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Background: Lung metastasis is a common metastasis site of colorectal cancer which largely reduces the quality of life and survival
rates of patients. The discovery of potential novel diagnostic biomarkers is very meaningful for the early diagnosis of colorectal cancer
with lung metastasis.
Methods: In the present study, the metabonomic profiling of serum samples of lung metastasis mice was analyzed by 1H-nuclear
magnetic resonance (1H-NMR). Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and
orthogonal partial least squares discriminant analysis (OPLS-DA) were used to elucidate the distinguishing metabolites between
different groups, and all achieved excellent separations, which indicated that metastatic mice could be differentiated from control mice
based on the metabolic profiles at serum levels. Furthermore, during lung metastasis of colorectal cancer, metabolic phenotypes
changed significantly, and some of metabolites were identified.
Results: Among these metabolites, approximately 15 were closely associated with the lung metastasis process. Pathway enrichment
analysis results showed deregulation of metabolic pathways participating in the process of lung metastasis, such as synthesis and
degradation of ketone bodies pathway, amino acid metabolism pathway and pyruvate metabolism pathway.
Conclusion: The present study demonstrated the metabolic disturbances of serum samples of mice during the lung metastasis process
of colorectal cancer and provides potential diagnostic biomarkers for the disease.
Keywords: colorectal cancer, metastasis, metabolomics, biomarkers, 1H-NMR

Introduction
Colorectal cancer is the third most common cancer and the third leading cause of cancer-related deaths globally.1 Most
advanced colorectal cancer patients developed metastasis, and a large part eventually develop lung metastasis.2 Early
detection of lung metastasis is critical for improving the treatment effect and survival rate of colorectal cancer patients, as
the early spread of cancer cells is usually not detected by traditional imaging technologies. Thus, the discovery of novel
and reliable biomarkers during the lung metastasis process of colorectal cancer patients may be an effective means to
diagnose early cancer metastasis.

A reliable diagnostic biomarker is a characteristic that hints the presence of a disease or indicates an individual with
a subtype of the disease.3 Blood is a type of body fluid in which blood-based biomarkers are most suitable for the early
diagnosis and surveillance of cancer because samples can be obtained easily with little damage to the patient.4 Therefore,
many studies have focused on the discovery of blood biomarkers for cancer diagnosis. Using a combination of 1H NMR
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and DI-LC-MS/MS, the serum levels of DL-carnitine, PC-aa-C40:3, ethanol, octanoyl-L-carnitine, and methylmalonyl-
L-carnitine were found to be related to melanoma progression.5 Yang et al identified 18 metabolites closely related to
ovarian cancer, and these biomarker enrichment in fatty acid β-oxidation pathway, phospholipid metabolism pathway,
and bile acid metabolism pathway.6 Yu et al analyzed 127 colorectal cancer serum samples and 90 normal serum samples
using mass spectrometry, and found serine/threonine kinase 4 (MST1) was down regulated in CRC patients’ samples
compared to the control group.7 They further proved that MST1 is a potential marker for distant metastasis of CRC.7 Fan
et al found that serum levels of SERPINA1 (alpha-1-antitrypsin, A1AT), SERPINA3 (alpha-1-antichymotrypsin, AACT),
and SERPINC1 (antithrombin-3, AT-III) could be good biomarkers to distinguish adenomatous polyps and colorectal
carcinomas.8 In conclusion, the identification of serum biomarkers related to cancer progression would benefit the
diagnosis and treatment of cancer.

Metabolomics, is a discipline which developed rapidly in recent years.9 It mainly investigated the quantities, types
and changes of endogenous metabolites in biological systems such as blood, urine, and tissues by the application of
newly developed analytical methods.10 Metabolomics is now widely used in the diagnosis of disease11,12 and biomarker
screening.13,14 Nuclear magnetic resonance (NMR) is a kind of analytical methods which is a noninvasive technique15

and an invaluable tool for determining the structure, composition and function of complex biological molecules.16 NMR
analytics have high sensitivity, good reproducibility and simple sample processing,17 which has been used for biomarker
detection in several human tumors including lung cancer,18,19 oral squamous cell carcinoma,20,21 and gastric cancer.22,23

Using NMR-based metabolomics, hippurate and trigonelline were found to be downregulated in lung cancer patients,
while α-hydroxyisobutyrate, β-hydroxyisovalerate, creatinine and N-acetylglutamine were upregulated.24 Additionally,
2-Hydroxyisobutyrate, 3-indoxylsulfate, and alanine were shown to be diagnostic biomarkers for gastric cancer, benign
gastric disease and healthy patients.23 In addition, NMR-based serum metabolomics reveals 8 differentially expressed
biomarkers such as glutamine, acetate, propionate, acetone, and choline could discriminate oral cancer from healthy
people.21 This research indicated the valuable potential of NMR-based metabolomics for cancer diagnosis and
treatment.

Although we previously detected differential metabolites in lung tissue from a lung metastasis model of colorectal
cancer,25 it is still difficult to extract tumor tissues for early biomarker identification. Blood from patients is more readily
available and less invasive than tumor tissues, and furthermore research is necessary and reliable serum biomarkers need
to be discovered as soon as possible. In our study, we performed serum metabolomics of a murine colorectal cancer with
lung metastasis model using 1H-NMR. We found that some metabolites were closely related to tumor metastasis
progression such as lactate, creatine, acetate, and glutamate. The altered serum metabolites were mainly involved in
glycerophospholipid metabolism, amino acid metabolism and glycolysis. Therefore, research which investigated these
potential serum biomarkers will benefit the diagnosis of colorectal patients with lung metastasis.

Materials and Methods
Chemical Reagents
Deionized water was prepared by a Milli-Q purification system. Sodium 3-(trimethylsilyl)-1-propanesulfonate (TSP) was
purchased from Sigma-Aldrich (St. Louis, MO, USA). Chloroform (CDCl3) and methanol were purchased from Fisher
Scientific (Fairlawn, NJ, USA). Deuterium oxide (99.8% D2O) was obtained from CIL (Cambridge Isotope
Laboratories, USA).

Cell Culture
The mouse CT26 cell (colorectal cancer cell line) was purchased from the American Type Culture Collection (ATCC;
Manassas, VA, USA). Cells were cultured in RPMI-1640 media supplemented with 10% fetal bovine serum (HyClone),
100 μg/mL streptomycin (Sigma-Aldrich, USA) and 100 U/mL penicillin (Sigma-Aldrich, USA) at 37°C in a humidified
atmosphere containing 5% CO2.
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Animals and Lung Metastasis Model
A total of 40 Female BALB/c mice were purchased from the Beijing Animal Center (Beijing, China). The age of the
mice was about 6–8 weeks and all were SPF grade. The animals were kept at 21°C and 55% humidity, on a 12 h of light
and 12 h of darkness cycle. All animals were free to take food and water and kept in standard conditions allowing free
activity. All procedures were carried out in accordance with the “Chinese Guiding Principles in the Care and Use of
Animals” and were approved by the Animal Ethics Committee of Shanxi Medical University (P2018-166). CT26 need to
be passaged 3 to 4 times stably before use. Mice were randomized into several groups: control group, 7 days metastasis
group, 14 days metastasis group and 21 days metastasis group. Each mice of control group were injected with saline
through the tail vein. Mice in the experimental group were injected with tumor cells (2x106 cells/mouse). The PBS buffer
solution was used to suspend the CT26 cells for injection. Animal health and weight were monitored every 3 days.
Ultimately, 33 mice were successfully modeled for the experiment. At the end of experiment, there were 8 animals in
control group, 10 animals in 7 days metastasis group, 9 in 14 days metastasis group and 6 mice in 21 days metastasis
group.

Sample Collection and Preparation
Animals were anesthetized with chloral hydrate and blood samples were collected by eyeball method. About 100 μL
blood of each animal was sampled from mice eyes and then stored separately at room temperature for 30 min before
coagulation. Mice were sacrificed by cervical dislocation at 0, 7, 14 and 21 days after cell injection separately, and the
lung tissues were dissected and preserved in 4% paraformaldehyde for H&E staining. Clotted blood samples were
centrifuged at 4°C, 3000 × g for 20 min, and the supernatant was immediately frozen in liquid nitrogen for subsequent
experiments. Serum samples were thawed at 4°C for 2 h and kept at room temperature for 1 h. Then, 300 µL of samples
were mixed with 600 µL of PBS (pH = 7.4) containing 10% D2O and 0.01 mg/mL sodium TSP as internal standard.
Finally, the samples were centrifuged at 12,000× g at 4°C for 5 min. Then, the supernatant was taken to a new NMR tube
for spectroscopy.

1H-NMR spectroscopic analysis
1H-NMR spectroscopy analysis of serum samples was carried out by Bruker Avance II 600 spectrometer (Bruker
BioSpin, Rheinstetten, Germany) at 300 K. To suppress the water signal, a one-dimensional spectrum was acquired
using a standard (1D) Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence. Spectral width was 12,335.5-Hz, acquisition
time was 2.66 sec and a total pulse recycle delay was 7.66 sec. 64 free induction decays (FIDs) were collected into 64
K data points. The FIDs were weighted by a Gaussian function with a line-broadening factor of 20.3 Hz, Gaussian
maximum position 0.1, prior to Fourier transformation.

1H-NMR spectral data processing
NMR data were manually Fourier transformed for spectroscopy using MestReNova software to reduce the complexity of
data and benefit pattern recognition. Then, the phase and baseline distortions were corrected in MestReNova software,
and the TSP resonance of δ0.0 was referenced. The spectrum ranges from 9.5 to 0.5 ppm and was divided into 4500
segments. To exclude the water signal, the region from 5.1 ppm to 4.7 ppm was removed. Due to the different weights of
the samples, the data were normalized before pattern recognition analysis.

Pattern Recognition (PR) Analysis
The normalized NMR spectrum data were imported into SIMCA-P (version 11, Umetrics AB) for analysis. Principal
component analysis (PCA) was applied to analyze the NMR data and separate the serum samples from the lung
metastasis groups and the normal group. Supervised PR methods such as orthogonal partial least squares discriminant
analysis (OPLS-DA) and partial least squares discriminant analysis (PLS-DA) were used to detect the separation of
different groups. The PLS-DA models were validated 200 times by a permutation analysis. To guard against overfitting,
the default 7-round of cross-validation was used, with 1/7 of the samples excluded from the mathematical model in each
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round. R2 and Q2 values were obtained from the PLS-DA models. To determine the variables assigned between
metastasis and normal groups, the variable-importance (VIP) values of all peaks obtained from the OPLS-DA model
were analyzed. In addition, we used the unpaired Student’s t-test to determine the significance of the metabolites.
Metabolites were identified according to the Human Metabolome Database (HMDB, http://www.hmdb.ca/) and previous
literature. The standard one-dimensional spectrum was applied to provide an overview of metabolites between different
groups. MetaboAnalyst was used to discover the changing metabolic pathways.

Histological Analysis and H&E Staining
The remaining lung tissue specimens were preserved in 4% paraformaldehyde and hematoxylin and eosin (H&E) staining
was used for routine histological analysis to observe micro-morphology of tumor in lungs.

Results
Metabolic Profiling of Serum Samples
CT26 cells were injected into the tail vein of BALB/c mice of treated groups to construct the metastasis model, while the
normal group was injected with saline. At the first day of the experiment, lung specimens of the normal group were
collected. The lung tissues of treated groups were collected separately at 7, 14 and 21 days after cell injection. The results
showed lung metastasis model was successfully constructed (Supplementary Figure). The collected serum samples were
extracted and the water phase components were investigated. The representative 1H-NMR spectra of serum samples of
different groups are shown in Figure 1. As shown in Figure 1, a series of metabolites were changed in the metastatic
group compared to the normal group. Distinguished metabolites include acetate, lactate, choline, glycine, arginine,
pyruvate, isoleucine, creatine, glutamate, and alanine, which are major components of metabolic processes such as
glycolysis pathway and amino acid metabolism pathway.

Figure 1 Representative 1H-NMR spectra (δ9.5-δ0.5) of serum samples of different groups at 600 MHz Normal control; 7 days after administration; 14 days after
administration; 21 days after administration.
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PR Analysis of Normal and Metastasis Groups
To identify the differential metabolites between the normal and metastatic groups, PCAwas utilized to perform 1H-NMR
data analysis. The score plot of PCA indicated that the 7, 14, and 21 days metastatic groups were significantly
distinguished from the normal group (Figure 2A). To optimize the separation between the normal and metastasis groups,
PLS-DA analysis and OPLS-DA analysis were utilized to visualize the metabolic differences. The score plot of PC1 and
PC2 of PLS-DA and OPLS-DA analysis indicated the normal group was well separated from the metastatic groups
(Figure 2B and C). In addition, the PLS-DA model was used for permutation analysis to obtain statistical validation. The
R2 value represents the explained variation of the model, while the Q2 value represents the predictive capability. We
found the R2 (0.80) and Q2 (0.72) values were high, which demonstrated that the model possessed good predictive ability
or the ability to identify differential metabolites (Figure 2D).

Furthermore, OPLS-DA analysis was utilized to distinguish the metabolite differences between the normal group and
the metastatic groups. As shown in Figure 3A, the score plots of metastatic groups were clearly distinguished from those
of the normal group. The parameters of the different metastatic groups compared with the normal group were as follows:
7 days, R2=0.98, Q2=0.89; 14 days, R2=0.97, Q2=0.90; 21 days, R2=0.94, Q2=0.86 (Figure 3B). These results showed
that the model was suitable for data analysis.

In order to identify distinguish metabolites between the normal and metastatic groups, OPLS-DA analysis was
performed to obtain scores and loading plots with correlation coefficients based on the NMR data of serum samples.
Then, significant differences of each metabolite were determined by unpaired Student’s t-test. The levels of acetic acid,

Figure 2 Metabolomics analysis of serum samples of the normal and metastasis groups (A) PCA scores plot between the metastatic groups and normal control; (B) PLS-DA
scores plot between the metastatic groups and normal control; (C) OPLS-DA scores plot between the metastatic groups and normal control; (D) The PLS-DA model was
statistically verified by permutation analysis (200 times). R2 represents explained variance, and Q2 represents the predictive ability of the model.
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VLDL: CH3-(CH2)n-, lactate, lipids,-CH=CH- and methylmalonate were significantly upregulated in the metastatic
groups compared with the normal group (Table 1). The concentrations of acetate, creatine, D-ribose, phosphocreatine,
succinate, and taurine were downregulated in the metastatic groups (Table 1).

Trending Markers and Dysregulated Pathways
Biomarkers are important molecules that could indicate abnormal processes taking place in your body. Thus, identifying
biomarkers that are critical for the colorectal cancer metastasis process will benefit the diagnosis of cancer metastasis
patients. To summarize main biomarkers affecting pathological process of lung metastasis of colorectal cancer, we used
box-and-whisker plots including the extremes, concentration ranges and median quartiles to show representative
differential metabolites between the normal and metastatic groups (Figure 4), and unpaired Student’s t-test was used
to perform statistic difference. We found the lactate and acetic acid level increased significantly, while the creatine,
acetate, lysine, phosphocreatine, glutamate and succinate level decreased (Figure 4).

We analyzed serum metabolomics by 1H-NMR techniques and then performed enrichment analysis using
MetaboAnalyst online. We summarized the dysregulated pathways and the altered metabolites during the metastasis
process (Table 2). Pathway analysis of those distinguishable metabolites (Table 1) indicated that significant dysregulated
pathways included glycine, serine and threonine metabolism, pyruvate metabolism, starch and sucrose metabolism and
alanine, synthesis and degradation of ketone bodies, aspartate and glutamate metabolism were associated with colorectal
cancer lung metastasis (Figure 5). Among these altered pathways, we found eight compounds were involved in glycine,
serine and threonine metabolism pathway, indicating that amino acid metabolism may be a critical pathway for colorectal
cancer metastasis. In addition, glyoxylate and dicarboxylate metabolism pathway, alanine, aspartate and glutamate
metabolism pathway and arginine and proline metabolism pathway may also be important pathways for metastasis.

Discussion
Different from genomics and proteomics technologies, metabolomics studies endogenous metabolites (intermediate or
end products of metabolism). By analyzing the change rules of these metabolites in body fluids and tissues, the influences
of internal and external factors such as gene expression and protein regulation on the body state can be analyzed from the

Figure 3 Serum PR analysis of different metastasis groups and normal control group (A) OPLS-DA model was used to process score plots based on the normal group and
each metastasis group; (B) statistical validation of PLS-DA model by permutation analysis (200 times). R2 represents explained variance, and Q2 represents the predictive
ability of the model.
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Table 1 Summary of Different Serum Metabolites Between Metastasis Groups and Normal Group

Metabolite Multiplicitya Chemical Shift (ppm) Normal vs 7 Day Normal vs 14 Day Normal vs 21 Day

VIPb p-valuec FCd VIPb p-valuec FCd VIPb p-valuec FCd

VLDL: CH3-(CH2)n- br 0.89 2.15 0.02077 1.55 2.08 0.01846 1.54 2.16 0.00495 2.35

3-Hydroxyisovalerate s 1.271 2.80 0.00009 2.02 2.71 0.00006 2.02 2.56 0.00005 2.50

Acetate s 1.93 1.99 0.01304 −2.15 1.90 0.00764 −2.47 1.82 0.00414 −3.04
Acetic acid s 2.08 2.48 0.00061 2.52 2.47 0.00051 2.57 2.23 0.00002 3.36

Arginine t 3.25 2.02 \ −1.17 2.09 0.04780 −1.17 2.12 0.00460 −1.40
Choline s 3.2 2.65 0.00143 1.34 2.55 0.00035 1.75 1.91 \ −1.04
Creatine s 3.04 1.98 0.01704 −2.10 1.94 0.01140 −2.29 1.78 0.00828 −2.56

s 3.94 1.98 0.02991 −1.77 1.88 0.02319 −1.81 1.70 0.02442 −1.84
Glutamate m 2.35 1.76 0.01567 −1.28 1.92 \ −1.19 2.13 0.02188 −1.36

m (t) 3.77 1.86 0.01133 −1.49 1.69 0.00715 −1.57 1.85 0.01112 −1.52
Glutamine m 2.45 1.74 0.01620 −1.36 1.79 \ −1.28 2.34 \ 1.13

m (t) 3.77 2.41 0.01133 −1.49 2.50 0.00715 −1.57 2.36 0.01112 −1.52
GPC (Glycerophosphochline) s 3.23 2.02 0.03288 1.21 2.09 0.00222 1.36 2.12 \ 1.23

Isoleucine d 1.01 1.82 0.01051 −1.32 1.98 0.00477 −1.32 2.09 \ −1.12
Lactate d 1.33 2.68 0.01447 1.36 2.53 0.00265 1.50 1.95 \ 1.26

q 4.11 2.73 0.00061 1.72 2.65 0.00050 1.72 2.39 \ 1.39

Lipid,-CH=CH- br 5.33 2.42 0.02136 2.04 2.28 0.02904 2.03 2.01 0.01274 3.13

Lysine m 3.77 2.41 0.01133 −1.49 2.50 0.00715 −1.57 2.36 0.01112 −1.52
PC (Phosphochline) s 3.21 2.65 0.00143 1.34 2.55 0.00035 1.75 1.91 \ −1.04
Phosphocreatine s 3.04 1.98 0.01704 −2.10 1.94 0.01140 −2.29 1.78 0.00828 −2.56

s 3.93 1.98 0.02991 −1.77 1.88 0.02319 −1.81 1.70 0.02442 −1.84
Scyllo-inositol t 3.43 1.89 0.02075 −1.58 2.32 0.01328 −1.67 2.09 0.00797 −1.87
Methionine s 2.13 1.60 \ −1.15 1.88 \ −1.22 2.09 0.01137 −1.35
Succinate s 2.41 1.96 0.01650 −4.12 1.84 0.01430 −4.56 1.66 0.01110 −5.80
Taurine t 3.27 2.02 \ −1.17 2.09 0.04780 −1.17 2.12 0.00460 −1.40

t 3.43 1.89 0.02075 −1.58 2.32 0.01328 −1.67 2.09 0.00797 −1.87
Valine d 1.05 1.38 0.00908 −1.34 2.01 0.00269 −1.37 2.10 \ −1.16

Notes: Multiplicity: aS singlet, d doublet, t triplet, q quartet, dd doublet of doublets, m multiplet. Variable: bImportance in the projection was obtained from OPLS-DA model with a threshold of 1.0. p-value: cObtained from Student's
t-test. FC: dFold change (FC) between normal group and metastasis groups. Fold change with a positive value indicates a relatively higher concentration present in metastasis groups while a negative value means a relatively lower
concentration as compared to the normal group. “\” represents this parameter is not statistically significant.
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whole organism. Any changes in physiological, pathological or other factors in the body will affect the concentration of
metabolites or change the metabolic flow, so metabolomics technology can more accurately reflect the actual situation of
the body. The serum metabolomic profile of colorectal cancer metastasis has been reported previously.26,27 Farshad et al
demonstrated that the serum metabolomics associated with local colorectal cancer differed from those associated with
simple liver metastases using gas chromatography-mass spectroscopy and 1H-NMR spectroscopy.26 Zhang et al found
that 17 metabolites, including abscisic acid, calcitroic acid and glucosylsphingosine, could distinguish colorectal cancer
patients with or without lymph node metastasis.27 Lung metastasis is an important prognostic factor affecting the
prognosis of patients with colorectal cancer. Patients with lung metastasis had a poorer overall survival than non-
metastasis patients.1 However, there is no research focused on serum profiling of colorectal cancer lung metastasis. In
this study, we analyzed serum metabolic profiles during the lung metastasis process of colorectal cancer and identified 34
differential metabolites between the normal group and the metastatic groups. Some of them, such as lactate, creatine,
acetate, acetic acid, lysine, phosphocreatine, glutamate and succinate, were significantly changed in the serum specimens
of the colorectal cancer lung metastasis group. Then, we used MetaboAnalyst to summarize the changed metabolic
pathways based on the Kyoto Encyclopedia of Genes and Genomes (KEGG), and the results showed that energy supplies
and amino acid metabolism pathways were mainly disturbed (Table 2). Although we detected differential metabolites in
lung tissues from mice with colorectal cancer metastasis,25 little research focused on differential serum metabolites
related to cancer metastasis.

In the metabolic profile, elevated level of lactate were observed in the metastatic groups compared to the control
group, consistent with previous reports.28 The conversion of glucose to lactic acid in the presence of oxygen is called
aerobic glycolysis (Warburg effect). Increased aerobic glycolysis has been observed in most cancers; therefore, elevated
level of lactate in serum samples of metastatic groups was not surprising.29 Increased lactate may be the result of
enhanced glycolysis in the metastasis process. Metabolic conversion from oxidative phosphorylation to glycolysis in
pancreatic cancer cells modulated the invasion-metastasis cascade by promoting epithelial-mesenchymal transformation,
tumor angiogenesis, and metastatic colonization of distant organs.30 Even under normal conditions, increased glucose
uptake and lactic acid accumulation are still common features of cancer cells, suggesting that the main purpose of
glycolysis is not only to provide energy, but also for some other uses.31 The addition of lactate was thought to increase
migration of various cell lines,32 which was transported in and out of cells by a group of monocarboxylic acid
transporters (MCTs) with different isoforms,33 so elevated serum concentrations of lactate may be caused by increased

Figure 4 Box-and-whisker plots show differences between the normal control group and the metastatic groups. The Y-axis shows the relative abundance of the NMR signal
(normalized to the total peak); median: horizontal line in the middle portion of the box; lower and upper quartile: bottom and top boundaries of boxes; whiskers, 5th and
95th percentiles; outliers: open circles; *p < 0.05, **p < 0.01, ***p < 0.001, unpaired Student’s t-test.
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expression of MCTs during metastasis. Indeed, many studies reported upregulation of MCTs in the cancer metastasis
process.34 For example, MCT1 and MCT14 were overexpressed in liver metastases from colorectal cancer compared
with non-neoplastic tissues.35 Inhibition of MCT1 reduced the burden of metastatic disease in patient-derived xeno-
transplantation and melanoma in mice, and MCT1 highly expressed cells formed more metastases after intravenous
administration.36 In conclusion, lactic acid can be used as a biomarker for the diagnosis of colorectal cancer metastasis.

Serum creatine levels were significantly lower in the metastatic groups than in the normal group (Figure 4). Although
elevated serum creatine levels have been reported in patients with early renal cell carcinoma,37 Lu et al found plasma
creatine levels were reduced in patients with pancreatic cancer.38 To date, little research has demonstrated changes in
serum creatine levels in the cancer metastasis process. Our research found that decreased serum creatine levels could be
a characteristic of colorectal cancer lung metastasis. Acetate is a bioenergy substrate for human glioblastoma and brain
metastases, and using 13C-NMR analysis of brain tumors, researchers found that acetate may be an important carbon
source for the production of citric acid cycle intermediates such as acetyl-coA.39 Thus, it was not surprising that the
serum acetate levels of the metastatic animals were lower than those of the control group due to the large amount of
carbon sources required for tumor metastasis.

Table 2 Pathway Enrichment

Pathways Total
Cmpd

Hits Compound Raw p -Log p FDR Impact

Synthesis and degradation of ketone

bodies

5 2 3-Hydroxybutanoate; Acetoacetate 6.74E-05 9.61 6.23E-04 0.60

Glycine, serine and threonine

metabolism

34 8 Serine; Choline; Betaine; N,N-Dimethylglycine;

Glycine; Threonine; Creatine; Pyruvate

2.33E-02 3.76 0.037 0.62

Pyruvate metabolism 22 4 Lactate; Pyruvate Acetate; Fumarate 7.75E-08 16.37 2.87E-06 0.35

Starch and sucrose metabolism 15 1 Glucose 2.95E-04 8.13 9.92E-04 0.33

Alanine, aspartate and glutamate

metabolism

28 5 Alanine; Glutamate; Glutamine; Fumarate;

Pyruvate

1.19E-04 9.04 8.81E-04 0.31

Aminoacyl-tRNA biosynthesis 48 12 Glutamine; Glycine; Serine; Methionine; Valine;

Alanine; Lysine; Isoleucine; Leucine; Threonine;

Tyrosine; Glutamate

6.68E-04 7.31 1.90E-03 0.17

Tyrosine metabolism 42 4 Fumarate; Pyruvate; Acetoacetate; Tyrosine 8.37E-04 7.09 2.21E-03 0.16

Glyoxylate and dicarboxylate

metabolism

32 7 Serine; Glycine; Glutamate; Acetate; Pyruvate;

Formate; Glutamine

2.70E-04 8.22 9.92E-04 0.15

Glycolysis/Gluconeogenesis 26 2 Pyruvate; Acetate 2.68E-04 8.22 9.92E-04 0.13

Cysteine and methionine metabolism 33 3 Serine; Methionine; Pyruvate 1.16E-03 6.76 2.69E-03 0.13

Pathways Total

Cmpd

Hits Compound Raw p -log p FDR Impact

Butanoate metabolism 15 3 3-Hydroxybutanoate; Acetoacetate; Glutamate 6.71E-05 9.61 6.23E-04 0.11

Arginine and proline metabolism 38 4 Creatine; Glutamate; Phosphocreatine; Pyruvate 1.11E-06 13.71 2.06E-05 0.098

Glycerophospholipid metabolism 36 3 Choline phosphate; Choline; Phosphocholine 1.51E-04 8.80 9.32E-04 0.083

Citrate cycle (TCA cycle) 20 2 Pyruvate; Fumarate 1.14E-03 6.78 2.69E-03 0.076

Galactose metabolism 27 1 Glucose 2.95E-04 8.13 9.92E-04 0.035

Notes: *The Total is the total number of compounds in the pathway; the Hits is the actually matched number from the user uploaded data; the Raw p is the original p value
calculated from the enrichment analysis; the FDR p is the p value adjusted using False Discovery Rate; the Impact is the pathway impact value calculated from pathway
topology analysis.

Cancer Management and Research 2022:14 https://doi.org/10.2147/CMAR.S348981

DovePress
1465

Dovepress Zhang et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Phosphocreatine is a high-energy reserve substance in coupled reactions, which can anaerobically provide a phosphate
group to ADP to form ATP. Sullivan et al demonstrated that in order to colonize the liver, colon cancer cells up-regulated the
expression of cerebral creatine kinase (CKB) and secreted it into extracellular space, where CKB catalyzes the formation of
creatine phosphate. Finally, phosphocreatine is imported into cells and used to regenerate ATP for cancer cell functions.40 In
our results, serum phosphocreatine was reduced in the metastatic group compared to the normal group (Figure 4), suggesting
that the metastatic cells may also require a metabolic program to survive metabolic stress at the initial colonization site. Cancer
patients with metastasis will benefit from targeting phosphocreatine metabolism.

Glutamate is a carbon source of the TCA cycle and can promote anabolism. Morandi et al reported that increased
intracellular glutamate levels maintain the aggressive phenotype of cancer cells in endocrine therapy-resistant breast
cancer,41 suggesting that glutamate plays an important role in cancer progression. Overexpression of glutaminase 1
(GLS1), a mitochondrial enzyme that hydrolyzes glutamine to glutamate, is associated with cancer metastasis.42

However, in our study, serum glutamate levels were generally reduced in the metastatic group compared to the control
group, which was consistent with previous studies showing that extracellular glutamate levels in glioblastoma cell lines
were higher than in metastasis cell lines.43 We hypothesized that this was due to elevated glutamate levels in the
metastatic group. SLC1A3 was overexpressed in some solid tumors, such as prostate cancer,44 which can transport
glutamate into cells, and SCL1A3 inhibition could attenuate the metastatic potential of cancer cells.

The “seed and soil” hypothesis was put forward by Paget early in 1889.45 It has been proved that the site of metastasis
depends not only on the characteristics of the primary tumor cells, but also on the microenvironment of the host tissue. Patients
with colorectal cancer often develop liver and lung metastases, possibly because the lung and liver provide “fertile soil” for
colorectal cancer cells. Similarly, tumor metabolism can promote tumor cell metastasis by influencing the tissue
microenvironment.46 Lactic acid produced by colorectal cancer cells could induce apoptosis and result in mitochondrial
dysfunction of liver-resident natural killer cells, thus promoting metastasis.46 In our current study, we also found that serum
lactic acid levels in the metastatic group were higher than those in the normal group (Figure 4), indicating that lactic acid
played a critical role in the metastasis process. It was confirmed that the polarization of macrophages could promote cancer
progression, including metastasis.47 Tumor microenvironment can actively reprogrammacrophage metabolism through direct
exchange of metabolites.48 Lactic acid, glutamine, succinic acid, a-ketoglutarate (a-KG) and adenosine are the keymetabolites

Figure 5 Summary of pathway analysis by Metaboanalyst online. The further its location is from the (0,0), the more significant the pathway is.
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that regulate the polarization of macrophages.48 For example, Liu et al confirmed that a high lactate concentration could
promote an M2-like pro-tumour tumor associated macrophage phenotype by activating mTORC1-mediating signaling.49 In
our present study, the increasing serum level of lactate may facilitate tumor metastasis by promoting macrophage polarization.

We have detected differential metabolites of lung tissues25 and serum samples from mice with colorectal cancer lung
metastasis. Some metabolites including acetic acid, arginine, choline, glutamine, lactate, phosphocholine, succinate and
taurine showed the same change tendency, while some metabolites including VLDL:CH3-(CH2)n-, acetate, creatine,
glutamate, isoleucine, lysine, phosphocreatine and valine possessed the opposite trend. In lung tissues and serum
samples, lactic acid level was up-regulated and succinic acid level was down-regulated, indicating active glycolysis
and inhibition of aerobic respiration during cancer metastasis. We also found that the level of creatine, glutamate,
isoleucine, phosphocreatine and valine decreased in serum samples, while increased in lung tissues, which may be due to
the high nutrient requirements of the tissue during metastasis process.

Taken together, 1H-NMR spectroscopy was used to analyze serum metabolic profiles in a mouse model of colorectal
cancer with lung metastasis. Several identified metabolites have been implicated in lung metastasis progression of
colorectal cancer. However, the use of only one colorectal cancer cell line is a limitation of this study and further research
is needed. In conclusion, the results demonstrate that serum metabolites may serve as potential diagnostic biomarkers for
tumor metastasis.

Abbreviations
PCA, principal component analysis; OPLS-DA, orthogonal partial least squares discriminant analysis; PLS-DA, partial
least squares discriminant analysis; NMR, nuclear magnetic resonance; TCA, tricarboxylic acid cycle.
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