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Primary therapy resistance is a major problem in acute myeloid
leukemia treatment. We set out to develop a powerful and robust
predictor for therapy resistance for intensively treated adult

patients. We used two large gene expression data sets (n=856) to develop
a predictor of therapy resistance, which was validated in an independent
cohort analyzed by RNA sequencing (n=250). In addition to gene expres-
sion markers, standard clinical and laboratory variables as well as the
mutation status of 68 genes were considered during construction of the
model. The final predictor (PS29MRC) consisted of 29 gene expression
markers and a cytogenetic risk classification. A continuous predictor is
calculated as a weighted linear sum of the individual variables. In addi-
tion, a cut off was defined to divide patients into a high-risk and a low-
risk group for resistant disease. PS29MRC was highly significant in the
validation set, both as a continuous score (OR=2.39, P=8.63·10-9,
AUC=0.76) and as a dichotomous classifier (OR=8.03, P=4.29·10-9);
accuracy was 77%. In multivariable models, only TP53 mutation, age
and PS29MRC (continuous: OR=1.75, P=0.0011; dichotomous:
OR=4.44, P=0.00021) were left as significant variables. PS29MRC dom-
inated all models when compared with currently used predictors, and
also predicted overall survival independently of established markers.
When integrated into the European LeukemiaNet (ELN) 2017 genetic
risk stratification, four groups (median survival  of 8, 18, 41 months, and
not reached) could be defined (P=4.01·10-10). PS29MRC will make it pos-
sible to design trials which stratify induction treatment according to the
probability of response, and refines the ELN 2017 classification.
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ABSTRACT

Introduction

Approximately 20-30% of younger adult patients with acute myeloid leukemia
(AML) and up to 50% of older adults are refractory to induction treatment.1 There
are several definitions of treatment failure due to resistant disease (RD) or primary
refractory AML.1-5 One of the earliest consensus definitions classified RD as the
persistence of leukemic blasts in either the peripheral blood or the bone marrow
in a patient alive at least seven days following treatment, excluding patients with



death in aplasia or death due to indeterminate cause.4
More recent recommendations define primary refractory
disease as a failure to achieve complete remission (CR) or
CR with incomplete hematologic regeneration (CRi) after
two courses of induction treatment.2 Regardless of the
definition, RD is associated with extremely poor survival.
Patients with RD can currently not be identified with
high specificity before the start of treatment and thera-
peutic resistance remains one of the main problems in
AML therapy.3
It is difficult to quantify predictive ability. Usually, area

under receiver-operating characteristic curve (AUC) is
used to describe predictive ability, where a value of 1 indi-
cates perfect prediction and 0.5 indicates no prediction.3,6
AUC values of 0.6-0.7, 0.7-0.8 and 0.8-0.9 are considered
as poor, fair and good, respectively.3,6 An AUC of more
than 0.9 would be desirable.
Several tools have been developed to predict therapeutic

response in AML. The AML-score by Krug et al., based on
standard clinical and laboratory variables including genet-
ics, was developed to predict CR or early death of older
patients (≥60 years) treated with intensive chemotherapy.7
The score reached a “poor” prognostic ability of
AUC=0.68 in the validation set.7 A study using compara-
ble variables to identify RD analyzing 4601 patients of all
age groups from the MRC/NCRI, HOVON/SAKK, SWOG
and MD Anderson Cancer Center achieved an AUC pre-
diction of AUC=0.78 by bootstrap adjusted validation in
the training sets.3 The inclusion of extensive genetic test-
ing data from the initial diagnostic workup in this classifi-
er was not able to significantly improve the ability to pre-
dict primary resistance to treatment in younger patients.6,8
These ‘maximal’ models yielded AUCs of 0.77-0.80 but
were not validated in independent data sets.6 
We hypothesized that we could improve the prediction

of RD by combining standard clinical and laboratory vari-
ables, mutation data and gene expression data of large
homogeneously treated patient cohorts to design a new
classifier. 

Methods

Patients
In this study, we used three independent data sets, hereafter

referred to as  training set 1, 2 and validation set. All patients
included in the analysis received cytarabine- and anthracycline-
based induction treatment. All patients included in the German
AML Cooperative Group (AMLCG) trials were scheduled to
receive at least one high-dose cytarabine-containing course as part
of their double induction treatment before they were considered
resistant. 
Training set 1 consisted of 407 patients randomized and treated

in the multicenter phase III AMLCG-1999 trial (clinicaltrials.gov
identifier 00266136) between 1999 and 2005.9,10 The patients are
part of a previously published gene expression data set
(GSE37642) and samples were analyzed on Affymetrix arrays.11,12

Patient selection was based on the availability of information on
response to induction treatment. All patients with a t(15;17),
myelodysplastic syndrome (MDS), or an overall survival (OS) of
less than 16 days were excluded. 
Training set 2 consisted of samples from 462 AML patients

treated in various trials of the Haemato-Oncology Foundation
for Adults in the Netherlands (HOVON). These samples were
analyzed by Affymetrix arrays and clinical and gene expression

data are publicly available (GSE14468).13,14 Thirteen patients had
to be excluded due to early death (OS <16 days) or missing fol-
low-up data.
Finally, the validation set consisted of all patients with available

material treated in the AMLCG-2008 study (clinicaltrials.gov identi-
fier 01382147), a randomized, multicenter phase III trial (n=210).15

These patients were analyzed by RNAseq. Because of the high
response rate in the AMLCG-2008 trial (CR and CRi: 289 of 387,
75%) and the low rate of resistant patients (48 of 387, 12%), we
decided to include an additional 40 patients with RD in the vali-
dation set to increase the statistical power;  these patients were
treated in the AMLG-1999 trial. We selected these patients by
including all patients with RD of the AMLCG-1999 trial that were
not part of training set 1 and who had sufficient material for analy-
sis. Subsequently, only patients matching the control treatment
arm of the AMLCG-2008 trial were selected for RNAseq and
included in the validation set (n=40). Cytogenetic data were miss-
ing in 8 cases from the validation set (not done: n=3; no cells divid-
ing: n=5); since cytogenetic information is required to calculate
most risk scores, these patients were excluded from subsequent
analysis. The gene expression data are publicly available through
the Gene Expression Omnibus Web site (GSE106291).
Details regarding the treatment regimens are described in the

Online Supplementary Appendix. A detailed flow chart describing
the patient cohorts and selection process is shown in Online
Supplementary Figure S1. All study protocols were in accordance
with the Declaration of Helsinki and were approved by the insti-
tutional review boards of the participating centers. All patients
provided written informed consent for inclusion on the clinical
trial and in the genetic analyses.

Molecular workup
Cytogenetic analyses in the AMLCG trials were performed cen-

trally, and risk groups were defined according to the 2010 UK
Medical Research Council (MRC) and the European LeukemiaNet
(ELN) 2017 genetic risk classification (ELN2017). Patients were
characterized for NPM1 and CEBPA mutations, FLT3 internal tan-
dem duplications (FLT3-ITD), and KMT2A (formerly MLL) partial
tandem duplications (KMT2A-PTD) using standard methods
described recently.16 Targeted amplicon sequencing of 68 recurrent-
ly mutated genes as published recently was used for genetic char-
acterization in training set 1 and the validation set.17 RNAseq
libraries were prepared using the Sense mRNA Seq Library Prep
Kit V2 (Lexogen, n=238) and the TruSeq RNA Library Preparation
V2 Kit (Illumina, n=12). Between 500-1000 ng total RNA [RNA
integrity number (RIN) >7] were used as input material. All
sequencing was paired end and performed using polyadenylated-
selected and, in case of the Lexogen libraries, stranded RNA
sequencing. Processing details and sequencing metrics are provid-
ed in the Online Supplementary Appendix. Samples were sequenced
on a HiSeq 1500 instrument (Illumina) as 100 bp reads to a targeted
depth of 20 million mappable paired reads per sample according to
the “Standards, Guidelines and Best Practices for RNA-Seq v.1.0
(June 2011)”18 recommendations of the ENCODE Consortium.
Samples were aligned with STAR 2.4.019 to the human hg19 refer-
ence genome and analyzed by DESeq2.20 Details regarding the
workflow are provided in the Online Supplementary Appendix.

Development of the predictive classifier
The aim of the study was to develop a predictor that accurately

identifies patients with RD. To achieve this goal, we used clinical
markers, cytogenetics (defined according to the MRC), mutational
analysis of 68 recurrently mutated genes in AML and gene expres-
sion markers to construct a predictive model. All gene expression
variables were scaled to a mean value of 0 and variance equal to 1.
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After pre-selection of variables in training set 1 and 2, penalized
logistic regression (Lasso) in training set 1 was used to develop a
predictive classifier that was able to identify patients with RD.
Details regarding the development of the classifier are given in the
Online Supplementary Appendix and Online Supplementary Figure S2,
or were published previously.21 

The predictor was validated in a fully independent cohort of
patients where gene expression was analyzed by a different
method, namely RNA-Seq. The final predictor and cut off were
developed before the validation data set became available. 

Cut-off development
Our aim was to provide a meaningful cut off to guide clinical

decision making. In the case of AML, this means that patients
should not be excluded from induction chemotherapy unless there
is a very high likelihood that it will be ineffective. Therefore, from
the clinical perspective, a high specificity of the predictor is desir-
able. The cut off was, therefore, designed to have a specificity of
0.9 in training set 1. However, by adjusting the cut off to achieve
high specificity, the sensitivity of the predictor decreases. 

Statistical analysis
All statistical analyses were performed using the R 3.3.1 soft-

ware package (R Foundation for Statistical Computing, Vienna,
Austria). Definitions of response to treatment are shown in Figure
1A. We used a slightly modified definition of RD as recommended
by Cheson et al.4 In the original definition, patients had to survive
at least seven days  post induction treatment and have persistent
AML in blood or bone marrow after induction treatment. To
address the difference in treatment length between various induc-
tion regimens [HAM (5 days), “7+3” [7 days], TAD (9 days) or
sHAM (11 days)], only patients surviving at least 16 days after the
start of treatment, independently of the treatment arm, were con-
sidered for the development of the predictor in the training sets.
Day 16 was selected because the first induction response testing
in AMLCG trials was scheduled at this time point. Only patients
who started study treatment and those with a definite induction
result (CR/CRi or RD) were included in training set 1 and in the
analysis of RD in the validation set. Patients with death in aplasia
or of indeterminate cause were excluded from training set 1 (but
not from the validation set). This subgroup of patients (n=15) in
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Figure 1. Definitions of response and study design. (A)
Figure showing the details of the response definition. (B)
Flow chart showing the study design and distribution of
patients. *Patients analyzed by targeted sequencing for 68
genes recurrently mutated in acute myeloid leukemia. RD:
resistant disease; AML: acute myeloid leukemia; PB: periph-
eral blood; PS29MRC:  Predictive Score 29 MRC; HOVON:
Haemato-Oncology Foundation for Aults in the Netherlands.
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combination with patients with RD (non-responder; see Figure
1A) was analyzed separately in the validation set. 
Overall survival was defined as time from study entry until

death from any cause. Patients alive were censored at the time of
their last follow up. The prognostic impact of the classifier was
evaluated by the Kaplan-Meier method and the log-rank test.
Because resistant AML can only be cured by stem cell transplanta-
tion (SCT), all survival analyses were censored for SCT  if not oth-
erwise indicated. The χ2-test was applied for categorical variables
and the Wilcoxon test for continuous variables for statistical com-
parisons. For three-way comparison of numerical variables, we
used the Kruskal-Wallis Test. Multivariable logistic models for
resistance to induction treatment and multivariable Cox models
for OS were used to adjust for potential confounders. P≤0.05 was
considered statistically significant. 

Results

Patients
A flow chart of the study is given in Figure 1B. A total

of 1106 patients were included in the analysis. Patients'
characteristics are shown in Table 1. Patients in training

set 2 were significantly younger and had a higher response
rate than patients in the other two sets. Due to the addi-
tion of resistant patients, the validation set included signif-
icantly fewer patients with favorable cytogenetics. The
median follow up was more than eight  years in the train-
ing sets and 4.2 years in the validation set.

Validation of the final predictor 
The final score (Predictive Score 29 MRC, PS29MRC)

consists of 29 gene expression markers and the cytogenet-
ic risk groups defined according to the MRC
classification,22 and is calculated as a weighted linear sum
of the individual predictors (Figure 2). 
The score in the validation set ranged from -2.75 to

+3.72. In univariate analysis, PS29MRC as a continuous
variable (PS29MRCcont) was a highly significant predictor
of RD in the validation set with an odds ratio (OR) of 2.39
(95%CI: 1.80, 3.26; P=8.63·10-9, AUC=0.76) (Figure 3A).
Similar results were seen with PS29MRC as a dichoto-
mous variable (PS29MRCdic) applying the pre-defined cut
off (Online Supplementary Appendix) defined in training set
1 (OR 8.03, 95%CI: 4.07, 16.46; P=4.29·10-9). We subse-
quently designed multivariable models including all vari-
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Table 1. Patients’ characteristics.
Training Set 1§ Training Set 2 Validation Set$ P

Number of patients 407 449 250
de novo AML, n (%) 354 (87) NA 208 (83) 0.22
Age, median (range) 57 (18-85) 46 (15-77) 58 (18-74) <0.001
Male sex, n (%) 199 (49) 227 (51) 120 (48) 0.79
MRC favorable, n (%) 52 (13) 70 (16) 14 (6) <0.001 
MRC intermediate, n (%) 253 (63) 298 (66) 188 (75) 
MRC unfavorable, n (%) 94 (24) 81 (18) 48 (19) 
White-cell count (x 10 9/L), median (range) 21.2 (0.4-666) NA 17.0 (0.5-406) 0.14
Hemoglobin (g/dL), median (range) 9.0 (3.5-15.4) NA 9.0 (4.5-16.0) 0.57
Platelet count (x 10 9/L), median (range) 53.0 (1-1760) NA 61.5 (1-997) 0.063
LDH (U/L), median (range) 452 (76-4613) NA 408 (107-6601) 0.13
Bone marrow blasts, % median (range) 80 (10-100) NA 73 (6-100) 0.0016
ECOG performance status > 1, n (%) 112 (28) NA 40 (16) <0.001
CR/CRi, n (%) 300 (74) 372 (83) 164 (66) <0.001
AML with resistant disease, n (%) 107 (26) NA* 71 (28) 0.33
Cumulative relapse, n (%) 188 (71) 189 (59) 67 (56) 0.0031
5-year survival in %, [n of deaths] 32 [283] 38 [289] 36 [150] 0.096
Median follow up (years) 8.6 8.6 4.2
§The data set was restricted to patients with definitive induction results (CR/CRi or resistant disease). $ The data set includes additional 40 patients with resistant disease from
the AMLCG-1999 trial. * In training set 2 only the information of responder (CR/CRi) and non-responder (n=77, 17%) was available. n: number; AML: acute myeloid leukemia;
LDH: lactate dehydrogenase; ECOG: Eastern Cooperative Oncology Group; CR: complete remission; CRi: incomplete hematologic regeneration.

Table 2. Univariate and multivariable analysis of the prediction of resistant disease in the validation set.
Multivariable analysis, n=235 Univariate analysis

Variable OR [95%-CI] P OR [95%-CI] P

PS29MRCdic 4.44 [2.00; 10.16] 0.00030 8.03 [4.07; 16.46] 4.29·10-9 

Age continuous 1.06 [1.03; 1.10] 0.00012 1.07 [1.04; 1.10] 3.87·10-6

NPM1mut 0.48 [0.19; 1.142] 0.094 0.23 [0.11; 0.46] 6.62·10-5

RUNX1mut 1.05 [0.50; 2.44] 0.90 2.13 [1.07; 4.21] 0.029
TP53mut 7.16 [1.76; 38.61] 0.010 12.03 [3.72; 53.84] 0.00016
OR: Odds Ratio; CI: Confidence Interval.



ables with P≤0.05 in training set 1 and the validation set
for the prediction of RD. The results of PS29MRCdic are
shown in Table 2. Only PS29MRCdic, age and TP53muta-
tions remained significant in the model. Comparable
results were seen with PS29MRC as a continuous variable
(Online Supplementary Table S1).
When we included all non-responders in the analysis

(Figure 1A), PS29MRCcont (OR 2.34, 95%CI: 1.80, 3.13;
P=1.48·10-9, AUC=0.75) and PS29MRCdic (OR 8.04,
95%CI: 4.20, 16.06; P=9.27·10-10) remained highly signifi-
cant. In the multivariable model, only PS29MRCdic, age
and TP53 mutations remained significant (PS29MRCdic:
OR 5.08, 95%CI: 2.39; 11.19; P=3.41·10-5; age: OR 1.06,
95%CI: 1.03, 1.09; P=0.00013; TP53: OR 6.13, 95%CI:
1.56, 31.90; P=0.016). Comparable results were seen when
only patients treated in the AMLCG 2008 trial were con-
sidered (Online Supplementary Table S2).
To exclude the possibility that patients that achieve a

CR after two courses of induction treatment are misclassi-
fied as resistant, we also tested if PS29MRC was able to
correctly forecast RD at day 60. In univariate, as well as in
multivariable analysis, PS29MRC showed comparable
results (Online Supplementary Table S3).

Characterization of the dichotomized classifier
PS29MRCdic was designed in the training set to identify

resistant AML patients with high specificity. By applying
the pre-defined cut off, we were able to reach a specificity
of 148 of 164 (90%) and sensitivity of 33 of 71 (46%) in
the independent validation set. The performance of the
classifier in the training sets and the validation set is
shown in Online Supplementary Figure S3. The accuracy of
PS29MRCdic was 77% in the validation set. 
When we included all patients with death in aplasia or

of indeterminate cause in the analysis (Figure 1A), the sen-
sitivity of PS29MRCdic in predicting non-response to
induction treatment was 40 of 86 (47%) and the accuracy
75%.
In the cytogenetic subgroups favorable (n=14; resistant:

n=0; CR/CRi: n=13), intermediate (n=188; resistant: n=42;
CR/CRi: n=136) and adverse (n=48; resistant: n=29;
CR/CRi: n=15), the classifier showed an accuracy of
100%, 78% and 66%, respectively (Online Supplementary
Figure S4).  When we applied the ELN2017 genetic risk
stratification, the accuracy of PS29MRCdic in the sub-
groups favorable, intermediate and unfavorable was 89%,
74% and 70%, respectively (Figure 3B).
Since not achieving a CR/CRi is highly correlated with

OS, we analyzed the performance of PS29MRCdic to
serve as a prognostic tool. The classifier was a highly sig-
nificant predictor of survival in univariate (HR 2.81,
95%CI: 1.98, 3.99; P=7.73·10-9) and multivariable (HR
2.15, 95%CI: 1.39, 3.31; P=0.00052) models, including all
variables significant (P≤0.05) in training set 1 and the vali-
dation set (Online Supplementary Table S4). When we inte-
grated PS29MRCdic in the ELN2017 genetic risk stratifica-
tion,  four risk groups with a median OS of 8 months
(95%CI: 5-10) in the PS29MRCdic high-risk group, 16
(95%CI: 8-41) months in the ELN2017 unfavorable group,
and 'not reached' in the intermediate and favorable risk
groups could be defined (Figure 4A-C). Approximately
50% of all ELN2017 unfavorable and approximately 12%
of all ELN2017 intermediate-risk patients were classified
as high risk according to PS29MRCdic. The probability of
survival in the four risk groups at 24 months was 12%,
38%, 57% and 76%, respectively. Comparable results
were seen when OS was not censored for SCT (Online
Supplementary Figure S5).
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Figure 2. Signature and weights. Variables included in the predictive score PS29MRC. The final score is calculated as the weighted sum of these values (MRC high
risk/low risk as 1 or -1, respectively). The final classifier consisted of 29 gene expression markers and the favorable and unfavorable cytogenetic MRC groups.
Variables in red are associated with resistant disease; variables in blue are predictive for a response to induction treatment. 



We also classified the heterogeneously treated AML
patients included in the TCGA analysis23 with
PS29MRCdic (available gene expression samples n=183).
The predictor was highly predictive for OS in the inde-
pendent data set (Online Supplementary Figure S6).

Performance of the classifier in genetic subgroups
Mutation profiles defining genetic subgroups in AML

have been recently defined.17,24 We used these subgroups
to further characterize the predictive potential of
PS29MRCdic. A detailed picture of the analysis is shown
in Figure 5A and Online Supplementary Figure S7A. The
classifier reached very high accuracy in the genetic sub-
groups defined by Metzeler et al.17 as core binding factor
alterations (CBF), KMT2A rearranged AML, AML with
biallelic CEBPA mutations, and AML with NPM1 muta-
tions. Moderate predictive accuracy was achieved in the
high-risk subgroups defined by TP53 and RUNX1 alter-
ations. Here, PS29MRCdic was not able to significantly
predict OS (Figure 5B and D). In the large subgroup of
patients without classifiable genetic alterations,
PS29MRCdic was able to significantly predict survival
(P=0.027)  (Figure 5E).

The results of the classification of genetic subgroups
according to Papaemmanuil et al.24 show comparable
results with a moderate predictive accuracy of PS29MRC
in high-risk subgroups defined by TP53 mutations, chro-
mosomal aneuploidy or both, AML with mutated chro-
matin, RNA-splicing genes or both, and AML with driver
mutations but no class-defining lesions. In all other sub-
groups, even though some had small sample sizes,
PS29MRC reached very high predictive accuracy. In con-
trast to the results seen with the classification according to
Metzeler et al.,17 significantly, OS could only be predicted
in the subgroup of patients with mutated chromatin,
RNA-splicing genes, or both (Online Supplementary Figure
S7B). 

Performance of the classifier in comparison to 
currently used models
In pairwise comparisons to published, predictive classi-

fiers like the model by Walter et al.3 (integrating informa-
tion on age, performance status, white blood cell count,
platelet count, bone marrow blasts, sex, type of AML,
cytogenetics and NPM1 and FLT3-ITD status), or the
modified molecular version of this score,6 PS29MRCdic
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Figure 3. Receiver operating characteristic curve (ROC)
of predictive score PS29MRC as a continuous variable
(PS29MRCcont) and barplots showing the predictive
performance of the PS29MRC as a dichotomous vari-
able (PS29MRCdic)  in the validation set. (A) ROC curve
showing the performance of PS29MRCcont and other
predictive scores in the validation set at varying thresh-
olds. Area under receiver-operating characteristic curve
(AUC): PS29MRCcont: 0.76; Walter-Score: 0.71;
Retrained response LSC17: 0.61. (B) Bar plots showing
the performance of PS29MRCdic in subgroups defined
by the European LeukemiaNet (ELN) 2017 genetic risk
classification (ELN2017). CR: complete remission.
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reached superior predictive power (Table 3). When we
restricted the analysis to patients aged 60 years or over
(n=118), only PS29MRCdic  was left as significant variable
(HR=2.04, 95%CI: 1.35, 3.21; P=0.0012).
Recently, a highly significant prognostic tool based on

“stemness” gene expression markers (LSC17) was pub-
lished.25 A modified version of this classifier (retrained
response LSC17) was developed to predict resistant dis-
ease. In multivariable testing, PS29MRCdic outperformed
these predictors that are solely based on gene expression
variables (Table 3). The extremely high OR is the result of
a very low variance of LSC17 (range -0.40 to 0.41).
Comparable results were achieved for PS29MRC as

continuous variable (Online Supplementary Table S5 and
Online Supplementary Figure S3A). 

Discussion

We developed a powerful predictor for primary therapy
resistance in AML. PS29MRC was validated in a fully
independent patient cohort using a different technique to
measure gene expression. The predictor also strongly
associated with survival, which emphasizes the impor-
tance of the initial response to therapy. In our analysis, the
predictive power for survival was limited to the interme-
diate and unfavorable ELN2017 genetic risk groups, possi-
bly due to the low rate of resistant patients in the favor-
able genetic risk subgroup. PS29MRC identified a high-
risk patient group of approximately 20% of all intensively
treated AML patients with a median survival of only eight
months, and a survival probability of only 12% at 24
months. Therefore, regarding the toxicity and side effects
of induction treatment, it appears questionable as to
whether this treatment can be still considered “standard”
for this patient subgroup. PS29MRC showed limited
effectiveness in high-risk groups defined by, for example,
TP53 alterations, but was stronger in patients without cur-

rently established predictive markers and the intermediate
cytogenetic risk group. 
The development process of PS29MRC included exten-

sive evaluation of mutational data from recurrently mutat-
ed genes in AML. Interestingly, as  shown previously by
Walter et al.,6 we were not able to improve the predictive
ability of our model by including information on the muta-
tional status of these AML associated genes in the classifi-
er.6
The gene expression markers included in our signature

can only be surrogates of cellular pathways predicting
resistant disease or directly responsible for the refractory
phenotype. MIR155HG, the host gene of miR-155, is one
of the most important markers in our signature. High
expression of the microRNA miR-155 has already been
shown to be associated with an aggressive phenotype in
AML with normal karyotype.26 mir-155 is regulated by NF-
κB and could be repressed by the inhibitor MLN4924
(Pevonedistat) which has already entered phase II clinical
trials (clinicaltrials.gov identifier: 02610777).27 
Allogeneic SCT is currently the only curative option for

patients with RD.2 However, to our knowledge there is
currently no accepted standard treatment that can be
offered to patients with a very high probability of RD
before undergoing SCT.28 Approaches including low-dose
chemotherapy or hypomethylating agents are possible
options.29 Of note, the rate of SCT was lower in AMLCG
patients that were resistant to induction treatment than for
patients with an indication for SCT in the post-remission
phase due to unfavorable cytogenetic markers (data not
shown). One explanation could be the usually poor physical
condition of resistant AML patients due to prolonged
cytopenia after induction treatment and refractory disease.
However, so far no randomized trial  has demonstrated
that avoiding intensive induction treatment and selecting
other approaches would result in a higher SCT rate. The
extremely poor prognosis of patients with RD shows an
urgent need for alternative treatment approaches since a
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Table 3. Univariate and multivariable analysis of the prediction of resistant disease of PS29MRCdic and alternative models in the validation set.
Multivariable analysis, n=225§ Univariate analysis*

Variable OR [95%-CI] P OR [95%-CI] P

PS29MRCdic 8.77 [4.27; 18.84] 8.15·10-9 9.98 [4.92; 21.25] 5.95·10-10

AML-score by Walter et al.6 1.21 [1.05; 1.39] 0.0089 1.28 [1.12; 1.48] 0.00068
Multivariable analysis, n=225§ Univariate analysis*

Variable OR [95%-CI] P OR [95%-CI] P

PS29MRCdic 8.82 [4.28; 18.98] 8.54·10-9 9.98 [4.92; 21.25] 5.95·10-10

Molecular Version of the AML-score 1.21 [0.96; 1.53] 0.11 1.37 [1.11; 1.69] 0.0032
by Walter et al.6

Multivariable analysis, n=235 Univariate analysis
Variable OR [95%-CI] P OR [95%-CI] P

PS29MRCdic 6.10 [2.99; 12.87] 1.10·10-6 8.03 [4.07; 16.46] 4.29·10-9 

LSC17 11.51 [1.44; 99.78] 0.023 51.36 [7.80; 388.15] 7.29·10-5

Multivariable analysis, n=235 Univariate analysis
Variable OR [95%-CI] P OR [95%-CI] P

PS29MRCdic 7.44 [3.65; 15.78] 6.81·10-8 8.03 [4.07; 16.46] 4.29·10-9 

Retrained response LSC17 1.22 [0.66; 2.24] 0.51 1.97 [1.16; 3.39] 0.013
§N=10 patients had to be excluded due to missing variables to calculate the AML-score by Walter et al.6 * To allow a fair comparison, univariate analyses were performed on the
subset of patients with available information on all compared variables. OR: Odds Ratio; CI: Confidence Interval.



substantial number of patients do not benefit from induc-
tion treatment. PS29MRC would offer an accurate tool to
design and implement such trials. 
We were able to demonstrate that the information on

treatment response is included in the AML bulk itself at ini-
tial diagnosis. However, even though our study included a
large amount of data in order to construct a better predictor,
we still were only just able to reach a fair AUC in an inde-
pendent validation set which is higher, but still in the range,
of recent publications.3,6,7 Similar to the work of Walter et
al.,6 we seem to have reached an obstacle that could not be
overcome even by the addition of more information. Since
all patients were considered eligible for intensive treatment,
there seem to be additional, currently unknown variables
that influence the response to induction treatment. It is
tempting to speculate which other variables in addition to
the disease itself affect response. Maybe clonal heterogene-
ity, individual drug metabolism or co-medications and
interactions are more important than currently assumed.
For example, CYP2E1 expression levels, which are associat-
ed with response to treatment in our study, influence
cytarabine metabolism,30 and CYP2E1 expression levels

might be influenced by smoking.31 Furthermore, maybe the
inclusion of more patients could help to increase the predic-
tive ability. A recent publication analyzing 1540 AML
patients and 231 predictor variables suggested that large
knowledge banks of matched genomic-clinical data can
support clinical decision making.32 Considering, for exam-
ple,  the work by Walter et al.6 and our study, we would
strongly recommend  including gene expression markers
into these approaches because of their predictive potential.
Gene expression data sets published by TCGA,23
HOVON,13,14 AMLSG33 and AMLCG,11,12 as well as the
LEUCEGENE Project,34 already summarize more than 2000
AML patients that could be used to improve our prognostic
and predictive abilities to personalize AML treatment.
The implementation of a gene expression-based classifi-

er in routine clincial practice is difficult because gene
expression analysis is currently not included in the recom-
mended molecular work up of newly diagnosed AML.35
However, advances in next generation sequencing result in
more cost effective and robust methods to measure gene
expression, such as NanoString or RNAseq.36,37 It is highly
probable  that these techniques will be available in future
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Figure 4. Refinement of the  European
LeukemiaNet (ELN) 2017 genetic risk
classification (ELN2017)  by predictive
score PS29MRC. (A) Pie charts showing
the distribution of patients according to
ELN2017 and refined risk criteria. (B)
Kaplan-Meier estimates of acute
myeloid leukemia (AML) patients in the
validation set according to ELN2017
and the refined ELN2017 classification.
(C) Scheme of reclassification of the
three ELN2017 risk groups into four
groups by integrating PS29MRC as a
dichotomous variable (PS29MRCdic)
(high risk) with the ELN2017 risk classi-
fication.
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clinical settings and this will help to improve risk classifica-
tion of patients.
In summary, failure of induction treatment is one of the

remaining challenges in the treatment of AML. From a clin-
ical perspective, risk stratification before the start of treat-
ment would be desirable. Patients with a high risk of RD
could avoid the side effects of intensive induction and
might be assigned to novel, experimental treatment strate-
gies. We were able to validate a predictor that reached out-
standing specificity and accuracy in an independent data
set. PS29MRC could be instrumental in helping design clin-
ical trials that overcome the current paradigm of intensive
induction as standard treatment in all eligible patients. 
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Figure 5. Predictive ability of predictive score
PS29MRC in genetic subgroups of acute myeloid
leukemia (AML). (A) Bar plots showing the predictive
ability of PS29MRC as a dichotomous variable
(PS29MRCdic) in various genetic subgroups. The y-
axis shows the absolute number of patients includ-
ed. Patients in blue were predicted to respond to
treatment (PS29MRCdic, low risk). Patients in red
were predicted as resistant disease (PS29MRCdic,
high risk). The accuracy is given in percentage. (B-E)
Overall survival of AML patients in selected genetic
subgroups. Kaplan-Meier estimates of AML patients
classified according to PS29MRCdic as low risk and
high risk.
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