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Endometrial carcinoma (EC) is the fifth widely occurring malignant neoplasm among women all over the world. However, there is
still lacking efficacy indicators for EC’s prognosis. Here, we analyzed two databases including an RNA-sequencing-based TCGA
dataset and a microarray-based GSE106191. After normalizing the raw data, we identified 114 common genes with upregulation
and 308 common genes with downregulation in both the TCGA and GSE106191 databases. Bioinformatics analysis showed that
the differently expressed genes in EC were related to the IL17 signaling pathway, PI3K-Akt signaling pathway, and cGMP-PKG
signaling pathway. Furthermore, we performed the least absolute shrinkage and selection operator (LASSO) Cox regression
analysis and generated a signature featuring 17 prognosis-related genes (MAL2, ANKRD22, METTL7B, IL32, ERFE, OAS1,
TRPC1, SRPX, RAPGEF4, PSD3, SIMC1, TRPC6, WFS1, PGR, PAMR1, KCNK6, and FAM189A2) and found that it could
predict OS in EC patients. The further analysis showed that OAS1, MAL2, ANKRD22, METTL7B, and IL32 were significantly
upregulated in EC samples after comparison with normal samples. However, TRPC1, SRPX, RAPGEF4, PSD3, SIMC1, TRPC6,
WFS1, PGR, PAMR1, KCNK6, and FAM189A2 were significantly downregulated in EC samples in comparison with normal
samples. And correlation analysis showed that our results showed that the expressions of 17 prognosis-related hub genes were
significantly correlated based on Pearson correlation. We here offer a newly genetic biomarker for the prediction of EC
patients’ prognosis.

1. Introduction

Endometrial carcinoma (EC) is the fifth commonly occurring
malignant neoplasm among women all over the world, with
an estimated 382,000 new EC cases and nearly 90,000 deaths
in 2018 [1, 2]. Especially in the United States, it is speculated
that the number of newly diagnosed ECs will be increasing
over time. It is estimated that the occurrence rate is still rising
with increasing risk factors for certain ECs, including obesity
rate and the aging of the US population [3]. The incidence
rate of EC increases after the age of 30, and the peak inci-
dence is within 60 to 69 years. 20% to 30% of patients with
EC are diagnosed in the advanced stage during surgery. In
the clinic, the five-year survival rate of patients in stage III
ranged from 40% to 70% and in stage IV was within 0 to
10% [1, 4]. Despite therapeutic advances having been made,
high recurrence rate and metastasis remain to be big chal-

lenges [4]. To determine effective therapeutic strategies in
ameliorating the prognostic status of EC patients is thus
essential.

Presently, as per the World Health Organization (WHO)
classification system classification, EC comprises two sorts
on the basis of histological features [5]. Endometrioid adeno-
carcinoma or well-differentiated endometrioid subtypes
accounted for 80% over EC cases and was considered as
estrogen-dependent type I of EC [1, 4, 6]. Approximately
10% of EC cases were type II, manifested as nonendometrial
or poorly differentiated EC. Difference existed in the molec-
ular changes of the two EC types [1, 4, 7]. In general, in the
activated oncogene and inactivated tumor suppressor gene,
defective DNA repair contributed mainly to the occurrence
of neoplasms [1, 8]. For instance, the inactivated tumor sup-
pressor gene PTEN accompanied by DNA mismatch repair
gene defects manifested as the microsatellite instability
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phenotype, or activated KRAS2 and/or adhesion molecules
genes were detected in the early stage of type I EC [9]. Previ-
ous studies have shown that mutated TP53 and Her-2
occurred in type II EC, which was probably caused by the
background of the atrophic endometrium. It seems that these
molecular changes were specific in type I and type II of ECs
[10, 11]. Although many efforts have been made to set up a
molecularly based histological classification, it is still urgently

needed to identify the gene expression profiles between dif-
ferent histological types of ECs that distinguish normal cells
from cancer cells. There have been public reports showing
that the differentially expressed genes existed in different his-
tological sorts of EC [12, 13]. However, a limited set of genes
were reported in these studies. More and more researches are
thus needed to characterize EC and unearth the genes func-
tioning importantly in the mechanisms of EC.
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Figure 1: Screening of DEGs in EC. (a, b) Heat map (a) and volcano map (b) identified 2118 genes with upregulation and 3989 genes with
downregulation by analyzing the TCGA database. (c, d) Heat map (c) and volcano map (d) showed 156 genes with upregulation and 416
genes with downregulation by analyzing the GSE106191 database. (e, f) Venn map analysis of common upregulated and downregulated
genes in EC by analyzing the TCGA and GSE106191 databases.
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Figure 2: Continued.
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Herein, we attempted to systematically screen more novel
differentially expressed genes and related molecular path-
ways and the clinical significance of the identified genes in
EC. To sum up, identification of EC-related genes and gene
pathways as well as the clinical implication is conducive to
understanding the pathophysiology of this cancer and unco-
vering the potential diagnostic biomarkers of EC.

2. Materials and Methods

2.1. Establishment and Verification of Gene Prognostic
Model. We carried out the LASSO Cox regression model
(R package “glmnet”) to select the candidate genes and sub-
sequently established the prognostic model [14, 15]. We ulti-
mately retained 17 genes and their coefficients and utilized
the minimum criteria to determine the penalty parameter
(λ). We calculated the risk score after centralizing and stan-
dardizing (applying the “scale” function in R) the TCGA
expression data. The risk score formula was shown as fol-
lows: risk score =∑7iXi × Y i (X: coefficients, Y: gene expres-
sion level).

2.2. Identification of Differentially Expressed Genes (DEGs).
We obtained expression matrixes and platform information
from Gene Expression Omnibus (GEO) datasets. The dataset
GSE106191 was used, which includes the primary tumor of
66 endometrial cancer patients (64 carcinoma samples and

33 hyperplasia samples). Then, Software R (version 3.5.1,
https://www.r-project.org) and “limma” packages (http://
www.bioconductor.org/) [16] were applied to select the
DEGs existing in the EC samples and control samples. These
selection criteria were adjusted p value < 0.05 and fold
change ðFCÞ ≥ 2 or fold change ðFCÞ ≤ 0:5.

2.3. Functional Enrichment Analysis. We usually applied
Gene Ontology (GO) functional enrichment analysis to
describe gene functions, consisting of molecular function
(MF), biological process (BP), or cellular component (CC)
[17, 18]. And we then utilized the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis
to identify molecular interaction and relation networks. p
value < 0.05 was thought to be statistically significant. Based
on the DEGs in the GEO datasets, we conducted GO and
KEGG enrichment analyses by the online tool DAVID
(https://david. http://ncifcrf.gov/home.jsp) [19, 20]. The top
significantly enriched analysis results were shown.

2.4. Survival Analysis. For identification of prognosis-
predicting gens, we integrated the clinical data of EC patients
in The Cancer Genome Atlas (TCGA) and carried out
Kaplan-Meier curve analysis [21, 22]. The survival curves of
DEGs were drew by “survival” package in R. p value < 0.05
was denoted as a significantly statistical difference.
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Figure 2: KEGG pathway analysis of DEGs in EC. (a) KEGG pathway analysis of upregulated genes by analyzing the TCGA database. (b)
KEGG pathway analysis of upregulated genes by analyzing the GSE106191 database. (c) Venn map analysis of upregulated gene-related
pathways. (d) KEGG pathway analysis of downregulated genes by analyzing the TCGA database. (e) KEGG pathway analysis of
downregulated genes by analyzing the GSE106191 database. (f) Venn map analysis of downregulated gene-related pathways.
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2.5. Statistical Analysis. SPSS 22.0 software (Chicago, USA)
was employed to analyze the data. All representative data
were shown as the mean ± standard deviation (SD) [23–25].
We carried out the Students’ t-test and one-way ANOVA
to separately determine the difference existing in two groups
and multiple groups. p value < 0.05 was denoted as a signifi-
cantly statistical difference [26–28]. All experiments were
performed in three independent times in replicates at one
time.

3. Results

3.1. Screening of DEGs in EC. To identify the DEGs in EC, we
analyzed two databases including the RNA-sequencing-
based TCGA dataset and microarray-based GSE106191.
After normalizing the raw data, we identified 2118 genes with
upregulation and 3989 genes with downregulation by analyz-
ing the TCGA database (Figures 1(a) and 1(b)). Meanwhile,
we found 156 genes with upregulation and 416 genes with
downregulation by analyzing the GSE106191 database
(Figures 1(c) and 1(d)). Among the DEGs, 114 common
genes with upregulation and 308 common genes with down-
regulation were identified in both the TCGA and GSE106191
databases (Figures 1(e) and 1(f)).

3.2. Bioinformatics Analysis of DEGs in EC. Next, we per-
formed KEGG and GO analyses of DEGs in endometrial car-

cinoma using TCGA and GSE106191, respectively. As
presented in Figure 2, the KEGG analysis showed that the
pathways related to DEGs were similar by analyzing either
TCGA or GSE106191 (Figures 2(a), 2(b), 2(d), and 2(e)).
The KEGG analyses of upregulated genes were related to
bladder cancer, cell cycle, cytokine-cytokine receptor interac-
tion, IL17 signaling pathway, cytokine, and cytokine receptor
(Figure 2(c)). The KEGG analyses of downregulated genes
were related to ECM-receptor interaction, focal adhesion,
PI3K-Akt signaling pathway, protein digestion and absorp-
tion, proteoglycans in carcinoma, relaxin signaling pathway,
and cGMP-PKG signaling pathway (Figure 2(f)).

Furthermore, the GO analysis also showed that the bio-
logical processes related to DEGs were similar by analyzing
either TCGA or GSE106191 (Figures 3(a), 3(b), 3(d), and
3(e)). The GO analyses of upregulated genes were related to
chromosome segregation, mitotic nuclear division, mitotic
sister chromatid segregation, nuclear chromosome segrega-
tion, nuclear division, organelle fission, and sister chromatid
segregation (Figure 3(c)). The GO analysis of downregulated
genes exhibited a relationship to extracellular matrix organi-
zation and structure organization (Figure 3(f)).

3.3. Identification of Prognosis-Related DEGs in EC. In the
above analysis, we identified 572 DEGs in EC. In order to
identify prognosis-related DEGs in ECs, we carried out
the Kaplan-Meier Plotter to determine the correlation of
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Figure 3: GO analysis of DEGs in EC. (a) GO analysis of upregulated genes by analyzing the TCGA database. (b) GO analysis of upregulated
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Figure 4: Continued.

7BioMed Research International



0 5 10 15

METTL7B

Log−rank P = 0.005 
HR = 1.84 (95%CI, 1.2−2.8)

Survival years (OS)

Su
rv

iv
al

 ra
te

0.0

0.2

0.4

0.6

0.8

1.0

(g)

0 5 10 15

OAS1

Log−rank P = 0.006 

HR = 1.81 (95%CI, 1.19−2.75)

Survival years (OS)

Su
rv

iv
al

 ra
te

0.0

0.2

0.4

0.6

0.8

1.0

(h)

0 5 10 15

PSAT1

Log−rank P = 0.005 
HR = 1.83 (95%CI, 1.2−2.8)

Survival years (OS)

Su
rv

iv
al

 ra
te

0.0

0.2

0.4

0.6

0.8

1.0

(i)

0 5 10 15

PSD3

Log−rank P = 0.001 

HR = 2.13 (95%CI, 1.38−3.26)

Survival years (OS)

Su
rv

iv
al

 ra
te

0.0

0.2

0.4

0.6

0.8

1.0

(j)

0 5 10 15

UST

Log−rank P = 0.001 

HR = 2.04 (95%CI, 1.33−3.14)

Survival years (OS)

Su
rv

iv
al

 ra
te

0.0

0.2

0.4

0.6

0.8

1.0

(k)

0 5 10 15

RAPGEF4

Log−rank P = 0.008 
HR = 1.78 (95%CI, 1.16−2.71)

0.0

0.2

0.4

0.6

0.8

1.0

Survival years (OS)

Su
rv

iv
al

 ra
te

(l)

Figure 4: Continued.

8 BioMed Research International



0 5 10 15

PTTG1

Log−rank P = 0.004 

HR = 1.87 (95%CI, 1.22−2.86)

Survival years (OS)

Su
rv

iv
al

 ra
te

0.0

0.2

0.4

0.6

0.8

1.0

(m)

0.0

0.2

0.4

0.6

0.8

1.0
SIMC1

Log−rank P = 0.002 
HR = 1.98 (95%CI, 1.29−3.03)

Survival years (OS)

Su
rv

iv
al

 ra
te

0 5 10 15

(n)

0 5 10 15

TRPC1

Log−rank P = 0.001 

 HR = 2.01 (95%CI, 1.31−3.08)

Survival years (OS)

Su
rv

iv
al

 ra
te

0.0

0.2

0.4

0.6

0.8

1.0

(o)

0 5 10 15

TRO

Log−rank P = 0.006 

HR = 1.8 (95%CI, 1.18−2.74)
0.0

0.2

0.4

0.6

0.8

1.0

Survival years (OS)

Su
rv

iv
al

 ra
te

(p)

0 5 10 15

BEX4

Log−rank P = 0.005 
HR = 1.82 (95%CI, 1.19−2.78)

Survival years (OS)

Su
rv

iv
al

 ra
te

0.0

0.2

0.4

0.6

0.8

1.0

(q)

0 5 10 15

POLQ

Log−rank P = 0.004 
 HR = 1.88 (95%CI, 1.23−2.89)

0.0

0.2

0.4

0.6

0.8

1.0

Survival years (OS)

Su
rv

iv
al

 ra
te

(r)

Figure 4: Continued.

9BioMed Research International



the DEG expression with the overall survival (OS) time in
EC. Finally, we identified 30 DEGs that were related to
the prognosis of EC, including KCNK6, IL32, FAM189A2,
WFS1, GREB1, WFDC1, PGR, PAMR1, TRPC6, ADAM28,
ANKRD22, GLDC, RAPGEF4, MCM10, TRO, OAS1, BEX4,
PSAT1, METTL7B, TIMP3, FBXO17, PTTG1, POLQ,
MAL2, SIMC1, ERFE, TRPC1, SRPX, UST, and PSD3.
Among these genes, higher expressions of BEX4, ERFE,
FBXO17, GLDC, MAL2, MCM10, METTL7B, OAS1, POLQ,
PSAT1, PSD3, PTTG1, RAPGEF4, SIMC1, SRPX, TIMP3,
TRO, TRPC1, and UST were correlated to shorter OS time
in patients with EC (Figures 4(a)–4(s)). However, higher
expressions of WFS1, GREB1, FAM189A2, ANKRD22,
WFDC1, TRPC6, KCNK6, IL32, PGR, PAMR1, and
ADAM28 were correlated to longer OS time in patients with
EC (Figures 5(a)–5(k)).

3.4. Establishing a Prognostic Gene Model in the TCGA
Cohort.We utilized the least absolute shrinkage and selection
operator (LASSO) Cox regression analysis to establish the
prognostic gene model. Figures 6(a) and 6(b) revealed a 17-
gene signature constructed in the light of the optimum λ value.
We calculated the risk score as follows: risk score = ð4e − 04Þ
∗MAL2 + ð−0:0263Þ ∗ANKRD22 + ð0:0493Þ ∗METTL7B
+ ð0:0688Þ ∗ IL32 + ð0:0022Þ ∗ ERFE + ð0:01Þ ∗OAS1 +
ð0:0745Þ ∗ TRPC1 + ð0:1564Þ ∗ SRPX + ð0:4778Þ ∗ RAPGEF
4 + ð0:0496Þ ∗ PSD3 + ð0:0383Þ ∗ SIMC1 + ð−0:3016Þ ∗
TRPC6 + ð−0:2001Þ ∗WFS1 + ð−0:0341Þ ∗ PGR + ð−0:0821Þ
∗ PAMR1 + ð−0:0912Þ ∗KCNK6 + ð−0:0813Þ ∗ FAM189A2.
543 patients with EC were divided equally into the low-risk
group and the high-risk group on the basis of the median score
calculated by the risk score formula. Compared to patients in
the low-risk group, those in the high-risk group displayed a
larger death toll and a shorter survival time (Figure 6(c)). Our
data revealed that an obviously lower OS time was observed

in the high-risk group of EC patients, in comparison with the
low-risk group of EC patients by Kaplan-Meier Plotter analysis
(Figure 6(d)). We applied time-dependent receiver operating
characteristic (ROC) analysis to assess the sensitivity and spec-
ificity of the prognostic model. And our results indicated that
the area under the ROC curve (AUC) was 0.757 for 1-year,
0.758 for 3-year, 0.798 for 5-year, and 0.735 for 10-year survival
(Figure 6(e)).

3.5. Genetic Alteration Differences of Prognostic Genes in EC
Patients. Furthermore, genetic alteration of prognostic genes
in EC was analyzed using the cBioPortal database, which
included 726 patients from seven related studies. We
observed that the mutation rates of prognostic genes for EC
ranged from 0.8% to 10% for individual genes (MAL2, 5%;
ANKRD22, 4%; METTL7B, 2.5%; IL32, 2.6%; ERFE, 0.8%;
OAS1, 3%; TRPC1, 9%; SRPX, 6%; RAPGEF4, 10%; PSD3,
10%; SIMC1, 7%; TRPC6, 7%; WFS1, 6%; PGR, 7%; PAMR1,
7%; KCNK6, 4%; and FAM189A2, 5%). Among these genes,
RAPGEF4 and PSD3 were found to have the highest muta-
tion rate in EC, which are mutated in about 10% EC cases
(Figure 7).

3.6. Validation of 17 Prognosis-Related Hub Gene Expressions
in EC. For verification of the bioinformatics analysis data in-
depth, UALCAN databases were used to confirm our find-
ings. As presented in Figure 7, compared to normal samples,
OAS1, MAL2, ANKRD22, METTL7B, and IL32 were dra-
matically upregulated in EC samples, whereas TRPC1, SRPX,
RAPGEF4, PSD3, SIMC1, TRPC6, WFS1, PGR, PAMR1,
KCNK6, and FAM189A2 were greatly downregulated in EC
samples (Figures 8(a)–8(o)).

We also analyzed the correlation among these 17
prognosis-related hub genes in EC. Our results showed that
the expressions of the 17 prognosis-related hub genes were
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Figure 5: Continued.
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significantly correlated based on Pearson correlation. The
most significantly negatively correlated gene pairs included
FAM189A2-MAL2, MAL2-FAM189A2, TRPC6-OAS1,

OAS1-TRPC6, WFS1-ANKRD22, and ANKRD22-WFS1.
And the most significantly positively correlated gene pairs
included SIMC1-MAL2, MAL2-SIMC1, PGR-WFS1, WFS1-
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Figure 5: Identification of DEGs related to good prognosis in EC. (a–k) Higher expressions of WFS1, GREB1, FAM189A2, ANKRD22,
WFDC1, TRPC6, KCNK6, IL32, PGR, PAMR1, and ADAM28 were correlated to longer OS time in patients with EC.
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PGR, RAPGEF4-TRPC1, TRPC1-RAPGEF4, RAPGEF4-
SRPX, SRPX-RAPGEF4, IL32-ANKRD22, ANKRD22-IL32,
FAM189A2-PGR, PGR-FAM189A2, FAM189A2-KCNK6,
KCNK6-FAM189A2, SRPX-TRPC1, TRPC1-SRPX, TRPC6-

SRPX, SRPX-TRPC6, PAMR1-RAPGEF4, RAPGEF4-
PAMR1, ERFE-METTL7B, METTL7B-ERFE, FAM189A2-
WFS1, WFS1-FAM189A2, PSD3-RAPGEF4, RAPGEF4-
PSD3, OAS1-MAL2, and MAL2-OAS1 (Figure 9).
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4. Discussion

Emerging studies revealed that the occurrence of EC resulted
from the abnormally expressed multiple carcinoma-related
genes [29, 30], amid which have been shown to display a rela-
tionship to EC’s susceptibility and progression [29, 30].
Many molecular biology methods have been used to identify
biomarkers of cancers [31–34]. Nevertheless, the majority of
them merely concentrated on a single genetic factor, limiting
these biomarkers’ reliability.

Our current study discovered more EC-related genes with
differential expression than previous researches, indicating
they may play importantly in the mechanism of EC. Our data
revealed 114 common genes with upregulation and 308 com-
mon genes with downregulation in EC samples in comparison
with normal samples. Bioinformatics analysis showed that
these genes were significantly correlated to multiple key sig-
naling in EC, such as the cGMP-PKG signaling pathway. Fur-
thermore, we identified that 30 DEGs were related to the
prognosis of EC, comprising KCNK6, IL32, FAM189A2,
WFS1, GREB1, WFDC1, PGR, PAMR1, TRPC6, ADAM28,
ANKRD22, GLDC, RAPGEF4, MCM10, TRO, OAS1, BEX4,
PSAT1, METTL7B, TIMP3, FBXO17, PTTG1, POLQ,
MAL2, SIMC1, ERFE, TRPC1, SRPX, UST, and PSD3.

Here, we conducted GO and KEGG analyses of the
involved biological processes and pathways related to these
DEGs in EC’s progression. The pathway analysis of these
DEGs showed that the interconnected network of genes par-
ticipated in the cyclic guanosine monophosphate- (cGMP-)
protein kinase G (PKG) signaling pathway. As previously
described, the contractility of the uterine smooth muscle is
of importance for the periodic shedding of the endometrial
lining and the expulsion of the fetus during parturition.
There was one study showing that the nitric oxide- (NO-)

cGMP signaling pathway participates in the relaxation of
the smooth muscle. cGMP-dependent PKG, which is essen-
tial for reducing cytoplasmic calcium and muscle tension,
was the downstream target of the NO-cGMP pathway [35].
PKG was responsible for controlling the uterine smooth
muscle tone which produced force near menstruation and
regulated blood flow to the endometrial lining. The above
data together confirmed that PKG functioned crucially in
controlling the contraction of the uterine and vascular
smooth muscle during the periodical menstruation [35].
PI3K-AKT signaling is one of the most important pathways
in our study. PI3K-AKT signaling could be antagonized by
the tumor suppressor phosphatase and tensin homolog
(PTEN) which was reported to be usually mutated in several
sorts of neoplasms, such as the endometrium, skin, brain,
and prostate cancers [36–38]. PTEN has a powerful phospha-
tase activity, which is the best characterized physiological
function leading to the tumor suppressor function of PTEN.

The IL17 signaling pathway was also one of the impor-
tant pathways detected here. In inflammatory mediators,
more and more evidence emphasizes the role of the
interleukin-17 (IL17) cytokine family in malignant diseases.
IL17 is becoming a crucial cytokine to promote and develop
carcinomas by maintaining a chronic inflammatory micro-
environment which is conducive to tumor formation [39,
40]. While IL17 may regulate chemokines and cytokines in
gynecologic cancers, Toll-like receptors may function impor-
tantly in the gynecologic carcinomas’ development via trig-
gering an inflammatory response and cell survival in the
microenvironment of the tumor [41].

Our study generated a signature featuring17 prognosis-
related genes (MAL2, ANKRD22, METTL7B, IL32, ERFE,
OAS1, TRPC1, SRPX, RAPGEF4, PSD3, SIMC1, TRPC6,
WFS1, PGR, PAMR1, KCNK6, and FAM189A2) and
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Figure 7: Genetic alteration differences of prognostic genes in EC patients. The mutation rates of prognostic genes for EC ranged from 0.8%
to 10% for individual genes (MAL2, 5%; ANKRD22, 4%; METTL7B, 2.5%; IL32, 2.6%; ERFE, 0.8%; OAS1, 3%; TRPC1, 9%; SRPX, 6%;
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demonstrated that they were utilized as predictors of OS in
EC patients. We obtained many genes that were previously
reported to be involved in endometriosis patients or endome-
trial stromal cells. For instance, the members of the transient
receptor potential (TRP) ion channel superfamily, known as
having the calcium permeability, has become pivotal modu-

lators in the endometrium. Previous studies have shown that
TRPC1 and TRPC6 were highly expressed in the entire
endometrium during the periodical menstruation. Addition-
ally, TRPV2, TRPV4, TRPC1/4, and TRPC6 were found in
human endometrial stromal cells (hESCs) from patients
with endometriosis [25]. Previous reports suggested that
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Figure 8: Validation of 17 prognosis-related hub gene expressions in EC.
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the cAMP2-activated exchange protein (EPAC2, RAP-
GEF4), another cAMP mediator, took part in endometrial
stromal cell differentiation via regulating calreticulin
(CALR) expression [42]. Compared with the control group,
the level of interleukin-32 (IL32) in peritoneal fluid (PF) in
women with endometriosis was significantly higher. The
endometrial cells treated with IL32 in vitro significantly
enhanced cell viability, proliferation, and invasion capabili-
ties [43]. In silico methods can distinguish many key genes
related to the maintenance of telomeres, which were
unknown to the occurrence and prognosis of EC before,
including WFS1. Prognostic biomarkers of EC are essential
for ameliorating risk assessment before and after surgery
and making guided- treatment decisions. PGR and PTEN
were one of the most clinically valuable EC prognostic bio-
markers. In our research, we showed that significant genes
with upregulation in EC samples included OAS1, MAL2,
ANKRD22, METTL7B, and IL32 after comparison with nor-
mal samples. Obvious genes with downregulation in EC sam-
ples comprised TRPC1, SRPX, RAPGEF4, PSD3, SIMC1,

TRPC6, WFS1, PGR, PAMR1, KCNK6, and FAM189A2.
And correlation analysis showed that our results showed that
the expressions of 17 prognosis-related hub genes were sig-
nificantly correlated based on Pearson correlation.

However, there are still several limitations in our litera-
ture. Firstly, the number of samples is limited, which should
be enlarged in the following study, and all the samples are
from public datasets; our own data is also very important.
Secondly, we need to conduct more researches to expound
the function and potential mechanisms of these promising
biomarkers in the progression of EC.

5. Conclusion

In summary, our findings revealed 114 common genes with
upregulation and 308 common genes with downregulation
in EC samples relative to normal ones. Bioinformatics analy-
sis showed these genes exhibited a significant relationship to
multiple signaling and biological processes, such as the
cGMP-PKG signaling pathway and PI3K-AKT signaling.
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Figure 9: 17 prognosis-related hub gene expressions were correlated to each other in EC. The expressions of 17 prognosis-related hub genes
were significantly correlated based on Pearson correlation.

16 BioMed Research International



Moreover, we constructed a 17-gene signature to make a pre-
diction of OS in EC patients using the TCGA cohorts. We
collectively supplied a potential gene signature for the predic-
tion of EC patients’ prognosis.
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