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Abstract: In this paper, we consider the optimization of the quantum circuit for discrete logarithm
of binary elliptic curves under a constrained connectivity, focusing on the resource expenditure
and the optimal design for quantum operations such as the addition, binary shift, multiplication,
squaring, inversion, and division included in the point addition on binary elliptic curves. Based
on the space-efficient quantum Karatsuba multiplication, the number of CNOTs in the circuits of
inversion and division has been reduced with the help of the Steiner tree problem reduction. The
optimized size of the CNOTs is related to the minimum degree of the connected graph.
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1. Introduction

The security of Elliptic Curve Cryptosystems is based on the difficulty of solving
the discrete logarithm problem in an elliptic curve group. It seems more difficult to deal
with the problem for solving discrete logarithm in F2n than in Fp. The key agreement
represents the protocol in which two or more parties together generate a secret key using a
public channel [1–3]. For instance, better security can be achieved in Diffie–Hellman Key
exchange by choosing a suitable elliptic curve in F2155 than in Fp when p has 512 bits. The
efficiency of the optimization for elliptic curve cryptosystems relies on the speed of the
operations in the elliptic curve, whose core operation is the point addition. The efficient
algorithms for elliptic curve cryptography are classified into high-level algorithms and
low-level algorithms, i.e., group operations of elliptic curves and arithmetic operations in
the fundamental finite field. Obviously, both of the above two-level operations should be
optimized in order to realize the elliptic curve cryptosystem effectively.

With the intrinsic advantages in executing certain matrix multiplication operations,
quantum algorithms are proposed to enhance data analysis techniques under some cir-
cumstances [4]. The first paper to discuss in detail how to use a quantum algorithm to
solve elliptic curve discrete logarithm problem is by Proos and Zalka [5]. Based on this
study, in 2017, Rötteler, Naehrig, Svore, and Lauter presented a concrete quantum resource
estimation and the explicit quantum circuit for operations of point additions for solving
the discrete logarithm problem in elliptic curves over Fp [6].

While there is some common ground between the prime-field case and the characteristic-
two case, there are also important differences. Elliptic curves over finite fields F2n play a
prominent role in modern cryptography. Published quantum algorithms dealing with such
curves build on a short Weierstrass form in combination with affine or projective coordi-
nates. Amento, Rötteler, and Steinwandt use projective coordinates to avoid divisions [7].
They need only 13 multiplications every step, which would result in 26nlog(3)+1 as the
leading term in their Toffoli gate count if the multiplications were implemented using the
space-efficient quantum Karatsuba multiplication [8]. Amento et al. show in their paper [7]
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the choice of how to represent the elements of F2n can have a significant impact on the
resource requirements for quantum arithmetic. In particular, they show how the Gaussian
normal basis representations and “ghost-bit basis” representations can be used to implement
inverters with a quantum circuit of depth O(n log(n)). This is the first construction to
compute inverse in F∗2n with subquadratic depth reported in the literature.

The quantum circuit of computing inverse in F∗2n in [7] is based on the Itoh–Tsujii
algorithm [9] which exploits the property that, in a normal basis representation, squaring
corresponds to a permutation of the coefficients. Because the map ξ → ξ2i

is a bijection
in F∗2n , it corresponds to an n by n nonsingular matrix, and all the elements in the matrix
belong to F2. Then, using an LUP-decomposition of this matrix, the needed exponentiation
can be realized with n2 + n CNOT gates in depth 2n. For i ≥ 0 they define β = α2i−1. Then
the goal is to find α−1 = (βn−1)

2 from β1 = α. For this they exploit that βi+j = βi · β2i

j for

all i, j ≥ 0. Thus, in a polynomial basis representation, one evaluation of βi+j = βi · β2i

j can

be realized in depth O(n) using n2 Toffolis and 2n2 + n− 1 CNOT gates.
However, this use of projective coordinates has two disadvantages. First, they use

many ancillary qubits and separate input and output qubits, leading to 10n qubits in one
point-addition step even with space-efficient quantum Karatsuba multiplications. Second,
projective coordinates have a much larger space disadvantage not pointed out in Ref. [7].
Furthermore, Ref. [7] does not specify the entirety of Shor’s algorithm, leaving open how
exactly the presented results would be combined.

Building on the Karatsuba multiplier, the multiplication algorithm presented by Ref. [8]
can be realized using O(nlog(3)) Toffoli gates and 3n qubits, which has been exploited by
Ref. [10]. However, there exists a disadvantage in the method of [8]. There are so many
CNOT gates needed in Ref. [8], which is O(n2).

The number of qubits and the connectivity between qubits in practical quantum
devices are limited by the noisy environment. However, the resource costs have not been
discussed in Refs. [5–10] when the quantum bit connectivity is limited. We discuss the
quantum circuit optimization for solving discrete logarithm of elliptic curve in F2n , obeying
the nearest-neighbor constrained. It has been shown that when operating a CNOT gate
between two qubits, the number and the depth of CNOT gates needed are determined by
the distance between the two qubits. Therefore, the number and the depth of CNOT gates
needed in elementary operations (such as additions, binary shifts, multiplications, and
squarings) for point additions are dominated by the arrangement of qubits. In this paper
we treat division by a field element as multiplication by the inverse of that element and the
inversion step is based on Fermat’s little theorem (i.e., using the Itoh–Tsujii algorithm to
compute the inverse). With the help of the Steiner tree problem reduction in Refs. [11,12],
we optimize the number of CNOT gates included in the point addition on binary elliptic
curves under a constrained connectivity. The optimized size of the CNOTs is O(n2/log δ),
where δ is the minimum degree of the connected graph. Based on this, for both division
algorithms, the FLT-based algorithm preserves the similar number of Toffoli gates and
qubits and suppresses the disadvantage previously in Ref. [10], which has roughly twice
the number of the CNOT gate count compared with the GCD-based algorithm.

2. Materials and Methods

Each addition in F2 takes one CNOT gate. The addition of two polynomials f (x), g(x)
of degree at most n− 1 takes n CNOT gates with depth 1. Considering the connectivity of
qubits [13], four CNOT gates will be needed in performing a CNOT gate between the first
qubit and the third qubit, which is shown in the Figure 1. Eight CNOT gates will be needed
in performing a CNOT gate between the first qubit and the fourth qubit, which is shown
in Figure 2. Therefore, 4(n− 2) CNOT gates will be needed in performing a CNOT gate
between the first qubit and the n-th qubit.
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Figure 1. The quantum circuit of performing a CNOT gate between q1 and q3.

Figure 2. The quantum circuit of performing a CNOT gate between q1 and q4.

Let the connectivity of qubits corresponding to the coefficients of f (x), g(x) be:

f0 − g0 − g1 − f1 − f2 − g2 − g3 − · · · − fn−3 − fn−2 − gn−2 − gn−1 − fn−1.

Then the number of and the depth of CNOT gates needed in the addition of f (x) and g(x)
are still n and 1, respectively. When these qubits are arranged in the following order

f0 − f1 − f2 − · · · − fn−2 − fn−1 − g0 − g1 − g2 − · · · − gn−2 − gn−1,

the number of and the depth of CNOT gates needed in the addition of f (x) and g(x) are
4(n− 1) · n = 4n2 − 4n and 4(n− 1) · n− (n− 1) = 4n2 − 5n + 1, respectively.

For polynomials in F2[x] multiplication by x is a shift of the coefficient vector. This
requires no quantum computation by doing a series of swaps. In a finite field F2n we want
to multiply a polynomial g(x) of degree at most n− 1 by x then by a modular reduction by
a fixed irreducible weight-ω degree-n polynomial m(x). In general, we let ω be 3 or 5. As
m(x) is irreducible, it always has coefficient 1 for x0, so after a reduction by m(x) that qubit
will be 1 and if no reduction takes place that qubit will be 0, which means the modular shift
algorithm is always reversible. Considering the connectivity of qubits, when the Hamming
weight of m(x) is ω = 3 and m(x) = xn + xt + 1 (1 ≤ t < n), we let the connectivity of
qubits corresponding to the coefficients of g(x) be:

g0 − g1 − · · · − gt−2 − gt−1 − gt+1 − gt+2 − · · · − gn−2 − gn−1 − gt+2.

Then the number of and the depth of CNOT gates needed in multiplying g(x) by x then by
a modular reduction by m(x) are still n and 1, respectively. When these qubits are arranged
in the following order

g0 − g1 − · · · − gn−2 − gn−1,

the number of and the depth of CNOT gates needed in multiplying g(x) by x then by a
modular reduction by m(x) are 4(n− t− 1) and 4(n− t− 1). respectively.

When the Hamming weight of m(x) is ω = 5 and m(x) = xn + xt3 + xt2 + xt1 + 1
(1 ≤ t1 < t2 < t3 < n), let the connectivity of qubits corresponding to the coefficients of
g(x) be:

g0 − g1 − · · · − gn−2 − gt3 − gn−1 − gt2 − gt1

or
g0 − g1 − · · · − gn−2 − gt3 − gn−1 − gt1 − gt2

or
g0 − g1 − · · · − gn−2 − gt2 − gn−1 − gt1 − gt3
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or
g0 − g1 − · · · − gn−2 − gt2 − gn−1 − gt3 − gt1

or
g0 − g1 − · · · − gn−2 − gt1 − gn−1 − gt2 − gt3

or
g0 − g1 − · · · − gn−2 − gt1 − gn−1 − gt3 − gt2 .

Then the number of and the depth of CNOT gates needed in multiplying g(x) by
x then by a modular reduction by m(x) are 4 and 3, respectively. When these qubits
are arranged in the following order g0 − g1 − · · · − gn−2 − gn−1, the number of and the
depth of CNOT gates needed in multiplying g(x) by x then by a modular reduction by
m(x) are at most 2(n − t1 − 1) + 1 + 2(n − t1 − 2) + 1 = 4(n − t1) − 4 and 2(n − t1 −
1) + 1 + (n − t1 − 2) + 1 = 3(n − t1) − 2, respectively. The number of and the depth
of CNOT gates are at least 2(n − t3 − 1) + 1 + 2(n − t3 − 2) + 1 = 4(n − t3) − 4 and
2(n− t3 − 1) + 1 + (n− t3 − 2) + 1 = 3(n− t3)− 2, respectively.

For multiplication, if we use a space-efficient Karatsuba algorithm by Van Hoof, we
will need O(n2) CNOT gates, O(nlog(3)) Toffoli gates, and 3n total qubits: 2n qubits for
the input f (x), g(x), and n separate qubits for the output f (x) · g(x). In a multiplication,
most CNOT gates are needed in the processes of multiplying by 1 + xk or (1 + xk)−1

where k has dlog (n)e values and each process need O(n2) CNOT gates. In the quantum
algorithm for the division we have to use up to 2(k1 + t − 1) multiplications, so 4(log
(n)) ·O(n2) · (k1 + t − 1) (i.e., O(n2(log2 (n)))) CNOT gates will be needed in the quantum
algorithm for a division. If we take the constrained connectivity into consideration, at
most 16(log (n)) ·O(n2) · (n− 2) · (k1 + t − 1) (i.e., O(n3(log2 (n)))) CNOT gates will
be needed.

If the irreducible polymomial is fixed to a trinomial m(x) = xn + xt + 1 (1 ≤ t < n)
or a pentanomial m(x) = xn + xt3 + xt2 + xt1 + 1 (1 ≤ t1 < t2 < t3 < n) each multiplying
by 1 + xk or (1 + xk)−1 will need about (log (n)) · n CNOT gates. Then we use up to
2(k1 + t − 1) multiplications in the quantum algorithm for the division. Therefore only
about 4(log (n))2 · n · (k1 + t − 1) CNOT gates are needed in the quantum algorithm for
a division. When the constrained connectivity has been taken into consideration, at most
16(log (n))2 · n · (n− 2) · (k1 + t − 1) CNOT gates will be needed.

Take for example the irreducible polynomial m(x) = x4 + x + 1, based on which the
finite field F24 can be constructed. The quantum circuit of the space-efficient Karatsuba
algorithm by Van Hoof is shown in the Figure 3:

Figure 3. The quantum circuit of f (x) · g(x)mod x4 + x + 1.
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The simulation is ran under IBM T-like graph (T65). The topological structure of IBM
T65 is depicted below:

f2 − g3 − g2 − g0 − h1 − f0 − f3 − f1 − h2 − h3∣∣ ∣∣ ∣∣
h0 g1

For the sake of optimizing the number and the depth of CNOT gates while preserving
the similar number of Toffoli gates and qubits, we adopt the implementation of a Toffoli
gate shown in Figure 4, which has been proposed by Ref. [14]. If we take the constrained
connectivity into consideration, 812 CNOT gates will be needed in the quantum circuit for
the space-efficient Karatsuba algorithm by Van Hoof.

Figure 4. The quantum circuit of implementing a Toffoli gate.

Because the map ξ → ξ2i
is a bijection in F2n , we can think of squaring in F2n as a

circuit that replaces the input with the result. To square and replace the input, we make
use of the fact that squaring is a linear map and we can write that map as an n by n
matrix. Using an LUP-decomposition, we get a lower triangular, upper triangular, and
permutation matrix, which can be translated into a circuit consisting of at most n2 − n
CNOT gates and a number of swaps. In the quantum algorithm for the division we have to
use up to 4n− 4 squarings, so 4n3 − 8n2 + 4n CNOT gates will be needed in the quantum
algorithm for a division. If we take the constrained connectivity into consideration, at most
16n4 − 64n3 + 80n2 − 32n CNOT gates will be needed.

If the irreducible polymomial is fixed to a trinomial m(x) = xn + xt + 1 (1 ≤ t < n)
or a pentanomial m(x) = xn + xt3 + xt2 + xt1 + 1 (1 ≤ t1 < t2 < t3 < n), each squaring
will need about 2n CNOT gates. Then we use up to 4n − 4 squarings in the quantum
algorithm for the division. Therefore, only about 8n2 − 8n CNOT gates are needed in the
quantum algorithm for a division. When the constrained connectivity has been taken into
consideration, at most 32n3 − 96n2 + 64n CNOT gates will be needed.

Take for example the irreducible polynomial m(x) = x4 + x + 1, based on which the
finite field F24 can be constructed. The quantum circuit of the squaring for a polynomial
a(x) = a0 + a1x + a2x2 + a2x3 in F24 need 5 CNOT gates. If we take the constrained
connectivity into consideration, 8 CNOT gates will be needed.

3. Results

Fermat’s little theorem can be extended for binary finite fields to f 2n−2 = f−1 mod m(x)
where n is the degree of m(x). With the help of squarings, this can be calculated in n mul-
tiplications and n− 1 squarings: f 2n−2 = f 2 · f 22 · f 23 · . . . · f 2n−1

. Itoh and Tsujii give an
improvement to this straightforward method to reduce the cost to below 2 log(n) multipli-
cations and n− 1 squarings. The Itoh–Tsujii algorithm works as follows:

(1) Write n − 1 as [k1, . . . , kt] with ∑t
s=1 2ks = n − 1 and k1 > . . . > kt ≥ 0. Note

that t is the Hamming weight of n − 1 in binary and t ≤ blog(n − 1)c + 1 and
k1 = blog(n− 1)c;

(2) Calculate f 22k1−1 with k1 multiplications, and save the intermediate results f 22kt−1,

f 22kt−1−1, . . . , f 22k1−1;
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(3) Calculate f 2n−1−1 = {. . . {( f 22k1−1)22k2
( f 22k2−1)}22k3

. . .}22kt
( f 22kt−1) using t− 1 mul-

tiplications;
(4) Square the result to get f−1. In total, k1 + t − 1 multiplications are needed for the

inversion f−1 mod m(x). The quantum circuit of computing f−1 mod x4 + x + 1 is
shown in Figure 5.

Figure 5. The quantum circuit of computing f−1mod x4 + x + 1.

Therefore, 2nlog(3)(k1 + t − 1
2 ) Toffoli gates and n · max (k1 + t − 1, k1 + 1) ancillary

qubits are needed for the division in the quantum case. The total number of logical qubits
required for the division is 3n + n · max (k1 + t − 1, k1 + 1).

The classic algorithm for the inversion f−1 mod m(x) uses n− 1 squarings and the
quantum algorithm for the division has to use up to 4n− 4.

Only CNOT gates exist in quantum circuits of squarings and, multiplying by 1 + xk

or (1 + xk)−1 in the multiplications, these circuits are CNOT circuits, which cost many
CNOT gates.

For a graph G(V, E) with n vertices, without loss of generality, we assume that the
degree of vertices are denoted as d1 ≤ d2 ≤ · · · ≤ dn. A theorem has been given by Bujiao
Wu et al. in [12], which optimizes the size of CNOTs.

Given a set of terminals and a connectivity graph, the algorithm performs breadth-first
search outwards from each of the terminals. When the paths collide, the nodes along that
path consolidate into a single node and all the edges adjacent to the consolidated nodes are
placed adjacent to this new node. The process is restarted with this node as a new terminal.
From many trials, it seems that this approximation is sufficient to see a large reduction in
the CNOT count of the output circuit. The choice of Steiner tree approximation algorithm
for this purpose depends on the user’s efficiency and performance requirements.

It follows that the optimized size in Theorem 1 is asymptotically tight for a nearly
regular graph.

Theorem 1. Given connected graph G(V,E) with

∑
i≤k

di ≥ n,

then there is a polynomial time algorithm to construct an equivalent O( n2

log(n/k) ) size CNOT

circuit for any n-qubit CNOT circuit on topological graph G, and there needs at least Ω( n2

log dn
)

size of CNOT gates for some invertible matrix.

We can see the proof of Theorem 1 in [12]. Let k = n/δ for any given CNOT circuits
with n qubits under a constrained connectivity, in which δ is the minimum degree of the
connected graph. Then it can be easily shown that the sum of degrees for any k vertices
is greater than n. Therefore, we will get CNOT circuits who have O(n2/log δ) CNOT
gates. Due to the lower bound of the size of CNOT gates being Ω(n2/log δ) for any CNOT
circuits on a connected graph [15], the bound O(n2/log δ) is tight for a regular graph. Let
δ = 4, then the size and the depth of CNOT gates needed in the quantum algorithm for the
division will be cut in half.
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4. Simulation of the Improved Quantum Circuit for Division Algorithm

In this paper, with the help of the Q# language, the resource estimation of the quantum
circuit for the division algorithm used to solve discrete logarithms of elliptic curves in F2n

has been simulated. It has been shown that based on the space-efficient quantum Karatsuba
multiplication, the number of CNOTs in the circuits of inversion and division has been
reduced with the help of the Steiner tree problem reduction.

From Table 1, it can be seen that when the FLT-based algorithm is used for the division
algorithm, the optimized quantum circuit of this paper is better in terms of the size and
the depth of CNOT gates than that of [6]. Due to the space-efficient quantum Karatsuba
multiplication, both the consumption of qubits and the consumption of Toffoli gates are
also quite good.

Table 1. Comparison of quantum resource of division algorithms.

n Quantum Circuit CNOT Toffoli Qubits Depth

8 [6] for GCD-based 1516 3641 67 4113
8 [6] for FLT-based 2212 243 56 1314
8 This paper 1106 243 56 712
16 [6] for GCD-based 5072 10,403 124 12145
16 [6] for FLT-based 10,814 1053 144 5968
16 This paper 5407 1053 144 3265

127 [6] for GCD-based 227,902 277,195 903 378,843
127 [6] for FLT-based 502,870 50,255 1778 203,500
127 This paper 251,435 50,255 1778 105,989
163 [6] for GCD-based 375,738 442,161 1156 612,331
163 [6] for FLT-based 906,170 83,353 1956 451,408
163 This paper 453,085 83,353 1956 242,692
233 [6] for GCD-based 743,136 827,977 1646 1,172,733
233 [6] for FLT-based 1,486,464 132,783 3029 640,266
233 This paper 743,232 132,783 3029 344,230
283 [6] for GCD-based 1,088,400 1,202,987 1997 1,708,863
283 [6] for FLT-based 2,708,404 236,279 3962 1,434,686
283 This paper 1,354,202 236,279 3962 757,585
571 [6] for GCD-based 4,266,438 4,461,673 4014 6,494,306
571 [6] for FLT-based 10,941,536 814617 9136 6,151,999
571 This paper 5,470,768 814,617 9136 3,416,615

Table 1 has also shown that the optimized quantum circuit of this paper where the
FLT-based algorithm is used for the division algorithm is better in terms of the size of CNOT
gates than that of [6], where the GCD-based algorithm is used for the division algorithm.

If the constrained connectivity has been taken into consideration, about 128n3 CNOT
gates will be needed in the quantum circuit for the division algorithm proposed by
this paper.

5. Discussion and Conclusions

With the development of time, extensive attention has been attracted by the field of
quantum computation. The main tool for researching the implementation of quantum
algorithms is quantum circuit models, whose optimization is a direction worthy of study.
In this paper, we have comprehensively discussed the quantum circuit of solving discrete
logarithms of elliptic curves in F2n and have made further optimizations of the size and the
depth of CNOT gates. Based on the space-efficient quantum Karatsuba multiplication, we
have reduced the number of CNOTs in the circuits of inversion and division with the help
of the Steiner tree problem reduction.
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In the future, we will consider the quantum circuit optimizations of practical quantum
devices in noisy environments and assess the performances of quantum algorithms on
practical quantum devices.
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