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SUMMARY

We report a protocol for obtaining high-quality single-cell transcriptomics data
from human lung biospecimens acquired from core needle biopsies, fine-needle
aspirates, surgical resection, and pleural effusions. The protocol relies upon the
brief mechanical and enzymatic disruption of tissue, enrichment of live cells by
fluorescence-activated cell sorting (FACS), and droplet-based single-cell RNA
sequencing (scRNA-seq). The protocol also details a procedure for analyzing
the scRNA-seq data.
For complete details on the use and execution of this protocol, please refer to
Chan et al. (2021).

BEFORE YOU BEGIN

Follow institutional guidelines to obtain a permit for working with patient derived material. Patient

consent must be acquired for all human samples. Follow all safety precautions governing work with

biohazardous materials: wear lab coats, gloves, and safety glasses at all times. Properly dispose the

biological and chemical materials, decontaminate work surfaces. Use pipette tips with aerosol bar-

riers that are sterile and free from DNases and RNases.

A critical factor to maximize viability and ensure quality of data derived from this procedure is to limit

ischemic time, understood as the time from specimen extraction from the patient until dissociation

starts, to under an hour. Longer ischemic times may lead to increased cell death and mRNA degra-

dation by ribonucleases present in the tissue. Surgical samples should be placed in phosphate buff-

ered saline [pH 7.4], or cell culture media (e.g., RPMI-1640, DMEM) after resection, and transported

to the lab on ice.

Institutional permissions

All experiments performed using the methodologies herein described on clinical specimens were

approved by an Institutional Review Board. All patients from whom biospecimens were obtained

provided informed consent through an Institutional Review Board-approved biospecimen collection

and analysis protocol.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

PE anti-human CD45 antibody (Working dilution: 3 mL/
100 mL)

BioLegend #368510
RRID: AB_2566370

Chemicals, peptides, and recombinant proteins

RPMI 1640 [+] L-glutamine, 25 mM HEPES Corning #10-041-CV

DPBS (Dulbeccos Phosphate Buffered Saline) 13 [-]
calcium magnesium

Corning #21-031-CV

Fetal Bovine Serum Gemini Bio-Products #900-108

ACK Lysing Buffer (13) (red blood cell lysis buffer) Lonza #10-548E

Human TruStain FcX BioLegend #422302

Calcein AM BioLegend #425201

DAPI (4,6-Diamidino-2-Phenylindole Dihydrochloride) Invitrogen #D1306

Ficoll Paque PLUS GE Healthcare #17144003-500 mL

0.4% (w/v) Trypan Blue Solution Thermo Fisher Scientific #15250061

Ethanol, Pure (anhydrous) Sigma #E7023-500ML

Nuclease-free water Thermo Fisher Scientific # AM9937

DNA/RNA Free Reagent Spray Argos Technologies # UX-04397-24

Tris-HCl [pH 8.5] Avantor # MB-027-1000

Critical commercial assays

Human Tumor Dissociation Kit Miltenyi Biotec Inc. #130-095-929

Chromium Single Cell 30 GEM, Library & Gel Bead Kit
v3, 16 rxns

103 Genomics #1000075

Chromium i7 Multiplex Kit, 96 rxns 103 Genomics #120262

NovaSeq 6000 S2 Reagent Kit v1.5 (100 cycles) Illumina # 20028316

SPRIselect Reagent Kit Beckman Coulter #B23318

Deposited data

scRNA-seq and MIBI data HTAN Data Portal; CZI https://data.humantumoratlas.org/
https://cellxgene.cziscience.com/collections/
62e8f058-9c37-48bc-9200-e767f318a8ec

Software and algorithms

SEQC Azizi et al., 2018 https://github.com/dpeerlab/seqc

CB2 Ni et al., 2020 https://github.com/zijianni/scCB2

DoubletDetection Gayoso et al. (2019) https://github.com/dpeerlab/doubletdetection

scanpy (suite of single-cell algorithms, including
UMAP, tSNE, score_genes, among others)

Wolf et al., 2018 https://scanpy.readthedocs.io/en/stable/#

PhenoGraph (includes clustering and Markov
absorption modeling)

Haghverdi et al., 2018 https://github.com/dpeerlab/phenograph

fastMNN (through the batchelor package) Levine et al., 2015 https://github.com/LTLA/batchelor/blob/master/R/
fastMNN.R

MAGIC and knnDREMI Dijk et al. (2018) https://github.com/dpeerlab/magic

MAST Finak et al., 2015 https://github.com/RGLab/MAST

Limma Ritchie et al. (2015) https://bioconductor.org/packages/release/bioc/
html/limma.html

fGSEA Korotkevich et al. (2021) https://bioconductor.org/packages/release/bioc/
html/fgsea.html

Ambient RNA detection Smillie et al., 2019 https://github.com/cssmillie/ulcerative_colitis

DirichletReg Maier (2021) https://cran.r-project.org/web/packages/
DirichletReg/index.html

Cellphonedb Efremova et al. (2020) https://github.com/Teichlab/cellphonedb

Survival Therneau and Grambsch (2000) https://cran.r-project.org/web/packages/survival/
index.html

Non-negative matrix factorization in Scikit-learn v. 20.0 Pedregosa et al. (2011) https://scikit-learn.org/stable/

Vectra Imaging Processing Pipeline N/A https://github.com/dpeerlab/
Vectra_Imaging_pipeline

MaskRCNN_cell (segmentation for Vectra image) N/A https://github.com/dpeerlab/MaskRCNN_cell

(Continued on next page)
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MATERIALS AND EQUIPMENT

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

ARK-analysis (MIBI analysis) N/A https://github.com/angelolab/ark-analysis

Mesmer Greenwald et al. (2021) https://github.com/vanvalenlab/deepcell-tf

Squidpy Palla et al. (2022) https://github.com/theislab/squidpy/

Other

GentleMACS Octo Dissociator with Heaters Miltenyi Biotec #130-096-427

Chromium Controller 103 Genomics #PN-120223

Thermal Cycler, C1000 Touch with 96-Deep Well
Reaction Module, or alternative

Bio-Rad #1851197

Aspiration System (e.g., Vacusafe, or alternative) INTEGRA Biosciences #158300

2100 Bioanalyzer Laptop Bundle Agilent #G2943CA

Qubit 4.0 Flourometer Thermo Fisher Scientific #Q33226

Countess II Thermo Fisher Scientific #AMQAX1000

Swinging bucket cooling centrifuge (e.g., Sorvall
Legend X1 Centrifuge Series), or alternative

Fisher Scientific # 75004220

Vortex Genie-2, or alternative Scientific Industries #SI-0236

BD FACS Aria II, or alternative BD Biosciences N/A

Inverted Phase Contrast Microscope (Nikon Eclipse
TS100, or similar)

Nikon #14003

GentleMACS C tube Miltenyi Biotec #130-093-237

MACS SmartStrainers (70 mm) Miltenyi Biotec #130-098-462

Chromium Chip B Single Cell Kit, 48 rxns 103 Genomics #1000073

Corning Falcon Test Tube with 35 mm Cell Strainer
Snap Cap

Corning #352235

High Sensitivity DNA Kit Agilent #5067-4626

Qubit dsDNA HS Assay Kit Thermo Fisher Scientific #Q32854

Countess� Cell Counting Chamber Slides Thermo Fisher Scientific #C10228

SepMate-50 (IVD) 100 Tubes STEMCELL Technologies #85450

PCR Tubes 0.2 mL 8-tube strips Eppendorf # 951010022

1.5 mL Protein LoBind Tubes Eppendorf # 0030108442

15 mL tubes Thermo Scientific #339650

50 mL tubes CELLTREAT #229421

Cell culture dish – 100 mm diameter Corning #430167

Glass Pasteur pipettes DWK Life Sciences (Kimble) #63B92

Razor blades Thermo Fisher Scientific #12-640

Specimen Forceps, Serrated, Straight,
Length=114 mm

VWR #82027-440

Pipettes P2, P20, P100, P200 and P1000 (e.g.,
Eppendorf, Rainin, Gillson, etc) and corresponding
pipette tips.

Rainin #30389240
#30389213
#30389226

Cell Resuspension buffer

Reagent Final concentration Amount

13 PBS N/A 97.5 mL

FBS 2.5% (v/v) 2.5 mL

Total – 100 mL

Store at 4�C for 1 week.

RPMI-FBS buffer

Reagent Final concentration Amount

RPMI-1640 medium N/A 9.75 mL

FBS 2.5% (v/v) 0.25 mL

Total – 10 mL

Store at 4�C for up to 1 week.
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STEP-BY-STEP METHOD DETAILS

The protocol below describes the specific steps for processing human lung tumor specimens, which

are schematically indicated in Figure 1. The specimen is dissociated using a combination of hydro-

lytic enzymes and mechanical sharing followed by FACS enrichment for live-cells to obtain a single-

cell suspension applicable for scRNA-seq. The processing protocol will be specific to the specimen

type. For typical resections (>100 mg), proceed to Part A. Surgical specimen dissociation section

(Part A, steps 1–13). For core needle biopsies (at least one core, typically 10–100 mg) or fine needle

aspirates (typically 10–50 mg), proceed to Part B. Small size specimen dissociation (core needle bi-

opsies, fine needle aspirations) section (Part B, steps 14–23). For pleural effusion samples, proceed

to Part C. Pleural effusion processing section (Part C, steps 24–34).

Part A. Surgical specimen dissociation

Timing: 1 h

To achieve a high quality scRNA-seq data it is critical to ensure speedy sample processing. Dissoci-

ation of clinical samples should begin immediately, within 1 to 2-h window after specimen retrieval

from the patient. Delaying the dissociation is likely to lead to increased cell death and mRNA degra-

dation. Throughout the protocol all centrifugations should be performed in a swinging bucket

centrifuge unless specified otherwise.

1. Place a surgical specimen in a tube filled with 5–20 mL of 13 PBS and place on ice. The volume of

13 PBS can be adjusted according to the size of tissue. Ensure that biospecimen is completely

submerged.

Note: The type of tube at this step is not critical at this step. We typically use 50 mL Falcon

tubes.

2. While biospecimen is kept on ice, in a separate 1.5 mL laboratory tube prepare the enzyme mix

comprising 250 mL of Enzyme H, 110 mL of Enzyme R and 40 mL mL of Enzyme A provided in the

Human Tumor Dissociation Kit (Miltenyi Biotec).

3. Transfer enzyme mix from step #2 into the gentleMACS C-Tube (Miltenyi Biotec) supplemented

with 7.5 mL of serum-free cell culture medium (e.g., RPMI-1640).

Cell Staining Mix for live-cell enrichment by FACS

Reagent Final concentration Amount (for staining 106 cells)

Cell Resuspension Buffer N/A 99.5 mL

Calcein AM (1 mM) 5 mM 0.5 mL

Total – 100 mL

Prepare fresh on a day of experiment.

Cell Staining Mix for CD45-negative live-cell enrichment by FACS

Reagent Final concentration Amount (for staining 106 cells)

Cell Resuspension Buffer N/A 91.5 mL

Human TruStain FcX N/A 5 mL

PE anti-human CD45 antibody N/A 3 mL

Calcein AM (1 mM) 5 mM 0.5 mL

Total – 100 mL

Prepare fresh on a day of experiment.
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4. Aspirate the buffer in which the biospecimen is submerged and transfer the tissue to a 15 mm

Petri dish. While holding it with tweezers, cut the specimen into �5 mm3 pieces using a sharp ra-

zor (Figure 2).

5. Using the tweezers transfer the tissue pieces to the gentleMACS C Tube containing the enzyme

mix prepared at step #3.

6. Place the gentleMACS C-Tube in the gentleMACS Octo Dissociator with Heaters, and run the

default program ‘‘37C_H_TDK3’’ for 15 min. Inspect the quality of dissociation by eye.

Note: If no tissue chunks are visible to the naked eye proceed to next step, if the suspension

contains pieces of tissue run the program for additional 10 min. The tissue dissociation step

involves mechanical, enzymatic and temperature stresses to the cells, therefore minimizing

the dissociation time is important. Extended dissociation may damage fragile cells, reduce

cell recovery and RNA quality.

7. Pass the dissociated cells through a 70 mm cell strainer (e.g., MACS SmartStrainer) placed in a

50 mL conical tube.

8. Gently rinse the 70 mm cell strainer with 20–25 mL of Cell Resuspension buffer.

9. Split the flow-through suspension into two 15mL canonical tubes and spin at 8003 g for 3min at

20�C–25�C.
10. Aspirate the supernatant carefully with a glass Pasteur pipette coupled to a vacuum source

without disturbing the cell pellet. Leaving �50–100 mL of supernatant on top of the pellet.

Note: Follow institutional guidelines to dispose biohazard. For example, the supernatant

might be disposed into a 1% bleach solution.

11. Red Blood Cell Lysis.

Figure 1. Overview of the protocol for preparing of human lung biospecimens for droplet-based scRNA-seq

The main steps of the protocol involve mechanical & enzymatic dissociation of lung tumor, red blood cell lysis, staining of cells with live dye (Calcein AM)

and fluorescently-labeled anti-human CD45 antibody, and fluorescence-activated cell sorting (FACS) of live-cells.
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a. Gently resuspend the cell pellet in 1–2 mL of Red Blood Cell Lysis Solution (ACK buffer,

Lonza) by slowly pipetting up and down 2–3 times using 1 mL pipette. Incubate for 2 min

at 20�C–25�C.

Note: This step should be performed even if red blood cells are not visually evident.

b. Dilute the ACK buffer by adding 20 mL of Cell Resuspension buffer.

c. Split the suspension into two 15 mL tubes, and centrifuge at 8003 g at 20�C–25�C for 3 min.

d. Aspirate the supernatant without disturbing the cell pellet. At this point, the cell pellet should

be whitish or yellowish.

Note: If cell pellet at this step appears light red, repeat RBC lysis steps.

12. Gently resuspend the cell pellet in 3–4mL of refrigerated Cell Resuspension buffer, transfer onto

a 35 mm Cell Strainer Snap Cap and let the fluid pass through the filter by gravity.

13. Place the collected flow through fraction onto the ice bucket and proceed to ‘‘Part D. Cell stain-

ing with live-dye and anti-CD45 antibody’’ section.

Part B. Small size specimen dissociation (core needle biopsies, fine needle aspirations)

Timing: 30 min

The dissociation yield of smaller size specimens (approximately 2 3 2 3 10 mm3) tends to be higher

when reduced volumes of buffers are used, and when tissue dissociation is conducted for a shorter

period of time. Given small size of the specimens, an extra care needs to be taken at each step to

minimize the cell loss.

14. Use Human Tumor Dissociation Kit (Miltenyi Biotec) to prepare the enzymemix comprising 85 mL

of Enzyme H, 40 mL of Enzyme R and 15 mL mL of Enzyme A.

15. Transfer enzyme mix from step #13 into the gentleMACS C-Tube (Miltenyi Biotec) supple-

mented with 2.5 mL of serum-free cell culture medium (e.g., RPMI-1640).

16. Centrifuge the tube having a core biopsy piece(s) at 8003 g for 2 min at 20�C–25�C. Discard the

supernatant and transfer the tissue pieces to the GentleMACS C-Tube containing the enzyme

mix.

17. Place the GentleMACSC-Tube in the GentleMACSOcto Dissociator with Heaters (Miltenyi), and

run default program ‘‘37C_H_TDK3’’ for 15 min.

18. Verify the dissociation by visually inspecting the solution. If the tissue is not completely dissoci-

ated, continue running the program for additional 5 min.

Figure 2. Preparation of human lung biospecimen for dissociation

(A) Tumor piece placed in a Petri dish.

(B) Cutting procedure. The tumor piece can be held with tweezers or a pipette tip with one hand, while using the other

hand to cut the tissue with the razor blade into smaller pieces.

(C) Tumor cut into �5 mm3 pieces before dissociation.
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Note: The dissociation step involves mechanical, enzymatic and temperature stresses to the

cells, therefore minimizing the dissociation time is important. Extended dissociation may

damage fragile cells and reduce RNA quality. The tissue is considered dissociated when the

solution becomes cloudy and no tissue chunks are visible to the naked eye.

19. Apply the cell suspension obtained in step #16 onto 35 mmCell Strainer Snap Cap placed on the

Test Tube (Corning) and let the suspension pass the strainer by gravity.

20. Rinse the GentleMACS C Tube with 1.5 mL of Cell Resuspension Buffer (equilibrated at 20�C–
25�C) to collect the left-over cells, transfer the suspension onto the same Cell Strainer Snap

Cap and collect the flow through fraction into the same Test Tube.

21. Spin the Test Tube at 8003 g for 2 min at 20�C–25�C. Carefully aspirate the supernatant using a

glass Pasteur pipette coupled to a vacuum source without disturbing the cell pellet.

Note: To prevent disturbance of cell pellet leave �30–50 mL of supernatant on top of the cell

pellet.

22. Red Blood Cell Lysis.

a. Add 200 mL of Red Blood Cell Lysis Solution (ACK buffer, Lonza) on a cell pellet and gently

resuspend by slowly pipetting up and down 2–3 times. Incubate for 2 min at 20�C–25�C.

Note: Always include RBC lysis even if blood cells are not visually evident in the sample.

b. Dilute the ACK buffer by adding 2 mL of Cell Resuspension buffer and centrifuge at 800 3 g

for 2 min at 20�C–25�C.
c. Aspirate the supernatant without disturbing the cell pellet, leaving�30 mL of supernatant on

top of the cell pellet. At this point, the cell pellet should be whitish or yellowish.

Note: If cell pellet at this step appears light red, repeat RBC lysis steps.

23. Place the tube with cell suspension onto the ice bucket and proceed to ‘‘Part D. Cell staining with

live-dye and anti-CD45 antibody’’ section.

Part C. Pleural effusion processing

Timing: 30 min

Malignant pleural effusions that form in lung cancer patients derive from fluid accumulation in the

pleural cavity. Typically, the volume of pleural effusion samples varies from 50 to 1,000 mL. Macro-

phages, T-cells and tumor cells can be found in the pleural effusions at concentrations ranging from a

dozen to thousands of cells per 1 mL, however, such concentrations are too low for direct droplet-

based scRNA-seq, and therefore concentrating the cells down to �1,000 cells/mL is required.

24. To concentrate the cells, transfer the pleural effusion fluid into a required number of conical

50 mL tubes and centrifuge at 500 3 g at 20�C–25�C for 10 min.

25. Carefully remove the supernatant leaving �50 mL of supernatant on top of the cell pellet.

26. Carefully disperse the cell pellet in the supernatant that was left in the tube. Repeat it for each

tube.

27. Combine all cell suspensions in 15–20 mL of Cell Resuspension buffer.

Note: The resuspension volume depends on the size of the pellets obtained. 20 mL of cell re-

suspension buffer might be used per 250 mL of initial pleural effusion volume.
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28. To purify the mononuclear cells, prepare SepMate-50 (IVD) tubes (STEMCELL Technologies) by

loading �15 mL of Ficoll-Paque PLUS (GE Healthcare) into tube’s separating hole until the fluid

level is just above the dividing plastic.

Note:One SepMate-50 (IVD) tube is required for up to 20 mL of concentrated cell suspension

from step #22.

29. Slowly layer 20 mL of concentrated cell suspension onto the Ficoll-Paque PLUS in the SepMate-

50 (IVD) tube.

CRITICAL: When layering the sample, minimize the mixing of the Ficoll-Paque PLUS solu-

tion and the cell suspension, as that could compromise adequate separation.

30. Centrifuge SepMate-50 (IVD) tube at 1,200 3 g for 10 min at 20�C–25�C, with the centrifuge

accelerator and break turned off.

31. Remove 15 mL of upper fluid layer from each SepMate-50 (IVD) tube into a 50 mL Falcon tube.

For the remaining�5 mL above the dividing plastic, gently pipette up and down to disperse and

collect the residue residing above the dividing plastic.

32. Centrifuge at 800 3 g at 20�C–25�C for 3 min and discard the supernatant leaving�50 mL of su-

pernatant on top of the cell pellet.

33. Red Blood Cell Lysis.

a. Add 200 mL of Red Blood Cell Lysis Solution (ACK buffer, Lonza) on a cell pellet and

gently resuspend by slowly pipetting up and down 2–3 times. Incubate for 2 min at

20�C–25�C.

Note: Always include RBC lysis even if blood cells are not visually evident in the sample.

b. Dilute the ACK buffer by adding 2 mL of Cell Resuspension buffer.

c. Centrifuge at 800 3 g for 2 min at 20�C–25�C. Aspirate the supernatant without disturbing

the cell pellet, leaving �30 mL of supernatant on top of the cell pellet. At this point, the

cell pellet should be whitish or yellowish.

Note: If cell pellet at this step appears light red, repeat RBC lysis steps.

34. Proceed to ‘‘Part D. Cell staining with live-dye and anti-CD45 antibody’’ section.

Part D. Cell staining with live-dye and anti-CD45 antibody

Timing: 25 min

Cell staining with Calcein AM dye enables live cell identification. When this chemical dye is used in

combination with fluorescently-labelled anti-CD45 antibody staining, the live-immune cells (CD45

positive fraction) and live-nonimmune cells (CD45 negative fraction) can be efficiently differentiated

and selectively enriched. Staining cells against CD45 is particularly advantageous when tumor cells

(CD45 negative) constitute a relatively small fraction (0.1%–10%) of the total tumor mass (e.g., in

lung adenocarcinomas). The negative selection strategy (depletion of CD45 positive cells) provides

an option to enrich cancer cells in the final cell suspension. Staining with anti-CD45 antibody is un-

necessary when tumor cell enrichment is not required. However, sorting for live-cells is highly recom-

mended for ensuring the high-quality of scRNA-seq data.

35. Centrifuge the cells in FACS tube at 800 3 g for 3 min at 20�C–25�C and aspirate supernatant

carefully without disturbing the cell pellet. Leave 50 mL of supernatant on top of the cell pellet.
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36. During centrifugation, prepare either Cell Staining Mix for live-cells, or Cell Staining Mix

for CD45-negative cells (see materials and equipment section for Cell Staining Mix

composition).

37. Combine the 50 mL cell suspension from step-32 and 100 mL Cell Staining Mix per roughly 106

cells from step-33. Gently rock the tube or pipette up and down 2–3 times to disperse the cells.

38. Incubate on ice for 15 min.

39. Dilute the Cell Staining Mix in step-34 by adding 2 mL of refrigerated Cell Resuspension Buffer

and centrifuge in a swinging bucket centrifuge at 800 3 g for 3 min.

40. Aspirate supernatant carefully, add 2 mL of RPMI-FBS (RPMI-1640 medium supplemented with

2.5% (v/v) FBS), and centrifuge at 800 3 g for 3 min.

41. Without further delays proceed to ‘‘Part E. FACS: live-cell enrichment’’ section.

Part E. FACS: Live-cell enrichment

Timing: 30 min

Generally, the cell sorting and enrichment may be performed on any conventional FACS instrument

and does not require a special setup. The sorting settings are instrument specific. In this protocol we

used BD FACS Aria II instrument equipped with nozzle 100 mm wide and sorting at speed below

6,000 events/second. It is important that the FACS-sorted cells are collected in Protein LoBind

tubes, which possess reduced cell adhesion properties and thus increase cell recovery. However,

because cell pellet can be easily dislodged easily in these tubes during pipetting, the aspiration

of the supernatant after centrifugation should be performed carefully. The addition of 50 mL of

RPMI-FBS medium will reduce cell death due to sample desiccation during the first minutes of

sorting.

42. Resuspend the cell pellet in ice-cold 100 mL RPMI-FBS. Add DAPI dye at a final concentration of

0.1–1 mg/mL, and place the tube on ice.

43. Prepare 1.5 mL Protein LoBind Eppendorf tubes with 50 mL of RPMI-FBS that will serve as collec-

tion tube for FACS-sorted cells.

44. Follow the instructions of the corresponding FACS instrument to initiate the flow cytometry.

45. Set appropriate sorting gates for capturing the live-cell populations of interest (see Figure 3).

Note: The CD45-positive cells will comprise several subpopulations of cells, accounting for

the different cell types (T-cells, macrophages, etc.), which will appear as different clusters in

the flow cytometry plot.

a. For enriching the live non-immune (tumor-enriched) cells set the sorting gates negative for

DAPI and PE, and positive for Calcein.

b. For enriching the live immune cells set the sorting gates negative for DAPI and positive for

Calcein and PE.

Note: If tumor cell enrichment is not required and CD45 staining was not performed, set the

sorting gate negative for DAPI and positive for Calcein dyes. This will account for all live-cells.

46. Initiate cell sorting and collect FACS-sorted cells into 1.5 mL Protein LoBind tube filled with

50 mL of RPMI-FBS.

Note: Knowing the exact count of CD45neg and CD45pos events during FACS provides an

option for later combining the sorted cells at a desirable ratio and quantity. This might be

particularly desirable in the situations when tumor cells constitute only a small fraction of all

cells or when sorted CD45neg cells results in numbers insufficient for droplet-based scRNA-

seq approach. Therefore, following FACS the sorted CD45 negative cells (representing the
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non-immune compartment) can be spiked-in with a known quantity of sorted CD45 positive

cells (representing the immune compartment) to obtain an adequate cell concentration for

droplet-based scRNA-seq.

47. Record the cell count during FACS.

a. If sorted CD45neg cell count is R50.000, proceed to the next step.

b. If sorted CD45neg cell count %50.000, combine the sorted CD45neg with sorted CD45pos

cells to obtain at least 50.000 cells in total.

48. Centrifuge cells at 800 3 g for 4 min at 4�C.
49. Without disturbing the cell pellet, carefully aspirate the supernatant and gently resuspend the

cell pellet in a required volume of RPMI-FBS medium to obtain �1,500 cells/mL. For example,

if FACS count showed 50.000 cells, resuspend the cell pellet in 20–30 mL of RPMI-FBS medium.

Note: In our experience the FACS count often turns out to be higher than the actual number of

sorted cells. Furthermore, concentrating cells by centrifugation and subsequent removal of

the supernatant, may also lead to undesirable cell losses. Therefore, when resuspending

the cells in a final volume it is worth to consider the actual number of the cells in a pellet to

be 30%–50% lower than what appears on a FACS instrument.

50. Without further delays proceed to ‘‘Part F. Droplet-based single-cell RNA-Seq’’ section.

Part F. Droplet-based single-cell RNA-Seq

Timing: 20–30 min

Figure 3. Setting the FACS gates for enrichment of live immune cells (CD45-positive) and live non-immune (CD45-negative) cells

(A) The side scatter (SSC-A) and forward scatter (FSC-A) plot can be used to discard debris, however, we recommend to be inclusive in this gating to

avoid potential loss of the cells of interest.

(B) Side scatter height (SSC-H) and side scatter width (SSC-W) plot.

(C) Forward scatter height (FSC-H) and forward scatter width (FSC-W) plot, are used to gate singlets.

(D) DAPI and forward scatter plot facilitates identification of live-cells (DAPI negative), but we recommend again to be inclusive, as the complexity of

clinical samples sometimes hurdles the clear identification of live cells.

(E) FITC (Calcein) and PE (CD45) scatter plot is used to enrich live-cells that are positive for FITC. Immune cells (CD45 positive) and non-immune cells

(CD45 negative) should be clearly separated in the PE (CD45) channel. Noteworthy that CD45-positive cells include several clusters in the flow cytometry

plot, which mainly correspond to different immune cell types (T-cells, macrophages, etc.).
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The cells enriched with FACS are readily applicable for use with different high-throughput droplet

microfluidic platforms (Klein et al., 2015; Macosko et al., 2015; Zheng et al., 2017), however, as cells

tend to lose viability over time it may be desirable to choose the platform that offers fast sample pro-

cessing. In our work (Chan et al., 2021), we used Chromium instrument (103 Genomics) in combina-

tion with Single Cell 30 Reagent Kit (v3) to prepare the barcoded transcriptome libraries. For conve-

nience, refer to Methods S1 which provides manual for using Chromium instrument and reagent kit.

We noticed, the actual number of sorted cells after FACS step tends to be 20%–50% lower than the

number of sorted events registered during flow cytometry. Therefore, it is recommended to validate

the number and viability of FACS-sorted samples under the bright field microscope. Performing a

cell count, however, reduces the number of cells available for scRNA-seq.

51. To evaluate cell viability and concentration (cell number per mL) in the FACS-sorted sample, mix

5 mL of cell suspension with 5 mL of 0.4% (w/v) Trypan Blue Solution and inspect the cells using

hemocytometer under bright field microscope, or alternatively using an automated cell counter

(e.g., Countess II). Cells that are dead will appear dark blue.

Note: When using automated cell counter, it must be ensured that the right focus is set to

count all viable cells that vary in size and shape. It is a good practice to perform a quick visual

check of the automated cell counter results by inspecting the trypan blue stained cells under a

bright field microscope.

52. If cell viability is below 60%, refer to troubleshooting table.

53. If cell count is below 500 cell/mL refer to troubleshooting table.

54. If cell viability is R80% and cell count is R500 cell/mL, proceed to next step.

55. Adjust the cell loading concentration to reach a desirable target of barcoded-cells (refer to

Methods S1, page 24).

56. Following the manual for ChromiumController (Methods S1, pages 25–32) to load the cells onto

Chromium Chip B.

57. Perform barcoding RT reaction and amplify barcoded-cDNA by 12-cycles of PCR (refer to pages

26–34 in Methods S1 for exact reaction conditions).

58. Determine the profile of the barcoded cDNA library by diluting 1 mL sample with 5 mL water and

then loading 1 mL of on an Agilent Bioanalyzer High Sensitivity chip. The expected DNA traces

are shown in Figure 4.

59. Following the same manual (Methods S1, pages 35–43) fragment the PCR-amplified cDNA li-

brary, ligate sequencing adaptor and perform indexing PCR.

60. After double size purification (0.6–0.83) with SPRI beads determine the DNA concentration of

the final library using Qubit 4.0 Flourometer and the dsDNA HS Assay Kit.

61. The expected DNA amount should be at R5.0 ng/mL. Refer to troubleshooting table if DNA

amount is lower.

62. Determine the average fragment size of the final DNA library by diluting 1 mL sample with 9 mL

water and then loading 1 mL of diluted DNA library on an Agilent Bioanalyzer High Sensitivity

chip. The expected DNA traces are shown in Figure 4. Select the region encompassing 35–

10,000 bp and record the DNA concentration.

Pause point: At this step libraries can be frozen at �20�C and kept indefinitely.

Part G. Next-generation DNA sequencing

Timing: >24 h

Once quantified and normalized, the DNA libraries should be denatured and diluted as recommen-

ded for Illumina sequencing platforms. Refer to Illumina documentation (Denature and Dilute

Libraries Guide, Document # 1000000106351 v03, Standard Loading) for denaturing and diluting
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libraries. Prior denaturation the DNA libraries obtained from different clinical samples (and utilizing

different sample indexes) can be pooled for sequencing, yet the differences in cell number of each

library should be considered.

CRITICAL: The DNA amount loaded onto the flow cell will greatly influence the number of

clusters generated.

63. Using 10 mM Tris-HCl [pH 8.5] dilute each DNA library down to 2 nM concentration.

64. Pool individual DNA libraries into one tube.

65. Follow Illumina’s guidelines for denaturating and diluting libraries (Standard Loading).

66. When using NovaSeq 6000 S2 Reagent Kit v1.5 (100 cycles) sequence the DNA library using

following cycle numbers:

Read 1–26 cycles.

Read i7 – 8 cycles.

Read 2–70 cycles or longer.

Figure 4. The scRNA-seq libraries prepared from the core needle biopsy, fine needle aspirate and pleural effusion samples

(A) The scRNA-seq library traces of core needle biopsy.

(B) The scRNA-seq library traces of fine need aspirate.

(C) The scRNA-seq library traces of pleural effusion sample.
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67. Aim to achieve sequencing depth of 30,000–50,000 reads per cell, or 120–200 million reads per

one DNA library (e.g., a pool of 8 libraries may require up to 1,600 million reads).

Note: In a typical scenario, we aim to sequence �3,000 cells per sample at a depth such that

each sample recovers �5,000 molecules (transcripts) per cell.

Part H. Data pre-processing

Computational steps can be divided into data pre-processing (which ensures initial quality

control) and downstream analysis. The data pre-processing includes mapping to the reference

genome, filtering low-quality cells (including empty droplets and doublets) and lowly expressed

genes.

The pre-processing steps of scRNA-seq are illustrated in Figure 5.

68. Mapping:

a. Recommended option: Align fastq files from each sample to the SEQC (v0.2.11) pipeline

(Azizi et al., 2018) based on the hg38 human genome reference and Ensembl 85 gene anno-

tations using default parameters for the 103 single-cell 30 library. The SEQC pipeline per-

forms read alignment, multi-mapping read resolution, as well as cell barcode and UMI

correction to generate a count matrix (cells 3 genes).

The SEQC pipeline is available for download here. A dockerized version is also available here.

b. Alternative option: Align fastq files from each sample to the Cell Ranger pipeline based on

the hg38 human genome reference and default parameters for the 103 single-cell 30 library.
69. Cell filtering: Initial cell filtering using SEQC based on the following criteria:

a. True cells are distinguished from empty droplets based on the cumulative distribution of to-

tal molecule counts.

b. Cells with a high fraction of mitochondrial molecules are filtered (> 20%).

c. Cells with low library complexity are filtered (cells that express very few unique genes). This

step is performed by regressing the number of genes detected per cell against the number of

Figure 5. Flowchart detailing the preprocessing and analytical steps taken at iterative subsets of the single-cell

cohort
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molecules in the same cell. Cells are excluded if the corresponding residual is greater than 3

standard deviations below the mean (Azizi et al., 2017).

70. Empty droplet filtering using CB2 (Ni et al., 2020). Parameter ‘‘lower’’ set at 100 to estimate the

background distribution of ambient RNA and an FDR threshold of 0.01 for calling real cells (Ni

et al., 2020).

71. Doublets filtering using DoubletDetection package (https://doi.org/10.5281/zenodo.2658729)

and default parameters? Alternatively, one may use Scrublet (Wolock et al., 2019).

72. Gene filtering: Retain genes expressed in >10 cells for further analysis.

73. Normalization/transformation: Normalize count matrix by library size, scale by median library

size, and log2-transform with a pseudocount of 0.1.

74. Batch correction: Perform batch correction in the combined dataset of clinical samples using

fastMNN (Haghverdi et al., 2018) with cosine distance applied to the log2 transform of the li-

brary-size normalized count matrix with pseudocount of 1, reduced to the top 50 PCs. We favor

fastMNN due to the ability to perform hierarchical merging among samples. In particular, we

first merge samples from the same patient, then from the same histology, with samples contain-

ing a greater number of cells merged first.

75. Batch correction evaluation: Evaluate the effect of batch correction using an entropy-based

measure that quantifies how much normalized expression mixes across patients (Azizi et al.,

2018). For that purpose, construct a k-nearest neighbors’ graph (k=30) from the normalized da-

taset using Euclidean distance and compute the fraction of cells qT derived from each tumor

sample T in the neighborhood of each cell j. Calculate the Shannon entropy Hj of sample fre-

quencies within each cell’s neighborhood as:

Hj =
X

T

� qT log qT

Higher entropy indicates that the most similar cells come from a well-mixed set of tumors, whereas

lower entropy indicates that most similar cells derive from the same tumor.

CRITICAL: We do not recommend performing downstream batch correction in

subset compartments of coarse cell types out of concern of over-correcting tumor

phenotypes.

Part I. Data analysis

Following initial data pre-processing, downstream analysis focuses on dimensionality reduction,

clustering and trajectory analysis, cell typing, factor analysis, differential expression, and gene

pathway analysis, among others. These steps are illustrated in Figure 5. Computational scripts

and notebooks are available here.

76. Dimensionality reduction:

Principal component analysis (PCA):

a. Perform PCA on the normalized expression matrix, implemented in Scanpy (Wolf et al.,

2018).

b. Retain the top PCs based on the kneepoint of variance explained.

Diffusion map:

c. Construct a diffusionmap based on the top retained PCs, implemented in scanpy (Wolf et al.,

2018).

d. Retained the top diffusion components (DCs) prior to the largest eigengap, defined as the

difference between two consecutive eigenvalues.

77. Cell clustering: These clusters represent discrete cell types or cell states in the single-cell data.

a. Cluster cells using Phenograph algorithm (Levine et al., 2015) based on the top retained PCs

over a range of values for the parameter k (number of neighbors in the knn-graph) to ensure

that subsequent cell typing is consistent.
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b. Choose k from the window where the adjusted Rand index between clusters is consistently

highest. In general, we found that k = 30 provides stable clusters in all cell compartments,

with the exception of the T-cell compartment where we used k = 40.

78. Differential expression: Down-sample cells to homogenize cell sampling per batch prior to dif-

ferential expression.

a. Partition cells from each cluster into 10 equally-sized bins based on cell complexity (number

of genes expressed) for subsequent downsampling.

Note: This partitioning to downsample within each bin will be different for different datasets.

b. Subsample from each bin to at most k cells per sample, where k is the median sample size,

such that cell complexity distribution is consistent across samples.

c. Use MAST (version 1.8.2) (Finak et al., 2015) to perform differential expression between 1)

each SCLC subtype vs rest, 2) SCLC-A vs SCLC-N cells, and 3) each unsupervised cluster

vs rest.

d. Construct the regression model based on cellular detection rate (cngeneson, or number of

genes detected per sample), tissue status (primary vs LN vs distant metastasis), and treat-

ment status (naive vs most recently chemo-treated vs most recently immunotherapy-

treated), as follows:

Yi;j � condition + tissue + treatment + cngeneson

where condition represents the condition of interest and Yi is the expression level of gene i in

cells in cluster j, transformed by natural logarithm with a pseudocount of 1.

e. Filter differentially expressed genes (DEGs) for significance based on Bonferroni-adjusted

p-value < 0.05 and absolute log fold-change > 0.3.

79. Ambient RNA filtering: Identify and remove candidate DEGs that could represent ambient RNA

following a stepwise, regression-based approach (Smillie et al., 2019):

a. Fit an initial Loess regression on gene expression for each general cell type (ingroup) vs all

other cells (outgroup).

b. Bin genes by expression (number of bins = 25) and consider the 50 genes with themost nega-

tive residuals per bin.

c. Fit a second linear regression to genes with the most negative residuals.

d. Consider genes with residuals for the second regression that are < 2 as ambient RNA.

80. Gene pathway enrichment:

a. Calculate gene ranks using -log(p-value)*log fold change based on MAST (Finak et al., 2015)

differential expression, described above.

b. Input gene ranks into pre-ranked GSEA, as implemented by the R package fGSEA

(Korotkevich et al., 2016) using 10,000 permutations, based on a curated set of

pathways from MSigDB v 7.1 (Subramanian et al., 2005), as provided in Chan et al. Cancer

Cell, 2021.

c. Consider pathways with Benjamini-Hochberg adjusted p-values < 0.1 to be significant,

following typical significance thresholds used in GSEA.

81. Factor analysis: This approach excels in settings of continuous phenotypes that are less

amenable to cell clustering. Here, cells and genes are projected into the same lower-dimen-

sional space. The resulting latent factors are associated with weights or loadings for each cell

and each gene. These cell and gene loadings can be used to associate gene programs to

different cells.

a. Use non-negative matrix factorization (NMF) implemented in scikit-learn with tolerance for

stopping condition 10�4 and maximum number of iterations 500

b. Select the number of factors k.

i. Perform NMF over a range of k from 5 to 100

ll
OPEN ACCESS

STAR Protocols 3, 101776, December 16, 2022 15

Protocol



ii. Calculate the reconstruction error for each NMF for a given k. Reconstruction error is the

Frobenius norm of the matrix difference between the observed gene expression matrix

and the reconstructed matrix.

iii. Select a final value of k based on the kneepoint of the log2 reconstruction error.

iv. Ensure robustness to value of k based on Pearson’s correlation between cell loadings

(where robust factorization approaches correlation of 1 for different values of k).

v. We found k = 30 to be robust.

c. Annotate factors.

i. Scale gene loadings by standard deviation across genes.

ii. Z-scored across factors.

iii. Annotate each factor by genes with the highest loadings. The top genes for each factor

can be identified using the ExtractTopFeatures function in the CountClust package (Dey

et al., 2017), which extracts the top features that maximally separate each factor from

others using a Kullback-Leibler divergence-based method.

82. Single-cell visualization:

a. Performpartition-based graph abstraction (PAGA) implemented in the scanpy package using

Phenograph clusters. This step provides initialization for subsequent UMAP step.

b. Plot UMAP projections (McInnes et al., 2018) as lower dimensional representations using

knn = 15, min_dist = 0.3–0.5, and init_pos = ‘paga’.

c. To visualize gene expression, we perform gene imputation using MAGIC (knn = 30, t=3) (Dijk

et al., 2018).

83. Cell typing: A hierarchical strategy for cell type identification proceeds first at coarse resolution

(epithelial versus immune) and then fine resolution (basal versus NE cell).

a. Coarse cell typing: At the coarse level, cell typing based solely on predominant expression of

key gene markers below should suffice.

i. Immune cells (PTPRC).

ii. Epithelial cells (EPCAM).

iii. Fibroblasts (COL1A1).

iv. Endothelial (CLDN5).

b. Fine cell typing: At the fine level, cell typing is improved using cell type-specific gene

sets rather than any single gene marker. Refer to Table S1 for list of marker gene sets per

cell type.

i. Subset data and repeat steps 68–82 within each coarse cell-type compartment (without

batch correction).

Note: The analysis in the immune cell compartment benefits from Z-scoring the expression

matrix prior to constructing the PCA. While the Batch Correction step can be repeated, we

generally prefer not to batch correct if possible out of concern for overcorrecting biological

signal and removing true tumor heterogeneity.

ii. Z-score the expression matrix.

iii. Use the score_genes function in scanpy, which calculates the average expression of each

cell type-specific gene set and subtracts from the average expression of a reference set of

genes.

iv. Z-score the subsequent cell-type scores for comparison and choose the maximum cell-

type score.

v. Smooth cell type labels by choosing the most frequent cell type label per cluster.

c. Consistency check: Assess consistency of cell typing with key cell-type markers individually:

i. Within EPCAM+ epithelial cells.

Neuroendocrine (CHGA, CHGB, NCAM1, SYP, ASCL1, ASCL2, BEX1).

Non-neuroendocrine.

Alveolar epithelial cells I (AGER, CLIC5, PDPN).

ll
OPEN ACCESS

16 STAR Protocols 3, 101776, December 16, 2022

Protocol



Alveolar epithelial cells II (SFTPC, SFTPD, MUC1, GATA6).

Basal cells (KRT5, TP63, AQP3, DAPL1).

Ciliated cells (FOXJ1, CCDC78, TUBB1).

Club cells (SCGB1A1, SCGB3A2, CCKAR).

Hepatocytes (TF, CYP3A4, HP, ALB).

Ionocytes (FOXI1, ASCL3, CTFR).

Mucinous cells (MUC5AC, MUC5B, SPDEF).

Tuft cells (POU2F3, ASCL2, DCLK1).

ii. Within PTPRC+ immune cells.

B-cells (CD19, MS4A1, CD79A).

Plasma cells (CD79A, SDC1, MZB1, CD27).

T-cells (CD2, CD3D, CD3E).

Natural killer cell (NCAM1, NCR1, NKG7, KLRC1, GNLY).

Macrophage/monocytes (CD14, FCGR3A, ITGAM, ITGAX).

Neutrophils (CSF3R, NAMPT, FCGR3B).

cDC (CD1C, PPA1, LSP1, CSF2RA).

pDC (GZMB, JCHAIN, IRF7, LILRA4).

Note: DEGs and enriched pathways per cluster as well as factor analysis can help check

consistency.

84. Cancer cell identification.

a. Cluster cells in the epithelial compartment (following details in step 77).

i. Resulting clusters represent possible cancer cell clusters.

ii. One can also include mesenchymal cells if there is a strong suspicion of EPCAM- cancer

cells that have undergone epithelial-mesenchymal transformation (EMT).

iii. Exclude any clusters that contain cells derived from normal adjacent lung samples.

b. Leverage single nucleotide variants (SNVs).

i. Clinical DNA sequencing of a targeted panel of 468 genes was previously performed on

matched bulk tumors using the MSK IMPACT platform (Cheng et al., 2015). Integration

of the matched point mutational profile of the bulk tumor can facilitate cancer cell

detection.

ii. Obtain the variant calls (base changes and genomic coordinates) from matched bulk

DNA-sequencing.

iii. Identify UMIs from the aligned scRNA-seq bam file of each sample (with reads collapsed

to UMI) that match the same variant calls from bulk DNA-sequencing.

Note: de novo SNV detection at single-cell level could be used instead but is outside the

scope of this STAR protocol.

iv. Tally the proportion of UMIs that call SNVs in each epithelial cluster.

v. Tally the proportion of UMIs that call SNVs in normal immune and mesenchymal cells.

This measure provides a negative control that represents the rate of detection from

ambient RNA.

vi. Calculate the Fisher’s p-value as a measure of enrichment for UMIs that call SNVs.

vii. Adjust the Fisher’s p-value by Bonferroni calculation for multiplicity with a significance

threshold of < 0.05.

c. Leverage copy number variants (CNVs).

i. Use InferCNV (Patel et al., 2014) with the following parameters:

Sliding window of 200 genes.

Diploidmeanandstandarddeviationbasedonavailablenormal adjacent tumor samples.

Consider at least two standard deviations from diploid mean to represent a CNV.
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ii. Calculate CNV burden using two alternative measures.

Fraction of the genome affected by CNV.

Pearson’s correlation between single-cell and bulk CNV profiles.

d. Compare CNV burden between tumor and normal samples.

i. Typically, tumor samples will display a bimodal distribution, with a lower peak corre-

sponding to normal stromal cells and a higher peak corresponding to mutated cancer

cells. Normal samples will display a unimodal distribution.

ii. Based on our normal samples in the SCLC atlas, we identified cancer cells using a

threshold of >10% fraction of genome altered and Pearson’s correlation to bulk CNV pro-

file rho >0.2.

85. Small cell lung cancer (SCLC) subtyping: We recommend subtype classification based on

phenotype rather than only the canonical set of four transcription factors (i.e., ASCL1,

NEUROD1, POU2F3, and YAP1).

a. Feature selection: We recommend restricting analysis to a set of genes that excludes genes that

are not subtype-specific. For instance, in our initial analysis of the SCLC atlas, we restricted to

DEGs between each SCLC-subtype (SCLC-A, SCLC-N, SCLC-P, SCLC-Y) vs rest previously iden-

tified from bulk RNA-seq. We also exclude genes from cell cycle, hypoxia, and apoptosis path-

ways that are non-specific to SCLC subtype and might confound classification. These filtered

genes included pathways from REACTOME_CELL_CYCLE_MITOTIC, REACTOME_MITOTIC_

G1_G1_S_PHASES, HALLMARK_G2M_CHECKPOINT, HALLMARK_HYPOXIA, HALLMARK_

APOPTOSIS downloaded from MSigDB. As we refined DEGs between subtypes in our single-

cell atlas, one could now restrict analysis to these DEGs for subtype classification in any new

dataset.

b. Identify the most representative cells for each SCLC subtype.

i. Identify the top 30 overexpressed DEGs per SCLC subtype from the bulk RNA-seq refer-

ence.

ii. Calculate the average Z-score over this gene set for each cell.

iii. Label the top 100 highest scoring cells for each SCLC subtype as training examples for

subsequent subtype classification.

c. Construct a diffusion map retaining the top DCs based on eigengap, as above.

d. Use Phenograph classifier to perform Markov absorption classification in a Jaccard similarity

graph constructed from the top DCs. This step will result in per-cell probabilities for each

SCLC subtype, which can be considered a deconvolution of mixed subtypes.

e. Assign the most likely SCLC subtype by the maximum probability.

EXPECTED OUTCOMES

Following the protocol reported here approximately 100,000 to a few millions of cells can be

obtained from resection samples (>100 mg of tissue), or pleural fluids (R250 mL volume).

From core needle biopsies or fine needle aspirates (10–50 mg of tissue) one could expect to

obtain 15,000–60,000 of FACS-sorted cells. The cell viability, after FACS, will vary between 71

and 98% (median 80%), when evaluated by trypan blue dye exclusion assay. Sequencing sam-

ples at depth 120–200 M reads (�40,000 reads per cell), one could expect to recover �5,000

unique molecules (transcripts) per cell, and detect 2100 expressed genes, on average. The

unique mapping is expected to be close to 80%. The scRNA-seq data analysis procedure

described here provides a guideline for constructing human tumor cell atlases, similar to the

one presented in Figure 6.

Arguably, the high intrinsic heterogeneity of tumor samples makes it difficult to predict the number

of cells to be obtained from a given clinical sample. Different tumor types tend to display different

cellular compositions (i.e., lung adenocarcinomas usually contain 5%–20% of cancer cells while in

small cell lung carcinomas the cancer cell fraction may be up to 50%–90% of total cells). Nonethe-

less, the protocol detailed here was successfully applied to profile the single transcriptomes of fresh
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small cell lung cancer (SCLC), lung adenocarcinoma (LUAD) and tumor-adjacent normal lung sam-

ples, acquired from untreated and treated patients (Chan et al., 2021). In addition, the clinical sam-

ples processed included primary tumors, regional lymph node metastases, and distant metastases

(liver, adrenal gland, axilla, and pleural effusion), suggesting a broad utility of the reported protocol.

LIMITATIONS

As with most protocols, dissociation of human tissue specimens based onmechanical and enzymatic

treatment has the potential to introduce substantial cell subpopulation biases if a given intra-tu-

moral cell subset is particularly sensitive to temperature, enzymatical or mechanical stress. The

epithelial cells are more sensitive to dissociation and are more fragile than the suspension (immune)

cells. Therefore, this protocol is only applicable with certain guarantee of success to freshly collected

samples. Processing of samples that have been processed over 2 h of post-acquisition, or have been

transported under suboptimal conditions, will likely result in significantly reduced cell viability,

compromised transcriptome integrity, and undesirable biological or technical artifacts. The rule of

thumb: the quicker the isolation, the better the status of the cells.

Samples collected while the patient is on-treatment will show highly variable cell viability and recov-

ery. In addition, when working with small size biospecimens such as core needle or fine needle

Figure 6. The single-cell transcriptional atlas of human lung tumor

(A) UMAP projection of the human lung cohort at the global level (n = 155,098 cells).

(B) UMAP projection of the epithelial cells at the global level (n = 64,301 cells).

(C) UMAP projection of the small cell lung cancer (n = 54,523 cells).

(D) UMAP projection of the immune cells from small cell lung cancer samples (n = 16,475 cells).

(E) Dot plot show selected differentially expressed genes between each SCLC subtype versus the rest, mean normalized expression and percent of cells

expressing a given gene. SCLC - small cell lung cancer; LUAD – lung adenocarcinoma; Tconv - conventional T-cell; Treg - regulatory T-cell; Teff - effector

T-cell; Tmem - memory T-cell; Mono/M4 = monocyte/macrophage; PMN = neutrophil; cDC = conventional dendritic cell; pDC = plasmacytoid dendritic

cell.
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aspirate, the cancer cell recovery can be low (n % 10,000) and below the recommendations for

scRNA-seq using 103 Chromium controller. In such scenarios, the FACS-based enrichment of

CD45-negative and CD45-positive cells into two separate fractions provides a flexible option to later

mix tumor and immune cells at a desirable ratio in order to obtain an adequate concentration of cells

(n R 20,000) for scRNA-seq.

Other variables can also influence the results. These include biological variables such a tissue origin,

as RNAses are differentially expressed in distinct tumor types; or clinical variables, such as specimen

collection performance, patient drug treatment history, tissue necrosis, ischemic time, etc. These

experimental variables can significantly affect the cell viability in the biospecimen. Evidently, the

starting amount of tissue or fluid is also an important variable and will most likely correlate with

the number of cells finally obtained.

TROUBLESHOOTING

Problem 1

Poor tissue dissociation (steps #6 or #17).

Potential solution

Lung tissues that are rich in extracellular matrix may comprise limited number of cells available for

isolation. Some biospecimens, may contain fats that tend to reduces the efficiency of enzymatic

digestion and tissue dissociation. One straightforward option is extending digestion time, however,

at the risk of reducing cell viability.

Problem 2

Insufficient number of cells obtained for FACS (step #45).

Potential solution

There are multiple reasons why cell recovery might be insufficient. The quality of biospecimens are

difficult to predict and unfortunately some samples that do not pass QC will need to be discarded.

Avoid necrotic tissue samples or biospecimens that took >2 h to transfer to the laboratory. If

possible, increase the size of biospecimen. Ensure that during centrifugation steps the cell pellet re-

mains undisturbed and is not removed accidentally along with the supernatant. In some cases, the

cell pellets might very small and loosely packed, and therefore extra care must be taken when aspi-

rating the supernatant.

Problem 3

Inefficient separation of live and dead cells by Calcein-AM staining in the flow cytometry plot (Fig-

ure 7), while performing FACS (step #45).

Potential solution

Calcein-AM is a cell-permeant fluorogenic substrate that is hydrolyzed by intracellular esterases to a

green-fluorescent product, calcein. The yield of calcein and thus the fluorescent signal intensity of

stained-cells is dependent on the esterase activity. Therefore, cells that express reduced levels

of esterases may require a prolonged incubation with calcein-AM to ensure that sufficient amount

of calcein has accumulated within cell cytoplasm. Another potential solution is to perform calcein-

AM staining and tissue dissociation simultaneously. In such scenario, calcein-AM reagent should

be added to the GentleMACS C tube, as the higher temperature during enzymatic dissociation

(37 C as compared to 4 C during staining with Ab) will increase catalytic esterase activity, leading

to a higher yield of fluorescent calcein. If calcein-AM staining cannot be optimized due to limited

biospecimen availability, or inefficient calcein staining is encountered while sorting an important

sample, then restrictive DAPI-negative gating may facilitate the recovery of cells with acceptable

viability.
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Problem 4

Inefficient separation of immune and non-immune cells in the flow cytometry plot (Figure 8), while

performing FACS (step #45).

Potential solution

In rare cases this problem may arise due to insufficient amount of CD45 antibody in the staining

cocktail. Some specimens, like pleural effusions, may contain extremely high numbers of immune

cells, which will sequester most of CD45 antibody available. Therefore, when processing a sample

comprising a high number of cells it may be advantageous to increase CD45 antibody amount in

the staining cocktail.

Problem 5

Clogging of FACS instrument during sorting procedure (step #46).

Potential solution

Because EDTA is absent in the sample dissociation buffer (this is to prevent potential inhibition of the

reverse transcription reaction) the chance of cell clumping and clogging, increases. It may be bene-

ficial to include filtering of the pre-sorting cell suspension through 70 mm cell strainer (more than

once, if necessary) or diluting the cell suspension before FACS.

Problem 6

The viability of post-FACS cells is below 60% (step #52).

Potential solution

Increase the stringency of sorting gates by selecting cells that show high signal in calcein (green

channel). Slow down the sorting speed (below 5,000 events/s); this will result in lower share forces

acting upon cells. If possible, use FACS sheath fluid supplemented with 2.5% FBS. Keep cells at

4�C and avoid prolonged exposure to 20�C–25�C.

Problem 7

The cell count of post-FACS sample is below 500 cells/mL (step #53).

Figure 7. Illustrative FACS plot with inefficient separation of dead and live cells

Y-axis indicates the fluorescence intensity of anti-CD45 staining (PE-A) and X-axis represents the fluorescence

intensity of calcein dye (FITC-A).
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Potential solution

When the cell concentration is low, further processing for barcoding reverse transcription reaction

depends on the total volume of the sample. If the total volume of the sample isR40 mL, concentrate

the cells by centrifugation. Perform centrifugation at 500 g in a swinging bucket centrifuge at 4�C for

5 min, carefully remove the excess volume of supernatant until a desirable volume is left (e.g., 20 mL),

gently resuspend the cell pellet and load a required number of cells on a Chromium Chip. If the total

volume of the sample is %40 mL, one may proceed to ‘‘Part F. Droplet-based single-cell RNA-Seq’’

section with expectation to recover fewer cells. In latter scenario, amplify the barcoded-cDNA library

by 14-cycles of PCR.

Problem 8

The DNA amount in the final library is below 5.0 ng/mL (step #61).

Potential solution

Perform 2–4 additional cycles of PCR on the final library and purify the resulting material with 0.6–

0.83 SPRIselect Reagent Kit.

Problem 9

Poor recovery of transcripts and genes after the sequencing (step #67).

Potential solution

Most common cause of low transcript recovery is poor cell quality and mRNA degradation. Make

sure that reagents and consumables used for scRNA-seq are free of nucleases. To extend cell

viability, process samples quickly and ensure that cells are kept on ice throughout the protocol

with minimal exposure to ambient temperatures. The transcript capture might be also affected by

suboptimal RT reaction conditions, for instance, if tissue dissociation is performed in the presence

of DNAse I, or other inhibiting factors.

Problem 10

Undesirable batch effects (steps #73 and 74).

Figure 8. Illustrative FACS plot with inefficient separation of CD45-negative and CD45-positive cells

Y-axis indicates the fluorescence intensity of anti-CD45 staining (PE-A) and X-axis represents the fluorescence

intensity of calcein (FITC-A).
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Potential solution

When working with clinical samples batch effects are not uncommon. Perform Batch correction and

Batch correction evaluation as explained in Part I. Data analysis section. Processing the samples us-

ing exactly the same procedure, including the time that it takes to process the biospecimens until

scRNA-seq step, should minimize the technical batch effects. It might be beneficial to validate the

technical batch effects of the protocol by dividing the biospecimen in two halves and then process-

ing both in parallel following the protocol provided here. We conducted such control experiment

and observed no technical batch effects.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Linas Mazutis (linas.mazutis@bti.vu.lt).

Materials availability

Not applicable.

Data and code availability

Software and tools used for the SCLC atlas and described in this STAR Protocol are open source at

https://github.com/dpeerlab/SCLC_atlas-HTAN (https://doi.org/10.5281/zenodo.7035166). In

collaboration with the NIH-funded HTAN Data Coordinating Center (U24), raw and processed sin-

gle-cell RNA-seq data are downloadable and also available as an interactive, online platform for in-

dependent visualization and analysis at https://data.humantumoratlas.org and https://cellxgene.

cziscience.com/collections/62e8f058-9c37-48bc-9200-e767f318a8ec. The accession number for

the data reported in this paper is HTAN Data Portal: HTAN MSK.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.xpro.2022.101776.

ACKNOWLEDGMENTS

This work was carried out as part of the NCI Human Tumor Atlas Network (humantumoratlas.org) and

supported by NCI U2C CA233284 (D.P. and C.M.R.), the Robert J. and Helen C. Kleberg Foundation

(D.P. and C.M.R.), NCI U54 CA209975 (D.P.), NCI R01 CA197936 and U24 CA213274 (C.M.R.), the

SU2C/VAI Epigenetics Dream Team (C.M.R.), the Alan and Sandra Gerry Metastasis and Tumor Eco-

systems Center (D.P. and J.M.C.) the Druckenmiller Center for Lung Cancer Research (C.M.R. and

A.Q.V.), Parker Institute for Cancer Immunotherapy grant (D.P.), and NIH K08 CA248723 (A.C.).

L.M. acknowledges support by the Research Council of Lithuania (01.2.2-LMT-K-718-04-0002). Au-

thors gratefully acknowledge the help from the Integrated Genomics Operation Core, funded by the

NCI Cancer Center Support Grant P30 CA08748, Cycle for Survival, and the Marie-Josée and Henry

R. Kravis Center for Molecular Oncology. We also kindly acknowledge Ojasvi Chaudhary, Kathleen

Daniels, David Humphries, Joana Da Silva Leite, Fang Fang, Barbara Oliveira, Magdalena Parys,

Mark Kweens, and Rui Gardner from the MSKCC Flow Cytometry Core for their invaluable help.

AUTHOR CONTRIBUTIONS

Conceptualization, A.Q.V., J.M.C., J.T.P., and L.M.; methodology, J.M.C., A.Q.V., I.M., D.P., and

L.M.; formal analysis, J.M.C., A.Q.V., V.R.G., and L.M.; writing – original draft, J.M.C., A.Q.V.,

and L.M.; writing – review & editing, J.M.C., A.Q.V., V.R.G., Y.X., D.P., C.M.R., and L.M.

DECLARATION OF INTERESTS

A.Q.V. reports honoraria from AstraZeneca. M.O. reports advisory roles for PharMar, Novartis, and

Targeted Oncology and reports honoraria from Bristol-Myers Squibb and Merck Sharp & Dohme.

C.M.R. has consulted regarding oncology drug development with AbbVie, Amgen, Ascentage,

ll
OPEN ACCESS

STAR Protocols 3, 101776, December 16, 2022 23

Protocol

mailto:linas.mazutis@bti.vu.lt
https://github.com/dpeerlab/SCLC_atlas-HTAN
https://doi.org/10.5281/zenodo.7035166
https://data.humantumoratlas.org/
https://cellxgene.cziscience.com/collections/62e8f058-9c37-48bc-9200-e767f318a8ec
https://cellxgene.cziscience.com/collections/62e8f058-9c37-48bc-9200-e767f318a8ec
https://doi.org/10.1016/j.xpro.2022.101776
http://humantumoratlas.org


Astra Zeneca, Bicycle, Celgene, Daiichi Sankyo, Genentech/Roche, Ipsen, Jazz, Lilly, Pfizer,

PharmaMar, Syros, and Vavotek. C.M.R. serves on the scientific advisory boards of Bridge Medi-

cines, Earli, and Harpoon Therapeutics. L.M. is shareholder and scientific advisor of Droplet

Genomics.

REFERENCES

Azizi, E., Carr, A.J., Plitas, G., Cornish, A.E.,
Konopacki, C., Prabhakaran, S., Nainys, J., Wu, K.,
Kiseliovas, V., Setty, M., et al. (2017). Single-cell
immune map of breast carcinoma reveals diverse
phenotypic states driven by the tumor
microenvironment. Preprint at bioRxiv. https://doi.
org/10.1101/221994.

Azizi, E., Carr, A.J., Plitas, G., Cornish, A.E.,
Konopacki, C., Prabhakaran, S., Nainys, J., Wu, K.,
Kiseliovas, V., Setty, M., et al. (2018). Single-cell
map of diverse immune phenotypes in the breast
tumor microenvironment. Cell 174, 1293–1308.e36.
https://doi.org/10.1016/j.cell.2018.05.060.

Chan, J.M., Quintanal-Villalonga, Á., Gao, V.R., Xie,
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