)]

≤ lim
m→∞

[
1

mk
H((OPX(k))(mk)) +

d

∑
i=1

1
k

H(P (k)
i |OPXi (k))

]

= h(OPX(k)) +
d

∑
i=1

1
k

H(P (k)
i |OPXi (k))

≤ h(OPX(k)) +
d

∑
i=1

1
k ∑

Pπ∈OPXi (k)

µ(Pπ) log(#∆(P (k)
i |Pπ))

≤ h(OPX(k)) +
d

∑
i=1

1
k ∑

Pπ∈OPXi (k)

µ(Pπ) log
((

k + #U − 1
#U − 1

))

≤ h(OP(k)) +
d
k

log
(
(k + #U − 1)#U−1

)

= h(OP(k)) + d(#U − 1) · log(k + #U − 1)
k

for all k ∈ N, which implies

h(P) ≤ lim
k→∞

[
h(T, OP(k)) + d(#U − 1) · log(k + #U − 1)

k

]
= lim

k→∞
h(OP(k)).

We are now able to prove of the equality in (2). Let pi : Rd → R with pi((x1, x2, . . . , xd)) = xi
be the projection on the i-th coordinate, and let B(Rd) denote the Borel σ-algebra on Rd. Since this
σ-algebra is generated by sets of the type

I1 × I2 × . . . Id,

where Ii are intervals, there exists an increasing sequence of finite partition (Ul)l∈N of R into intervals,
such that

B(Rd) = σ
({

p−1
i (Ul) | l ∈ N, i ∈ {1, 2, . . . , d}

})

holds true. Using (1), this implies

A = σ
({

T−t
(

X−1(p−1
i (Ul))

)
| t ∈ N0, l ∈ N, i ∈ {1, 2, . . . , d}

})

= σ
({

T−t
(

X−1
i (Ul)

)
| t ∈ N0, l ∈ N, i ∈ {1, 2, . . . , d}

})

= σ

({
T−t

(
d∨

i=1

X−1
i (Ul)

)
| t ∈ N0, l ∈ N}

})
.

Thus, (Pl)l∈N with

Pl :=
d∨

i=1

X−1
i (Ul)

is a generating sequence of finite partitions, which implies (see e.g., [13])

KS = lim
l→∞

h(Pl).

Corollary A1 provides
h(Pl) ≤ lim

k→∞
h(OPX(k))
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for all l ∈ N. Combining the two previous statements yields

KS = lim
l→∞

h(Pl) ≤ lim
k→∞

h(OPX(k)). (A3)

On the other hand,
KS = sup

P
h(P) ≥ lim

k→∞
h(OPX(k))

holds true, which, together with (A3), finishes the proof of the equality in (2).

Appendix A.3. Proof of Theorem 2

For preparing the proof of Theorem 2, let us first give two lemmata.

Lemma A2. Let (Pn)n∈N be a sequence of finite partitions of Ω in A satisfying

Pn ∨ T−1(Pn) ≺ Pn+1. (A4)

Then,

lim inf
n→∞

H
(
Pn

∣∣∣T−1
(
P (k)

n

))
≤ lim inf

n→∞
H
(
P (k)

n+1

∣∣∣P (k)
n

)
≤ lim inf

n→∞

1
n

H(Pn)

holds true for all k ∈ N.

Proof. Take k ∈ N. We have

lim inf
n→∞

H
(
Pn

∣∣∣T−1
(
P (k)

n

))
= lim inf

n→∞

[
H
(
P (k+1)

n

)
− H

(
T−1

(
P (k)

n

))]

= lim inf
n→∞

[
H
(
P (k+1)

n

)
− H

(
P (k)

n

)] (A4)
≤ lim inf

n→∞

[
H
(
P (k)

n+1

)
− H

(
P (k)

n

)]
= lim inf

n→∞
H
(
P (k)

n+1

∣∣∣P (k)
n

)
.

The Stolz–Cesàro theorem further provides

lim inf
n→∞

H
(
P (k)

n+1

∣∣∣P (k)
n

)
≤ lim inf

n→∞

1
n

n

∑
i=1

[
H
(
P (k)

i+1

∣∣∣P (k)
i

)]

= lim inf
n→∞

1
n

n

∑
i=1

[
H
(
P (k)

i+1

)
− H

(
P (k)

i

)]
= lim inf

n→∞

1
n

[
H
(
P (k)

n+1

)
− H

(
P (k)

1

)]

= lim inf
n→∞

1
n

H
(
P (k)

n+1

) (A4)
≤ lim inf

n→∞

1
n

H(Pn+k) = lim inf
n→∞

1
n

H(Pn).

Notice that (A4) is fulfilled for Pn := OPX(n).

Lemma A3. Let X = (X1, X2, . . . , Xd) : Ω→ Rd be a random vector satisfying (1). Then,

KS ≤ lim inf
n→∞

H
(

OPX(n)
∣∣∣T−1

(
(OPX(n))(k)

))

holds true for all k ∈ N.

Proof. According to Theorem 1, we have

KS = lim
n→∞

h(T, OPX(n)).

Using the future formula for the entropy rate (see e.g., [13]), we can write

h(OPX(n)) = lim
l→∞

H
(

OPX(n)
∣∣∣T−1

(
(OPX(n))(l)

))
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for all n ∈ N. This implies

KS = lim
n→∞

lim
l→∞

H
(

OPX(n)
∣∣∣T−1

(
(OPX(n))(l)

))

≤ lim inf
n→∞

H
(

OPX(n)
∣∣∣T−1

(
(OPX(n))(k)

))

for all k ∈ N.

Now, Lemmas A2 and A3 provide

KS ≤ lim inf
n→∞

H
(

OPX(n)
∣∣∣T−1

(
(OPX(n))(k)

))

≤ lim inf
n→∞

H
(
(OPX(n + 1))(k)

∣∣∣(OPX(n))(k)
)

≤ PEX ≤ PEX.

The assumption KS ≥ PEX then implies

KS = lim inf
n→∞

H
(

OPX(n)
∣∣∣T−1

(
(OPX(n))(k)

))

= lim inf
n→∞

H
(
(OPX(n + 1))(k)

∣∣∣(OPX(n))(k)
)

= PEX = PEX

for all k ∈ N.

Appendix A.4. Proofs for the Simple One-Dimensional Case

This subsection is mainly devoted to the proofs of Theorem 4 and to the proof of Lemma A5
mentioned at the end of Section 3.1. Recall the assumption that Ω is a subset of R and A = B the
Borel σ-algebra on Ω. The following lemma is a step to the proof of Theorem 4.

Lemma A4. Let Ω be a subset of R and A = B be the Borel σ-algebra on Ω. Suppose, there exist an ordered
partitionM = {Mi}i∈I and an m ∈ N satisfying (5). Then, for all n ∈ N with n ≥ m and multiindices
i = (i0, i1, . . . , in−1) ∈ In

#∆(OP(n)|M(i)) ≤ 2∑m
u=1 #{s∈{0,1,...,n−1}|is=in−u and s 6=n−u}

holds true.

Proof. Fix m ∈ N and n ∈ N with n ≥ m and i = (i0, i1, . . . , in−1) ∈ In. We will show that

M(s) ⊗M(s) ∨
s−1∨

t=0
(T × T)−t({R, Ω2 \ R})

≺M(s) ⊗M(s) ∨
s−1∨

t=s−m
(T × T)−t({R, Ω2 \ R}) (A5)

holds true for all s ∈ N with s ≥ m using induction over s:
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The above statement is trivial for s = m. Suppose that (A5) holds true for some s ∈ N with s ≥ m.
We will show that (A5) then holds true for s + 1:

M(s+1) ⊗M(s+1) ∨
s∨

t=0
(T × T)−t

(
{R, Ω2 \ R}

)

= (T × T)−1

(
M(s) ⊗M(s) ∨

s−1∨

t=0
(T × T)−t

(
{R, Ω2 \ R}

))

∨M(m) ⊗M(m) ∨ {R, Ω2 \ R}
(5)
≺ (T × T)−1

(
M(s) ⊗M(s) ∨

s−1∨

t=0
(T × T)−t

(
{R, Ω2 \ R}

))

∨M(m) ⊗M(m) ∨
m∨

u=1

(T × T)−u
(
{R, Ω2 \ R}

)

= (T × T)−1

(
M(s) ⊗M(s) ∨

s−1∨

t=0
(T × T)−t

(
{R, Ω2 \ R}

))
∨M⊗M

≺ (T × T)−1

(
M(s) ⊗M(s) ∨

s−1∨

t=s−m
(T × T)−t

(
{R, Ω2 \ R}

))
∨M⊗M (A6)

=M(s+1) ⊗M(s+1) ∨
s∨

t=s+1−m
(T × T)−t

(
{R, Ω2 \ R}

)
.

In (A6), the induction hypotheses was used.
Notice that

M(n) =
n∨

s=1

(id, T)−n+s
(
M(s) ⊗M(s)

)
,

OP(n) =
n∨

s=1

(id, T)−n+s

(
s−1∨

t=0
(T × T)−t({R, Ω2 \ R})

)

hold true. This implies

M(n) ∨OP(n) =
n∨

s=1

(id, T)−n+s

(
M(s) ⊗M(s) ∨

s−1∨

t=0
(T × T)−t({R, Ω2 \ R})

)

=
m−1∨

s=1

(id, T)−n+s

(
M(s) ⊗M(s) ∨

s−1∨

t=0
(T × T)−t({R, Ω2 \ R})

)

∨
n∨

s=m
(id, T)−n+s

(
M(s) ⊗M(s) ∨

s−1∨

t=0
(T × T)−t({R, Ω2 \ R})

)

(A5)
≺

m−1∨

s=1

(id, T)−n+s

(
M(s) ⊗M(s) ∨

s−1∨

t=0
(T × T)−t({R, Ω2 \ R})

)

∨
n∨

s=m
(id, T)−n+s

(
M(s) ⊗M(s) ∨

s−1∨

t=s−m
(T × T)−t({R, Ω2 \ R})

)

=M(n) ∨
n−1∨

s=0

n−1∨

t=n−m
(Ts, Tt)−1({R, Ω2 \ R}).
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Therefore,

#∆(OP(n)|M(i)) = #∆(M(n) ∨OP(n)|M(i))

≤ #∆

(
M(n) ∨

n−1∨

s=0

n−1∨

t=n−m
(Ts, Tt)−1({R, Ω2 \ R})|M(i)

)

= #∆

(
n−1∨

s=0

n−1∨

t=n−m
(Ts, Tt)−1({R, Ω2 \ R})|M(i)

)

≤
n−1

∏
s=0

n−1

∏
t=n−m

#∆
(
(Ts, Tt)−1({R, Ω2 \ R})|M(i)

)
(A7)

holds true. Notice that

(Ts, Tt)−1({R, Ω2 \ R}) = {{ω ∈ Ω : Ts(ω) < Tt(ω)}, {ω ∈ Ω : Ts(ω) ≥ Tt(ω)}}.

For s = t, we have

#∆
(
(Ts, Tt)−1({R, Ω2 \ R})|M(i)

)
= #∆ ({∅, Ω}|M(i)) = 1.

If is 6= it is true, using the fact thatM is an ordered partition yields

#∆
(
(Ts, Tt)−1({R, Ω2 \ R})|M(i)

)

= #∆
(
(Ts, Tt)−1((Mis ×Mit) ∨ {R, Ω2 \ R})|M(i)

)

(3)
= #∆

(
(Ts, Tt)−1(Mis ×Mit)|M(i)

)
= 1.

For all other cases, we have

#∆
(
(Ts, Tt)−1({R, Ω2 \ R})|M(i)

)
≤ #

(
(Ts, Tt)−1({R, Ω2 \ R})

)
= 2.

The above observations can be summarized as

#∆
(
(Ts, Tt)−1({R, Ω2 \ R})|M(i)

){= 1 if s = t or is 6= it,

≤ 2 if s 6= t and is = it.

In combination with (A7), this provides

#∆
(
(Ts, Tt)−1({R, Ω2 \ R})|M(i)

)

≤ 2∑n−1
t=n−m #{s∈{0,1,...,n−1|is=it and s 6=t}

= 2∑m
u=1 #{s∈{0,1,...,n−1|is=in−u and s 6=n−u}.

Notice that the above Lemma immediately implies

H(OP(n)) ≤ H(OP(n) ∨M(n)) = H(M(n)) + H(OP(n)|M(n))

(A1)
≤ H(M(n)) + ∑

i∈In
µ(M(i)) · log(#∆(OP(n)|M(i)))

≤ H(M(n)) + log(2) · nm. (A8)
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We come now to the proof of Theorem 4, which slightly generalizes a proof given in [10], where
the case m = 1 was considered. For better readability, we restate this proof with the generalization to
arbitrary m ∈ N at the appropriate places within the proof.

Take ε > 0. According to Conditions 1 and 2, there exist finite or countably infinite ordered
partitionsM = {Mi}i∈I , Q = {Qj}j∈J and m ∈ N with H(M) < ∞ and H(Q) < ∞ satisfying (5)
and (6). Consider the partition

P :=M∨Q = {Mi ∩Qj}(i,j)∈I×J =: {P(i,j)}(i,j)∈I×J .

Notice thatP is again a finite or countably infinite ordered partition with H(P) < H(M)+ H(Q) < ∞.
Using (A1), this implies

PE ≤ lim sup
n→∞

1
n

H(OP(n) ∨ P (n))

= h(P) + lim sup
n→∞

1
n

H(OP(n)|P (n))

≤ KS + lim sup
n→∞

1
n

H(OP(n)|P (n))

≤ KS + lim sup
n→∞

1
n ∑

(i,j)∈(I×J)n
µ(P((i, j))) log(#∆(OP(n)|P((i, j)))), (A9)

where we consider (i, j) itself as one multiindex and I × J as one index set. Thus,

P((i, j)) =
n−1⋂

t=0
T−t(Mit ∩Qjt)

for all (i, j) = ((i0, j0), (i1, j1), . . . , (in−1, jn−1)) ∈ (I × J)n. Lemma A4 provides

∑
(i,j)∈(I×J)n

µ(P((i, j))) · log(#∆(OP(n)|P((i, j))))

≤ log 2 ∑
(i,j)∈(I×J)n

µ(P((i, j)))

(
m

∑
u=1

#{s ∈ {0, 1, ..., n− 1} | (is, js) = (in−u, jn−u) and s 6= n− u}
)

≤ log 2 ∑
(i,j)∈(I×J)n

µ(P((i, j)))

(
m

∑
u=1

#{s ∈ {0, 1, ..., n− 1} | js = jn−u and s 6= n− u}
)

= log 2
m

∑
u=1

∑
j∈Jn

(
∑

i∈In
µ(P((i, j)))

)
· #{s ∈ {0, 1, ..., n− 1} | js = jn−u and s 6= n− u}

= log 2
m

∑
u=1

∑
j∈Jn

µ(Q(j)) · #{s ∈ {0, 1, ..., n− 1} | js = jn−u and s 6= n− u}

≤ log 2
m

∑
u=1

∑
j∈Jn

µ(Q(j)) · (#{s ∈ {0, 1, ..., n− u− 1} | js = jn−u}+ u− 1)

= log 2 ·
(

m(m− 1)/2 +
m

∑
u=1

∑
j∈Jn

µ(Q(j)) · #{s ∈ {0, 1, ..., n− u− 1} | js = jn−u}
)

. (A10)

Combining (A9) and (A10) yields

PE ≤ KS + log 2 ·
m

∑
u=1

lim sup
n→∞

1
n ∑

j∈Jn
µ(Q(j)) · #{s ∈ {0, 1, ..., n− u− 1} | js = jn−u}.
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For each u ∈ {1, . . . , m}, we have

lim sup
n→∞

1
n ∑

j∈Jn
µ(Q(j)) · #{s ∈ {0, 1, ..., n− u− 1} | js = jn−u}

= lim sup
n→∞

1
n ∑

jn−u∈J
∑

j∈Jn−u
µ(Q((j, jn−u))) · #{s ∈ {0, 1, ..., n− u− 1} | js = jn−u}

= lim sup
n→∞

1
n− u ∑

jn−u∈J

n−u

∑
l=0

µ({ω ∈ T−n+u(Qjn−u) | #{s ∈ {0, 1, ..., n− u− 1} | Ts(ω) ∈ Qj} = l}) · l

= ∑
Q∈Q

lim sup
n→∞

1
n− u

n−u

∑
l=0

µ(T−n+u(Q) ∩ T−l(Q))

= ∑
Q∈Q

lim sup
n→∞

1
n− u

n−u

∑
l=0

µ(Q ∩ T−l(Q))
(6)
< ε.

Hence,
PE ≤ KS + log 2 ·m · ε.

The statement of the theorem follows from the fact that ε can be chosen arbitrarily close to 0.

Lemma A5. Let Ω be a subset of R and A = B be the Borel σ-algebra on Ω. If T is (countably) piecewise
monotone and completely periodic, i.e.,

µ

(
∞⋃

t=1

{ω ∈ Ω | Tt(ω) = ω}
)

= 1,

then
PE = 0

holds true.

Proof. Let

Θk :=
k⋃

t=1

{ω ∈ Ω : Tt(ω) = ω}

be the set of all points with period smaller or equal to k ∈ N and

Θ =
∞⋃

t=1

{ω ∈ Ω : Tt(ω) = ω}

the set of all periodic points. Since µ(Θ) = 1, for all ε > 0 there exists k ∈ N with

µ (Θk) > 1− ε.

This implies

PE ≤ lim sup
n→∞

1
n

H(OP(n) ∨ {Θk, Ω \Θk})

= lim sup
n→∞

1
n
[H(OP(n) ∨ {Θk, Ω \Θk})− H(Θk, Ω \Θk)]
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= µ(Θk) · lim sup
n→∞

1
n
− ∑

Pπ∈OP(n)

µ(Pπ ∩Θk)

µ(Θk)
log
(

µ(Pπ ∩Θk)

µ(Θk)

)

+ µ(Ω \Θk) · lim sup
n→∞

1
n
− ∑

Pπ∈OP(n)

µ(Pπ \Θk)

µ(Ω \Θk)
log
(

µ(Pπ \Θk)

µ(Ω \Θk)

)

(A8)
≤ µ(Θk) · lim sup

n→∞

1
n
− ∑

Pπ∈OP(n)

µ(Pπ ∩Θk)

µ(Θk)
log
(

µ(Pπ ∩Θk)

µ(Θk)

)

+ ε · lim sup
n→∞

1
n
·
[

H(M(n)) + log(2) · n
]

≤ µ(Θk) · lim sup
n→∞

1
n
− ∑

Pπ∈OP(n)

µ(Pπ ∩Θk)

µ(Θk)
log
(

µ(Pπ ∩Θk)

µ(Θk)

)
+ (H(M) + log(2)) · ε

= µ(Θk) · lim sup
n→∞

1
n
− ∑

Pπ∈OP(k)

µ(Pπ ∩Θk)

µ(Θk)
log
(

µ(Pπ ∩Θk)

µ(Θk)

)
+ (H(M) + log(2)) · ε

= (H(M) + log(2)) · ε.

This provides PE = 0 because ε can be chosen arbitrarily close to 0.

Remark A1. To be able to show that Condition 2 holds true under the assumptions of Corollary 1 for non-ergodic
systems via ergodic decomposition, one needs to require that (Ω, B, µ) is a Lebesgue space. A probability space
(Ω, B, µ) is called a Lebesgue space if (Ω, B, µ) is isomorph to some probability space (Ω̃, B̃, µ̃), where Ω̃ is a
complete separable metric space and B̃ the completion of the Borel σ-algebra on Ω̃, i.e., B̃ contains additionally
all subsets of Borel sets with measure 0. If Ω ⊆ R is a Borel subset, (Ω, B, µ) is a Lebesgue space if B is
complete with regard to µ (see e.g., [14]).

Alternatively, one can use Rokhlin–Halmos towers to show that Condition 2 holds true for non-ergodic
systems (see [10]). For this approach, it is only necessary to require that Ω is a separable metric space, B the
Borel σ-algebra on Ω, and T : Ω→ Ω an aperiodic map [15].

Moreover, notice that, in [10], it was required that Ω is a compact metric space so that µ is regular, which
allowed for approximating any set of B by a finite union of intervals. However, this is not necessary because the
Borel σ-algebra is generated by the algebra containing all sets of the type I ∩Ω, where I is an open or closed
interval, and every set of a σ-algebra can be approximated by a set of the algebra that generates that σ-algebra
(see, e.g., [16]).

Appendix A.5. Proof of Lemma 1 and the ‘Ergodic Part’ of Lemma 2

Let Ω be a subset of R and A = B be the Borel σ-algebra on Ω. We start with showing
Lemma 1. For this, fix some n ∈ N. By its definition, the set Vn can be written as a union of sets in
OP(n) ∨ T−1(OP(n)). Notice that

OP(n + 1) = OP(n) ∨ T−1(OP(n)) ∨ (id, Tn)−1({R, Ω2 \ R}). (A11)

For Q ∈ OP(n) ∨ T−1(OP(n)), consider some ω ∈ Q. If ω /∈ Vn is true, we can use the transitivity
of the order relation to determine the order relation of ω and Tn(ω) from the ordering given by Q.
This implies

#∆((id, Tn)−1({R, Ω2 \ R})|Q) = 1 (A12)

for all Q ⊆ Ω \Vn. Thus,
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H(OP(n + 1)|OP(n) ∨ T−1(OP(n)))
(A11)
≤ H(OP(n) ∨ T−1(OP(n))|OP(n) ∨ T−1(OP(n)))+

H((id, Tn)−1({R, Ω2 \ R})|OP(n) ∨ T−1(OP(n)))

= H((id, Tn)−1({R, Ω2 \ R})|OP(n) ∨ T−1(OP(n)))
(A1)
≤ ∑

Q∈OP(n)∨T−1(OP(n))

µ(Q) · log(#∆((id, Tn)−1({R, Ω2 \ R})|Q))

= ∑
Q∈OP(n)∨T−1(OP(n))

Q⊆Vn

µ(Q) · log(#∆((id, Tn)−1({R, Ω2 \ R})|Q))

+ ∑
Q∈OP(n)∨T−1(OP(n))

Q*Vn

µ(Q) · log(#∆((id, Tn)−1({R, Ω2 \ R})|Q))

= ∑
Q∈OP(n)∨T−1(OP(n))

Q⊆Vn

µ(Q) · log(#∆((id, Tn)−1({R, Ω2 \ R})|Q))

+ ∑
Q∈OP(n)∨T−1(OP(n))

Q⊆Ω\Vn

µ(Q) · log(#∆((id, Tn)−1({R, Ω2 \ R})|Q))

(A12)
= ∑

Q∈OP(n)∨T−1(OP(n))
Q⊆Vn

µ(Q) · log(#∆((id, Tn)−1({R, Ω2 \ R})|Q))

≤ ∑
Q∈OP(n)∨T−1(OP(n))

Q⊆Vn

µ(Q) · log(2)

= log(2) · µ(Vn).

This shows Lemma 1.

To prove the ‘ergodic part’ of Lemma 2, take ε > 0. Choose an ordered partition U = {Ui}N
i=1 of

Ω such that 0 < µ(Ui) < ε holds true for all i ∈ I. This is always possible because µ was assumed to
be aperiodic. Label the sets Ui ∈ U with i ∈ {1, 2, . . . , N} in such a way that

i1 < i2 ⇒ µ2({(ω1, ω2) ∈ Ui1 ×Ui2 : ω1 > ω2}) = 0

holds true for all i1, i2 ∈ {1, 2, . . . , N}. Since T is ergodic, there exists an no ∈ N such that

µ

(
N⋂

i=1

n0−1⋃

s=1

T−s(Ui)

)
> 1− ε

holds true.
The set

⋂N
i=1

⋃n0−1
s=1 T−s(Ui) consists of all ω ∈ Ω with orbit (ω, T(ω), . . . , Tn0−1) visiting each of

the sets in U . Thus, if such ω lies in Ui with 1 < i < N and in Vt for t ≥ n0, by definition of Vt, the
point Tt(ω) must belong to Ut−1 ∪Ut ∪Ut+1. With a similar argumentation for ω ∈ U1 or ω ∈ UN ,
one obtains the following:

µ

(
Vt ∩

N⋂

i=1

n0−1⋃

s=1

T−s(Ui)

)

≤ µ(U1 ∩ T−t(U1 ∪U2)) +
N−1

∑
i=2

µ(Ui ∩ T−t(Ui−1 ∪Ui ∪Ui+1)) + µ(UN ∩ T−t(UN−1 ∪UN))
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holds true for all t ∈ N with t > n0. Using the ergodicity of T implies

lim
n→∞

1
n

n

∑
t=1

µ

(
Vt ∩

N⋂

i=1

n0−1⋃

s=1

T−s(Ui)

)
= lim

n→∞

1
n

n

∑
t=1

µ

(
Vt+n0 ∩

N⋂

i=1

n0−1⋃

s=1

T−s(Ui)

)

≤ µ(U1)µ(U1 ∪U2) +
N−1

∑
i=2

µ(Ui)µ(Ui−1 ∪Ui ∪Ui+1) + µ(UN)µ(UN−1 ∪UN)

≤ µ(U1)2ε +
N−1

∑
i=2

µ(Ui)3ε + µ(UN)2ε

≤ 3ε.

The Stolz–Cesàro theorem then provides

lim inf
n→∞

µ

(
Vn ∩

N⋂

i=1

n0−1⋃

s=1

T−s(Ui)

)
≤ lim inf

n→∞

1
n

n

∑
t=1

µ

(
Vt ∩

N⋂

i=1

n0−1⋃

s=1

T−s(Ui)

)
≤ 3ε.

Hence,

lim inf
n→∞

µ (Vn)

= lim inf
n→∞

[
µ

(
Vn ∩

N⋂

i=1

n0−1⋃

s=1

T−s(Ui)

)
+ µ

(
Vn \

N⋂

i=1

n0−1⋃

s=1

T−s(Ui)

)]

≤ lim inf
n→∞

µ

(
Vn ∩

N⋂

i=1

n0−1⋃

s=1

T−s(Ui)

)
+ ε

≤ 4ε.

Since ε can be choosen arbitrarily close to 0, this implies lim infn→∞ µ (Vn) = 0.

Appendix A.6. Proof of Theorem 5

Let Ω be a subset of R and A = B be the Borel σ-algebra on Ω and consider the set

Θ =
∞⋃

t=1

{ω ∈ Ω | Tt(ω) = ω}.

Since T is µ-almost surely aperiodic, we have µ(Θ) = 0.
We will prove the statement of the theorem by contradiction. Suppose ∑∞

n=1 µ(Vn) < ∞ holds
true. Using the Borel–Cantelli lemma, this implies

µ

(
∞⋂

k=1

∞⋃

n=k

Vn

)
= 0

or, equivalently,

lim
K→∞

µ

(
K⋃

k=1

∞⋂

n=k

(Ω \Vn)

)
= µ

(
∞⋃

k=1

∞⋂

n=k

(Ω \Vn)

)
= 1.

Therefore, there exists a K ∈ N with

µ

((
∞⋂

n=K
(Ω \Vn)

)
\Θ

)
= µ

(
∞⋂

n=K
(Ω \Vn)

)
= µ

(
K⋃

k=1

∞⋂

n=k

(Ω \Vn)

)
> 0.



Entropy 2020, 22, 63 25 of 26

Set
δ(ω) := min

1≤s≤K−1
|ω− Ts(ω)|

for all ω ∈ Ω. Notice that every aperiodic point ω /∈ Θ satisfies δ(ω) > 0. Thus,

0 < µ

(
∞⋂

n=K
(Ω \Vn) \Θ

)
= µ

(
∞⋃

i=1

{
ω ∈

∞⋂

n=K
(Ω \Vn) \Θ | δ(ω) > 1/i

})

= lim
i→∞

µ

({
ω ∈

∞⋂

n=K
(Ω \Vn) \Θ | δ(ω) > 1/i

})
.

Thus, there exists some δ > 0 such that

Aδ := {ω ∈
∞⋂

n=K
(Ω \Vn) \Θ | δ(ω) > δ}

has a strictly positive measure. Because there exists a countable set Ωδ ⊆ Ω with

Aδ =
⋃

ω∈Ωδ

Aδ ∩ (ω− δ/2, ω + δ/2),

we have
µ(Aδ ∩ (ω0 − δ/2, ω0 + δ/2)) > 0

for some ω0 ∈ Ω. Using the ergodicity of T, this implies

µ

(
∞⋃

n=K
T−n((ω0 − δ/2, ω0 + δ/2))

)
= µ

(
∞⋃

n=0
T−n(T−K((ω0 − δ/2, ω0 + δ/2)))

)
= 1

and, consequently,

µ

(
Aδ ∩ (ω0 − δ/2, ω0 + δ/2) ∩

∞⋃

n=K
T−n((ω0 − δ/2, ω0 + δ/2))

)

= µ(Aδ ∩ (ω0 − δ/2, ω0 + δ/2)) > 0.

Thus, in particular, Aδ ∩ (ω0 − δ/2, ω0 + δ/2) ∩⋃∞
n=K T−n((ω0 − δ/2, ω0 + δ/2)) is not empty. Now

take some

ω ∈ Aδ ∩ (ω0 − δ/2, ω0 + δ/2) ∩
∞⋃

n=K
T−n((ω0 − δ/2, ω0 + δ/2)).

We have |ω − ω0| < δ/2. Additionally, there exists n0 ∈ N with n0 ≥ K such that Tn0(ω) ∈
(ω0 − δ/2, ω0 + δ/2) holds true, which is equivalent to |ω0 − Tn0(ω)| < δ/2. As a consequence,

|ω− Tn0(ω)| ≤ |ω−ω0|+ |ω0 − Tn0(ω)| < δ

holds true. This implies that

m := min{n ∈ N | |ω− Tn(ω)| < δ}

is smaller or equal to n0. In particular, m ∈ N is well defined and not infinite. On the other hand,

ω ∈ Aδ ⊆ {ω ∈ Ω | min
1≤s≤K−1

|ω− Ts(ω)| > δ}
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implies m ≥ K. By construction of m, we have

|ω− Ts(ω)| ≥ δ > |ω− Tm(ω)|

for all s ∈ {1, 2, . . . , m− 1}. Hence, ω ∈ Vm holds true, which is a contradiction to

ω ∈ Aδ ⊆
∞⋂

n=K
Ω \Vn.

Therefore, ∑∞
n=1 µ(Vn) < ∞ cannot be true.
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