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The MEKK1 PHD ubiquitinates TAB1 to activate
MAPKs in response to cytokines
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Abstract

Unlike the other MAP3Ks, MEKK1 (encoded by Map3k1) contains a
PHD motif. To understand the role of this motif, we have created a
knockin mutant of mouse Map3k1 (Map3k1mPHD) with an inactive
PHD motif. Map3k1mPHD ES cells demonstrate that the MEKK1 PHD
controls p38 and JNK activation during TGF-b, EGF and microtubule
disruption signalling, but does not affect MAPK responses to
hyperosmotic stress. Protein microarray profiling identified the
adaptor TAB1 as a PHD substrate, and TGF-b- or EGF-stimulated
Map3k1mPHD ES cells exhibit defective non-canonical ubiquitination
of MEKK1 and TAB1. The MEKK1 PHD binds and mediates the
transfer of Lys63-linked poly-Ub, using the conjugating enzyme
UBE2N, onto TAB1 to regulate TAK1 and MAPK activation by TGF-b
and EGF. Both the MEKK1 PHD and TAB1 are critical for ES-cell
differentiation and tumourigenesis. Map3k1mPHD/+ mice exhibit
aberrant cardiac tissue, B-cell development, testis and T-cell
signalling.
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Introduction

Mitogen-activated protein kinases (MAPKs) are involved in numer-

ous cellular processes including cell death, proliferation, embryonic

stem (ES) cell differentiation, migration and lymphocyte develop-

ment (Chen et al, 2001; Xia & Karin, 2004; Karin & Gallagher, 2005;

Raman et al, 2007). MEK Kinase 1 (MEKK1) is a member of the

MAPK Kinase (MAP2K) Kinase (MAP3K) family that can regulate

c-Jun N-terminal kinase (JNK) and p38 by phosphorylation of their

upstream MAP2Ks (MAP2K4 and MAP2K7) activation loop (Weston

& Davis, 2002; Karin & Gallagher, 2005). Map3k1DKD mice, lacking

the MEKK1 kinase domain, have demonstrated the importance of

MEKK1 signalling in B-cell germinal centre formation, cell cycle

progression, antibody production, tumour necrosis factor (TNF)

receptor (TNFR)-dependent JNK activation and keratinocyte migra-

tion (Xia et al, 2000; Zhang et al, 2003; Gallagher et al, 2007). CD4+

T cells from Map3k1DKD mice display an elevated production of T

helper (Th) 2 cell cytokines, and mechanistically MEKK1 triggers

JNK1-dependent negative regulation of the Homologous to the E6-AP

Carboxyl Terminus (HECT) E3 Ubiquitin (Ub) ligase Itch (Gao et al,

2004; Gallagher et al, 2006). Ablation of the Map3k1 in ES cells

has revealed a role for MEKK1 in MAPK activation by epidermal

growth factor (EGF), LPA, cold shock, microtubule disruption and

hyperosmotic stress (Gibson et al, 1999; Yujiri et al, 1999).

Lys48-linked Ub chains can modify protein targets for degrada-

tion by the 26S proteasome, while non-canonical Ub conjugation

controls protein–protein interactions and modifies the biochemical

activity of the target protein (Hochstrasser, 1996; Kravtsova-Ivantsiv

& Ciechanover, 2012). Recent research has demonstrated that both

Lys63-linked and linear poly-Ub chains are critical for the control of

nuclear factor j-light-chain-enhancer of activated B cells (NF-jB)
and MAPK activation in cells (Matsuzawa et al, 2008; Karin &

Gallagher, 2009; Ikeda et al, 2010; Walczak et al, 2012). Conjuga-

tion of Ub to target proteins requires the concentrated activities of a

Ub-activating enzyme (E1), a Ub-conjugating enzyme (E2) and an

E3 Ub ligase (Gao & Karin, 2005; Kravtsova-Ivantsiv & Ciechanover,

2012).

In addition to functioning as a protein kinase, MEKK1, uniquely

among the MAP3Ks, exhibits E3 Ub ligase activity (Lu et al, 2002;

Witowsky & Johnson, 2003). This is achieved by the plant homeodo-

main (PHD), present within the MEKK1 amino-terminal regulatory

region, that closely resembles a really interesting new gene (RING)

finger (Lu & Hunter, 2009). Overexpression of MEKK1 in cell lines

was shown to negatively regulate ERK expression in response to

osmotic stress and c-Jun following EGF receptor (EGFR) signalling

(Lu et al, 2002; Xia et al, 2007). In addition, MEKK1 also undergoes

PHD-dependent auto-ubiquitination (Lu et al, 2002; Witowsky &

Johnson, 2003; Gallagher et al, 2007). Following T-cell receptor

(TCR) engagement, MEKK1 is modified by Lys63-linked poly-Ub
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and this correlates with p38 and JNK activation (Matsuzawa et al,

2008; Wang et al, 2008; Enzler et al, 2009). In addition, full-length

MEKK1 may also be targeted and cleaved by caspases in response to

some forms of cellular stress (Cardone et al, 1997).

Transforming growth factor-b (TGF-b) activated kinase 1 (TAK1,

encoded by Map3k7) was identified as a MAP3K that becomes

activated following a variety of mitogenic stimuli, including TGF-b
and bone morphogenetic protein (Yamaguchi et al, 1995). TAK1

interacts with and is activated by TAK1-binding proteins (TABs)

(Shibuya et al, 1996; Takaesu et al, 2000). TAB1 is distinct among

the TABs in containing a protein phosphatase 2C (PP2C)-like region

and can bind TRAF6, p38 and TAK1 (Shibuya et al, 1996; Ge et al,

2002; Kang et al, 2006). Along with protein–protein interactions

with TABs, non-canonical ubiquitination is a critical component in

TAK1 activation (Wang et al, 2001). TAB1 can activate TAK1 by

overexpression of its C-terminal 68 residues (Shibuya et al, 1996;

Ono et al, 2001). TAB2 and TAB3 can be recruited to Lys63-linked

poly-Ub chains by their zinc finger (ZnF) motifs (Kanayama et al,

2004). Genetic analysis has demonstrated that both TAK1 and TAB1

are critical for mammalian embryogenesis (Shim et al, 2005). MAPK

signalling from the CD40 cytokine receptor requires both MEKK1

and TAK1, though what interplay occurs between these MAP3Ks,

and why MEKK1, but not TAK1, contains a PHD motif remains to be

clarified (Matsuzawa et al, 2008).

To better assess the role of the PHD in MAPK signalling, we

have utilised gene targeting to create the Map3k1mPHD allele and

found that an intact MEKK1 PHD is necessary for p38 and JNK

activation by TGF-b and EGF in response to microtubule disruption

in ES cells. We also found that the MEKK1 PHD mediates the

Lys63-linked poly-ubiquitination of the adaptor TAB1 following

cytokine stimulation at key lysines, thereby controlling the interac-

tion between full-length TAB1 and TAK1, and activates TAK1, JNK

and p38. The MEKK1 PHD is also required for TAB1-dependent

ES-cell differentiation and tumour development in mice.

Map3k1mPHD/+ mice have cardiac fibrosis and muscle damage,

reduced B-cell development beyond the pro-B-cell stage, condensed

and fewer numbers of Leydig cells and reduced Itch activation in

T cells.

Results

Gene targeting of the PHD

To design a loss-of-function mutation within the MEKK1 PHD, the

mouse MEKK1 PHD amino acid sequence was analysed by Phyre2

software, and its structure was modelled upon the known structure

of the Deltex 2 RING E3 Ub ligase (Fig 1A) (Kelley & Sternberg,

2009). Sequence alignment of the RING motifs from MEKK1 (resi-

dues 437–490), TRAF6 (residues 69–107) and Deltex 2 (residues

407–470) revealed conserved cysteine and isoleucine residues at

positions 438 and 440, respectively, of MEKK1, within the RING

structure that binds E2 Ub-conjugating enzymes (UBEs) (Yin et al,

2009). We hypothesised that mutation of MEKK1 residues C438 and

I440 into alanine residues (the MEKK1 mPHD mutant) would

disrupt the function of the PHD as an E3 Ub ligase.

To test whether the MEKK1 mPHD retains E3 Ub ligase function,

we transfected HEK 293 cells with full-length MEKK1 PHD and

mPHD. The experiment demonstrated that MEKK1 auto-ubiquitination

by the PHD was significantly reduced relative to the WT motif

(Fig 1B). Relative MEKK1 phosphorylation at residues S67 and

T1381 (which both reflect MEKK1 activation) was similar between

MEKK1 WT and mPHD, indicating that the PHD motif is not

involved in the mechanism of overexpressed MEKK1 activation and

auto-phosphorylation, as previously reported (Supplementary Fig

S1A) (Gallagher et al, 2002; Lu et al, 2002; Matsuzawa et al, 2008).

To understand the mechanism by which MEKK1 acts as an E3 Ub

ligase, we performed in vitro ubiquitination assays testing E2 conju-

gating enzymes that can act in concert with UBE1 and the MEKK1

PHD (Supplementary Fig S1B). The MEKK1 PHD underwent strong

auto-ubiquitination in the presence of UBE2D2, UBE2D3 or UBE2N:

UBE2V1 (Supplementary Fig S1B) and predominantly formed Lys63-

linked poly-Ub. Conversely, a relatively small amount of linear Ub

chains were generated in ubiquitination assays with the MEKK1

PHD (Supplementary Fig S1C). Analysis of deubiquitinating

enzymes (DUBs) (Reyes-Turcu et al, 2009) that can act as deubiqui-

tinating peptidases for auto-ubiquitinated MEKK1 identified

Ub-specific proteases (USPs) 2, 7 and 8 (Supplementary Fig S1D).

Yeast two-hybrid analysis demonstrated that residues 1–719 of the

MEKK1 amino-terminal regulatory domain bind to UBE2N and

that this interaction is abolished by the mPHD mutation, which is

located within this fragment (Supplementary Fig S1E).

To examine the physiological consequences of the MEKK1 mPHD

mutation in mammalian biology, we generated Map3k1mPHD knockin

mice, utilising a targeting vector containing a loxP-flanked neomycin

resistance cassette and a mutated Map3k1 exon 7 to insert the

mPHD mutation into the Map3k1 locus on chromosome 13 (Fig 1C).

Map3k1mPHD ES cell clones were genotyped by Southern blotting

and genomic PCR for the in-frame insertion of the mPHD mutation

into mouse chromosome 13 (Fig 1D). Map3k1mPHD ES cells were

found to express full-length MEKK1 at the same amount as the WT

protein (Fig 1E).

It was reported that overexpression of the MEKK1 PHD motif can

negatively regulate ERK2 expression following hyperosmotic stress

(Lu et al, 2002). To test MEKK1-dependent negative regulation of

ERK2, we treated Map3k1mPHD ES cells with sorbitol over 8 h

(Fig 1F). ERK stability was unaltered in Map3k1mPHD relative to WT

ES cells (Fig 1F), and the protein stability of p38 and JNK was also

unchanged in Map3k1mPHD ES cells (Fig 1F).

Impaired TGF-b, EGF and nocodazole-induced JNK and p38
activation in Map3k1mPHD ES cells

We next tested whether MAPK activation was altered between

Map3k1mPHD and WT ES cells stimulated with TGF-b, EGF, hyper-
osmotic stress and the microtubule-disrupting agent nocodazole

(Fig 2A–D). Microarray profiling of pluripotent Map3k1mPHD and WT

ES cells revealed normal expression of TGF-b receptors (TGFbRs)
(Supplementary Fig S7A and B and Supplementary Table S1).

Map3k1mPHD ES cells exhibited impaired JNK and p38, but unaltered

ERK, activation after TGF-b stimulation (Fig 2A). SMAD expression

and phosphorylation, however, were unaffected in Map3k1mPHD

relative to WT ES cells (Supplementary Fig S2A). Similarly, micro-

array profiling revealed normal expression of EGF family receptors

(EGFRs) (Supplementary Table S1), but Map3k1mPHD ES cells

have significantly impaired JNK and p38 activation after EGF
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stimulation (Fig 2B). ERK, JNK and p38 activation were all unal-

tered in Map3k1mPHD ES cells treated with sorbitol to induce hyper-

osmotic stress (Fig 2C). We did note, however, that full-length

MEKK1 protein expression was unstable following treatment with

sorbitol, with its expression significantly reduced after 30 min, and

after several hours, MEKK1 expression was no longer detected

(Supplementary Fig S2B). Although the kinetics of MEKK1 degradation

were altered in Map3k1mPHD relative to WT cells, mutation of the

MEKK1 PHD was insufficient to prevent its degradation after a few

hours (Supplementary Fig S2B). Map3k1mPHD ES cells show

impaired ERK, JNK and p38 activation after incubation with noco-

dazole (Fig 2D). From these experiments, we can propose a new

model whereby the MEKK1 PHD controls downstream MAPK activa-

tion following cytokine stimulation and microtubule disruption, but

* *MEKK1   MCPICLLGMLDEESLT-------------VCEDGCRNKLHHHCMSIWAEECRRNREPLICPLCRSKW
TRAF6   ECPICLMALREAVQTP------------------CGHRFCKACIIKSIR-----DAGHKCPV-----
Deltex2 DCIICMEKLAVASGYSDMTDSKALGPMVVGRLTKCSHAFHLLCLLAMYCN-GNKDGSLQCPSCKT--
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Figure 1. Gene targeting and analysis of the MEKK1 PHD.

A Molecular modelling of MEKK1 PHD. The mouse MEKK1 PHD sequence (residues 437–490) was submitted to the Phyre2 server to produce the WT MEKK1 PHD model.
The side chain of residues 438 and 440 was then manually truncated to an alanine to create the mutant MEKK1 PHD model. As a comparison the structure of the
mouse Deltex 2 RING (residues 407–470) is shown. The amino acid sequence alignment compares MEKK1 PHD, TRAF6 RING and Deltex 2 RING, with the conserved
residues corresponding to MEKK1 residues 438 and 440 indicated by asterisks.

B The MEKK1 mPHD (C438A, I440A) mutant is unable to undergo auto-ubiquitination. HEK 293 cells were transiently transfected with WT MEKK1-Myc or MEKK1 C438A,
I440A-Myc and Ub-HA as indicated. After 48 h the cells were lysed and analysed by immunoblotting (IB) with anti-HA antibody. MEKK1 phosphorylation was
detected with anti-active MEKK1 (phospho T1381) and anti-phospho S67 antibodies. Anti-Myc antibody was used to immunoprecipitate (IP) MEKK1 or to detect total
MEKK1. Anti-tubulin antibody was used as a loading control.

C Strategy for generating Map3k1mPHD knockin mice.
D Targeted ES cells were genotyped by Southern blotting to confirm the in-frame insertion of the mPHD mutation into Map3k1 exon 7.
E MEKK1 expression is similar between WT and Map3k1mPHD ES cell clones. ES cell clones were lysed and analysed by IB using the indicated antibodies.
F MAPK stability is not critically dependent on the PHD. ES cell clones were left unstimulated or stimulated for up to 8 h with 500 mM sorbitol in the presence or

absence of 25 lM MG132. Lysates were analysed by IB with the indicated antibodies.

Data information: Results are representative of three independent experiments.
Source data are available online for this figure.

ª 2014 The Authors The EMBO Journal Vol 33 | No 21 | 2014

Nikolaos Charlaftis et al Analysis of MEKK1 PHD function The EMBO Journal

2583



is not critical for MAPK activation in response to hyperosmotic stress

(Supplementary Fig S2C).

Identification of novel PHD substrates

Since the defects present in Map3k1mPHD ES cells demonstrate that

the MEKK1 PHD is not essential for MAPK stability, but is important

for JNK and p38 activation, we used protein microarray profiling of

9,400 full-length human proteins in ubiquitination reactions to iden-

tify new MEKK1 PHD substrates (Fig 3A and B). Bioinformatics

analysis of the protein array data revealed 55 proteins as potential

substrates for a ubiquitination reaction comprising UBE2N:UBE2V1

(Supplementary Table S2), and 82 proteins as potential substrates

for a ubiquitination reaction containing UBE2N:UBE2V1 and the

MEKK1 PHD (Supplementary Table S3). To compare the results

from the two array screens, a heat map of the data sets was created

using GeneSpring software (Fig 3C).

Pathway analysis of the hits from the protein array screen identi-

fied TAB1 as a critical component of the TGF-b signal transduction

pathway (Supplementary Fig S3A), where we identified defective

MAPK signalling in Map3k1mPHD ES cells (Fig 2A). In addition to

TAB1, a number of the protein array hits, including TNF receptor-

associated factor 2 (TRAF2), TNFAIP3 interacting protein 1 (TNIP1),

TNFAIP3 interacting protein 2 (TNIP2) and Signal-Transducing

Adaptor Molecule 1 (STAM1), are also classified as signal transduc-

tion adaptors and were selected along with TAB1 as possible PHD

substrates that might mediate MEKK1 PHD-dependent TGF-b or EGF

MAPK activation in ES cells, and to validate our Ub substrate

screening in orthogonal assays.

Overexpressed TAB1, TRAF2, TNIP1, TNIP2 and STAM1 proteins

were then purified from HEK 293 cells and examined in ubiquitination

assays with UBE1, UBE2N:UBE2V1 and MEKK1 PHD or MEKK1

mPHD. In all cases, enhanced poly-Ub modification was detected

when the MEKK1 PHD was used as an E3 Ub ligase, whereas the
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Figure 2. Map3k1mPHD ES cells exhibit defective JNK and p38 activation following TGF-b, EGF and nocodazole stimulation.

A–D WT and Map3k1mPHD ES cells were kept on low serum and stimulated with (A) TGF-b (10 ng/ml), (B) EGF (100 ng/ml), (C) sorbitol (500 mM) or (D) nocodazole
(0.5 lg/ml) for 10, 30 and 60 min or left unstimulated. Cells were lysed and analysed by IB using the indicated antibodies.

Data information: Results are representative of three independent experiments.
Source data are available online for this figure.
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MEKK1 mPHD mutant was unable to enhance the poly-Ub of any of

the proteins tested, confirming the protein array screening by an

orthogonal assay approach (Supplementary Fig S3B–F). We then

examined whether MEKK1 acts as an E3 Ub ligase towards these

proteins in cells by cotransfection of TAB1, TNIP1, TNIP2, TRAF2 and

STAM1 with MEKK1 and HA-Ub into HEK 293 cells. Immunoprecipita-

tion and Western analysis indicated that poly-Ub of all five proteins

was strongly enhanced by coexpression with MEKK1 (Fig 3D–H).

PHD-dependent TAB1 Lys63-linked Ub is critical for EGF and
TGF-b signalling

We next analysed the MEKK1 PHD as an E3 Ub ligase in EGF

and TGF-b signalling. Pre-treatment of TGF-b-stimulated ES cells

with small molecule inhibitors of TGFbR, UBE2N or TAK1 inhib-

ited JNK and p38 activation (Fig 4A). Similarly, pre-treatment of

EGF-stimulated ES cells with inhibitors of EGFR, UBE2N or TAK1

inhibited EGF-mediated JNK and p38 activation (Fig 4B). Next,

WT and Map3k1mPHD ES cells were stimulated with TGF-b and

endogenous MEKK1, TRAF2, TAB1, TNIP1, TNIP2 and STAM1

were immunoprecipitated and then immunoblotted with a Lys63-

linked Ub antibody. While we detected Lys63-linked Ub upon

MEKK1 and TAB1 in TGF-b stimulated WT ES cells, no Lys63-

linked Ub was detected upon TRAF2, TNIP1, TNIP2 and STAM1

(Fig 4C–F and unpublished observations). The Lys63-linked Ub of

MEKK1 and TAB1 was strongly reduced in Map3k1mPHD ES cells

(Fig 4C and F). An intact MEKK1 PHD is critical for the Lys63-

linked ubiquitination of TAB1 (Supplementary Fig S4A), and
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Figure 3. Protein array screening for MEKK1 PHD substrates.

A Schematic illustrating the protein array screen for MEKK1 PHD substrates using UBE1, UBE2N:UBE2V1 and MEKK1 PHD in a ubiquitination assay.
B Ubiquitination assays were performed comprising UBE1, UBE2N:UBE2V1 and MEKK1 PHD or UBE1 and UBE2N:UBE2V1 in the presence of biotin-Ub and profiled

using Protoarray Human Protein Microarrays v.5.
C A heat map comparing hits between UBE1 + UBE2N:UBE2V1 and UBE1 + UBE2N:UBE2V1 + MEKK1 PHD reactions.
D–H Ubiquitination of (D) TAB1, (E) TNIP1, (F) TNIP2, (G) TRAF2, and (H) STAM1 by MEKK1. HEK 293 cells were transfected as indicated, lysates prepared and analysed by

IP and IB with the indicated antibodies.

Data information: Results are representative of three independent experiments.
Source data are available online for this figure.
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MEKK1 and TAB1 coimmunoprecipitated when coexpressed in HEK

293 cells (Supplementary Fig S4B).

To understand the role TAB1 plays in EGF and TGF-b signal-

ling in ES cells, we generated Tab1�/� ES cells, utilising a target-

ing vector containing a loxP-flanked neomycin resistance cassette

and a mutated Tab1 exon 1 to insert a stop codon and disrupt the

Tab1 coding sequence on chromosome 15 (Supplementary Fig S4C

and D). Tab1�/� ES cells displayed defective TAK1 and MAPK

activation following TGF-b or EGF stimulation (Fig 4G and

Supplementary Fig S4E), indicating for the first time that TAB1 is

critical for EGF signalling. To map MEKK1-dependent ubiquitina-

tion sites within TAB1, we utilised a sequential series of TAB1

deletion mutants and found that TAB1 residues 1–373 were

strongly ubiquitinated, whereas 1–313 were weakly ubiquitinated

and 1–273 were barely ubiquitinated (Fig 4H and Supplementary

Fig S4F). Subsequent mutation of lysines within TAB1 residues

273–373, which contain part of the PP2C-like region of TAB1, at

residues K294A, K319A, K335A and K350A blocked the MEKK1-

mediated ubiquitination of TAB1, as well as the binding of TAB1

to TAK1 (Supplementary Fig S4G and H). Add-back of WT, but not
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Figure 4. MEKK1 PHD dependence of TGF-b-stimulated TAK1 and MAPK signalling.

A WT ES cells were rested in low serum conditions and stimulated for 10 min with TGF-b (10 ng/ml) in the presence or absence of DMSO (control), SB431542,
NSC697923, (5Z)-7-Oxozeaenol (Oxozeaenol) or left unstimulated. Lysates were made and analysed by IB using the indicated antibodies.

B WT ES cells were rested in low serum and stimulated for 10 min with EGF in the presence or absence of DMSO (control), AG-490, NSC697923, (5Z)-7-Oxozeaenol
(Oxozeaenol) or left unstimulated. Lysates were prepared and analysed as above.

C–F WT or Map3k1mPHD ES cells kept in low serum were stimulated or not for 10 min with TGF-b (10 ng/ml). Lysates were prepared and IP and IB performed using the
indicated antibodies (* indicates a non-specific band).

G WT or Tab1�/� ES cells were analysed as above by the indicated antibodies before and after TGF-b (10 ng/ml) stimulation.
H HEK 293 cells were transfected with the indicated constructs and lysates made. IP and IB were performed using the indicated antibodies.
I Tab1�/� ES cells were transfected with TAB1 or mTAB1 as indicated, rested in low serum and stimulated or not for 10 min with TGF-b (10 ng/ml). Lysates were

made and analysed as above.

Data information: Results are representative of three experiments.
Source data are available online for this figure.
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mTAB1 (K294A, K319A, K335A and K350A), into Tab1�/� ES cells

restored TAK1 and MAPK activation by TGF-b (Fig 4I). TAB1

immunoprecipitates with endogenous MEKK1 in ES cells stimu-

lated by TGF-b (Supplementary Fig S4I). To determine whether

endogenous TAK1 is activated in a manner dependent upon the

MEKK1 PHD, Map3k1mPHD ES cells were stimulated with TGF-b
and showed defective TAK1 phosphorylation relative to WT cells

(Supplementary Fig S4J).

The MEKK1:TAB1 signalling complex recruits TAB2 by its
ZnF motif

Although not a MEKK1 PHD motif substrate (Fig 3), TAB2 can

bind poly-Ub via its ZnF motif (Kanayama et al, 2004). Thus, we

tested whether TAB2 binds TAB1 coexpressed with MEKK1 by its

ZnF motif. TAB2, but not a TAB2 mutant lacking the ZnF motif,

purified with TAB1 coexpressed with, and also ubiquitinated by,

MEKK1 (Fig 5A). TAK1 activation by TGF-b is critically regulated

by UBE2N and TGFbR activity (Fig 5B). To identify TAK1

activation in vitro by the MEKK1 PHD:TAB1 complex, we utilised

a two-step approach comprising a ubiquitination assay followed

by a kinase assay (Supplementary Fig S5A). The MEKK1 PHD,

but not MEKK1 mPHD, was able to ubiquitinate TAB1 and

Ub-modified TAB1 potentiated TAK1 activation (Supplementary

Fig S5B). TAB1, but not mTAB1, was ubiquitinated by MEKK1

and enhanced TAK1 activation by TAB1 (Supplementary Fig S5C).

The MEKK1 PHD ubiquitinates TAB1 with Lys63-linked Ub to

potentiate TAK1 activation, and TAB2 can be recruited to this

signalling complex in a manner dependent upon its ZnF motif

(Fig 5C).

Pluripotent Map3k1mPHD ES cells exhibit a defective gene
expression signature

To identify intrinsic gene expression defects within pluripotent

Map3k1mPHD ES cells, WT and Map3k1mPHD ES cell cDNA were

analysed using GeneChip Mouse Gene 1.0 ST arrays. A heat

map of the gene expression profiles was generated with
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Figure 5. TAB2 interacts with TAB1 ubiquitinated by the MEKK1 PHD motif.

A HEK 293 cells were transiently transfected as indicated along with HA-Ub. 48 h later cells were lysed and analysed by IP and IB using the indicated antibodies.
B WT ES cells were rested in low serum conditions and stimulated for 10 min with TGF-b (10 ng/ml) in the presence or absence of DMSO (control), SB431542,

NSC697923 or left unstimulated. Lysates were made and analysed by IB using the indicated antibodies.
C Schematic diagram showing the formation of the MEKK1, TAK1 and TABs signalling complex.

Source data are available online for this figure.
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GeneSpring software (Fig 6A). 56 genes were found to be down-

regulated, and 12 genes were upregulated more than twofold in

Map3k1mPHD cells compared to WT ES cells grown in the

presence of serum and LIF (Supplementary Fig S6A and

Supplementary Table S1). A few of these genes, namely Acta1,

Ddx3Y, Dusp4, Dusp14, Nnat, Otx2, Tec, TGFB2, Nes, Nuak1,

Runx1 and Tagin, were selected, and their mRNA expression

levels confirmed by orthogonal real-time PCR profiling (Fig 6B).

Bioinformatics analysis of these hits revealed that they belong to

22 different classes (including cytoskeletal proteins, signalling

molecules, cytokines and transcription factors) and are impli-

cated in seven different molecular functions, including the TGF-b
signalling pathway (Supplementary Fig S6B). Importantly, the

pluripotency genes Nanog and Oct4 were unaltered between WT,

Tab1�/� and Map3k1mPHD ES cells growing in serum and LIF,

indicating that the MEKK1 PHD is not critical for maintaining

ES cells in a pluripotent state (Supplementary Fig S6C). WT,

Tab1�/� and Map3k1mPHD ES cells had significantly reduced

expression of Nanog and Oct4 following 9 days of culture under

conditions that induce ES cell differentiation (Supplementary

Fig S6C). There were no significant differences in the prolifera-

tion of WT, Tab1�/� and Map3k1mPHD ES cells (Supplementary

Fig S6D).

Bioinformatics analysis demonstrated that there is no significant

difference in the expression of TGFbRs and EGFRs between WT and

Map3k1mPHD ES cells (Supplementary Fig S7A). Orthogonal real-

time PCR analysis demonstrated that there was no gene expression

difference in TGFbR expression between WT, Tab1�/� and

Map3k1mPHD ES cells (Supplementary Fig S7B). When grown in the

presence of serum and LIF, there is a small reduction in the amount

of phospho-MEKK1 in Tab1�/� and Map3k1mPHD ES cells (Supple-

mentary Fig S7C).
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Figure 6. Altered gene expression in Map3k1mPHD ES cells.

A Heat map showing differential gene expression between pluripotent WT and Map3k1mPHD ES cells.
B Confirmation of selected microarray hits by real-time PCR. ( ) WT and ( ) Map3k1mPHD ES cells RNAs were analysed by real-time PCR. The average relative expression

(� SEM) of the indicated mRNA from three independent experiments was statistically analysed, where appropriate, by two-tailed Student’s t-test (*P ≤ 0.05;
**P ≤ 0.01; ***P ≤ 0.001).

Source data are available online for this figure.
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The MEKK1 PHD and TAB1 signalling are critical for
ES-cell differentiation

We performed embryoid body (EB) formation assays with WT,

Tab1�/� and Map3k1mPHD ES cells to determine whether the

MEKK1 PHD motif and TAB1 control ES-cell differentiation

(Doetschman et al, 1985; Dang et al, 2002; Wu et al, 2010). EBs

were formed by WT, Map3k1mPHD and Tab1�/� ES cells, and also

by ES cells treated with p38 or TGFbR inhibitors (Fig 7A and

unpublished observations). By contrast, long-term treatment of

WT ES cells with UBE2N, EGFR or JNK inhibitors reduced ES-cell

viability, preventing them from forming EBs in long-term culture

(unpublished observations). To assess whether Map3k1mPHD and

Tab1�/� ES cells exhibit defective ES-cell differentiation, days 6

and 9 EBs were analysed by real-time PCR analysis using neuroec-

toderm (Nestin, Pax6 and Mash1), endoderm (Mixl1, Gata6 and

Gata4) and mesoderm (Brachyury) markers (Fig 7B–D and Supple-

mentary Fig S8A–C). On day 6 post-differentiation, Map3k1mPHD

and Tab1�/� ES cells displayed significantly elevated expression of

the neuroectoderm gene markers Nestin, Pax6 and Mash1 (Fig 7B),

while, by contrast, at day 9, the mesoderm gene marker Brachyury

was significantly reduced in both Map3k1mPHD and Tab1�/� relative

to WT ES cells (Supplementary Fig S8C). Chemical inhibition of

p38 or TGFbR also elevated expression of the neuroectoderm gene

markers at day 6 and reduced day 9 Brachyury expression (Fig 7E

and Supplementary Fig S8D).

To assess whether changes in ES cell neuroectoderm and meso-

derm gene markers were due to altered TAB1 ubiquitination,

Tab1�/� ES cells were transfected with TAB1 or mTAB1 (Supple-

mentary Fig S8E) and EB assays performed (Fig 7F, Supplementary

Figs S8F and S9). Tab1�/� ES cells reconstituted with TAB1, but

not mTAB1, expressed similar levels of neuroectoderm and

mesoderm markers as WT ES cells (Fig 7F, Supplementary Figs

S8F and S9).

Analysis of Map3k1mPHD and Tab1�/� ES-cell tumourigenicity

We tested whether transplanted Map3k1mPHD and Tab1�/� ES cells,

when injected into immunodeficient NOD.CB17-Prkdcscid/lcrCrl reci-

pient mice, exhibited defective teratoma formation. While WT trans-

planted ES cells were able to form large tumours within 5 weeks of

transplantation, Map3k1mPHD or Tab1�/� ES cells produced tumours

of much smaller size and mass (Fig 8A–C). Add-back of TAB1, but

not mTAB1, into Tab1�/� ES cells restored tumor development to

WT levels (Fig 8D). Histological analysis of Map3k1mPHD and

Tab1�/� ES-cell tumours revealed a deficit in the formation of cartilage-

like tissues (Fig 8E).

Analysis of the Map3k1mPHD mutation in mice

Map3k1mPHD mice are non-viable due to early embryonic lethality,

so we analysed Map3k1mPHD/+ heterozygote mice to understand the

developmental function of the MEKK1 PHD motif. Map3k1mPHD/+

mice have significantly enlarged testes and hearts (Fig 9A and B).

Since Mekk1�/� mice exhibit cardiac abnormalities (Minamino et al,

1999, 2002), we analysed cardiac tissue from Map3k1mPHD/+ mice.

H&E staining revealed extensive fibrosis and cardiac muscle damage

relative to WT mice, and cardiac enlargement (Fig 9C). Since

Map3k1DKD mice have minor abnormalities in the testis, we analy-

sed testis morphology and spermatogenesis of male Map3k1mPHD/+

mice (Warr et al, 2011). H&E staining showed condensed and

reduced numbers of Leydig cells (Fig 9C).

Since Map3k1DKD mice have defects in B- and T-cell signalling

(Gao et al, 2004; Gallagher et al, 2007), we analysed lymphocytes

from Map3k1mPHD/+ mice (Fig 9D and E, and Supplementary Fig

S10A). Bone marrow cells from Map3k1mPHD/+ mice were stained

with antibodies for mature B-cell markers (B220 and IgM), pro-B-

cell markers (IL-7R and CD34), pre-B-cell markers (CD45 and CD38)

and immature B-cell markers (CD45 and IgM). Map3k1mPHD/+ mice

exhibited reduced numbers of pre-B-cells, immature B cells and

mature B cells (Fig 9D and Supplementary Fig S10A), in contrast to

Map3k1+/DKD or Map3k1DKD mice, which were similar in numbers

to WT (Fig 9E). Thymocytes were analysed for the T-cell markers

CD4 and CD8 to determine whether the MEKK1 PHD domain is also

essential for T-cell development. No significant differences between

the numbers of WT, Map3k1+/DKD, Map3k1DKD and Map3k1mPHD/+

single-positive or double-positive thymocytes or total numbers of

mature T cells were observed, and the size of the thymus is normal

in Map3k1mPHD/+ mice (Fig 9E and Supplementary Fig S10B and C).

To analyse whether MEKK1 might be important for MEKK1-dependent

regulation of HECT E3 Ub ligase Itch (Gallagher et al, 2006; Enzler

et al, 2009), purified T cells from WT and Map3k1mPHD/+ mice

were costimulated by anti-CD3 and anti-CD28 antibodies. Itch phos-

phorylation was significantly reduced in Map3k1mPHD/+ relative to

WT T cells (Fig 9F).

Discussion

We report that TAB1 is a substrate for non-canonical ubiquitination

mediated by the MEKK1 PHD and that this modification enhances

MAPK activation by EGF and TGF-b. The kinase activity of MEKK1

is well documented for its role in the regulation of MAP2Ks, and

detailed analysis of Map3k1DKD mice has demonstrated important

roles for MEKK1 in lymphocyte effector responses, keratinocyte

migration and eyelid fusion (Xia et al, 2000; Zhang et al, 2003; Gao

et al, 2004; Gallagher et al, 2007). Consistent with previous reports,

mutation of the MEKK1 PHD reduced its auto-ubiquitination, but

had comparatively little impact upon MEKK1 kinase activity (Lu

et al, 2002; Witowsky & Johnson, 2003). Yet, Map3k1mPHD ES cells

were defective in MAPK activation in response to TGF-b, EGF and

microtubule disruption by nocodazole. Thus, the MEKK1 PHD has

important signalling functions that are not identical to those of the

kinase domain.

Protein microarray screening identified several novel targets for

the E3 Ub ligase activity of the MEKK1 PHD. From these targets,

we focused on TAB1, since it is a critical adaptor in the TGF-b
signalling pathway, and confirmed it as a MEKK1 PHD target

protein that was ubiquitinated in WT, but not Map3k1mPHD, cells

following TGF-b or EGF stimulation. TAB2 and TAB3 were not

substrates for the MEKK1 PHD motif in our protein array analysis.

Analysis of Tab1�/� ES cells revealed that TAB1 was required for

EGF- and TGF-b-stimulated TAK1 and MAPK activation. Mapping

of the TAB1 residues subjected to ubiquitination by the MEKK1

PHD motif identified TAB1 lysines 294, 319, 335 and 350 whose

replacement with alanines abolished TAB1 ubiquitination. TAB1 is
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known to bind and activate TAK1 or it may signal independently

of TAK1 by binding p38 MAPK (Shibuya et al, 1996; Wang et al,

2001; Ge et al, 2002; Kang et al, 2006). MEKK1 binds and ubiquiti-

nates TAB1 via its PHD domain to enhance the molecular interac-

tion between TAB1 and TAK1, and the K294A, K319A, K335A and

K350A substitutions also diminished the binding of TAB1 to TAK1

and inhibited TAK1 phosphorylation after EGF and TGF-b stimula-

tion. TAB2, although not a MEKK1 PHD substrate, can be recruited

to the TAB1:MEKK1 complex, and this interaction is dependent

upon the presence of an intact Ub binding ZnF motif within TAB2

(Kanayama et al, 2004). Recruitment of TAB2 to the MEKK1:TAB1

signalling complex may facilitate further downstream signalling.

Our results reveal that TAB1 ubiquitination is the major conduit

for the signalling function of the MEKK1 PHD from TGFbRs. The
interdependency between the MEKK1 PHD and TAK1 also explains

why either genetic disruption of the MEKK1 PHD or chemical inhi-

bition of TAK1 kinase activity leads to loss of MAPK activation

following EGF or TGF-b stimulation of ES cells. Our results suggest

that UBE2N is critical for TAK1 and MAPK activation in response

to TGF-b. We also suggest that TRAF2 is not critical for TGF-b
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Figure 7. Map3k1mPHD ES cells exhibit an altered differentiation pattern.
WT, Map3k1mPHD and Tab1�/� ES cells were plated under differentiation conditions without LIF for 6 or 9 days.

A Pictures of EBs were taken using an Olympus light microscope after 9 days of differentiation and analysed using Image Pro-Software at 40× magnification. Scale
bar is 250 lm.

B–D ( ) WT, ( ) Map3k1mPHD and ( ) Tab1�/� ES cells were plated under differentiation conditions for 6 days, and their RNAs analysed by real-time PCR with primers
specific for (B) neuroectoderm, (C) endoderm and (D) mesoderm genes.

E WT ES cells were differentiated for 6 days in the presence of ( ) DMSO, ( ) SB203580 or ( ) SB431542, and their RNAs analysed by real-time PCR with primers
specific for neuroectoderm genes.

F Tab1�/� ES cells were transfected with ( ) CMV, ( ) CMV TAB1 or ( ) CMV mTAB1 and used alongside ( ) WT ES cells in differentiation assays for 6 days, mRNA
was extracted and their RNAs analysed by real-time PCR with primers specific for the neuroectoderm gene Mash1.

Data information: The average relative expression (� SEM) of the indicated gene mRNA from three independent experiments was statistically analysed, where
appropriate, by two-tailed Student’s t-test (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001).
Source data are available online for this figure.
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signalling, unlike its important roles in TNF and CD40 signal

transduction (Karin & Gallagher, 2009). Indeed, TRAF6, but not

TRAF2, is critical for TGFbR-dependent MAPK activation (Yamashita

et al, 2008).

Interestingly, the MEKK1 PHD and TAB1 repress neuroectoderm

marker expression and enhance long-term mesoderm gene marker

expression as ES cells differentiate into EBs. p38a is known to play

a role in ES-cell neuroectoderm and mesoderm differentiation

(Gaur et al, 2010; Barruet et al, 2011). Similarly, Jnk1 and Jnk2

double deficiency in ES cells reveals a role for the JNK MAPKs in

promoting ES-cell differentiation (Xu & Davis, 2010). To date, no

compound Jnk and p38a ES-cell mutations have been reported that

would mimic the effects of the MEKK1 PHD or TAB1 ablation.

Transplantation of Tab1�/� or Map3k1mPHD ES cells into

NOD.CB17-Prkdcscid/lcrCrl mice results in tumours of altered tissue

composition, reduced size and mass. Importantly, reintroduction

of TAB1, but not lysine mutated TAB1, into Tab1�/� ES cells was

able to restore normal ES-cell differentiation and tumour forma-

tion, indicating that the TAB1 lysines ubiquitinated by the MEKK1

PHD are critical for its function in ES-cell differentiation and

tumour formation.

The analysis of Map3k1mPHD mice has been complicated by

their early embryonic lethality, which is a more severe phenotype

than the partial lethality observed in Map3k1DKD mice (Bonnesen

et al, 2005). Alterations in the regulation of the Ub-proteasome

system in combination with aberrant MAPK activation in ES cells

provide an explanation for this more severe phenotype (Lu et al,

2002). However, Map3k1mPHD/+ mice are viable, and their analy-

sis revealed defects in B-cell development, TCR signal trans-

duction, cardiac tissue and testis development. These results

reinforce the critical importance of the MEKK1 PHD in mamma-

lian biology.
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Figure 8. Regulation of ES-cell tumourigenesis by the MEKK1 PHD.

A Analysis of WT, Map3k1mPHD and Tab1�/� ES-cell teratoma formation in NOD.CB17-Prkdcscid/lcrCrl recipient mice.
B Mass (g) of ( ) WT, ( ) Map3k1mPHD and ( ) Tab1�/� tumours formed in the above mouse strain 5 weeks post-transplantation. The average mass (� SEM) of

tumours from 3 independent experiments was statistically analysed, where appropriate, by two-tailed Student’s t-test (**P ≤ 0.01; ***P ≤ 0.001).
C The average size (� SEM) of ( ) WT, ( ) Map3k1mPHD and ( ) Tab1�/� tumours from 3 independent experiments was statistically analysed, where appropriate, by

two-tailed Student’s t-test (**P ≤ 0.01).
D Tab1�/� ES cells were transfected with ( ) CMV, ( ) CMV TAB1 or ( ) CMV mTAB1 expression vectors and their tumourigenic potential was analysed as above.

Average results (SEM) from three independent experiments were statistically analysed by two-tailed Student’s t-test (**P ≤ 0.01).
E Analysis of WT, Map3k1mPHD and Tab1�/� ES-cell teratomas. Tumours were extracted and analysed by H&E staining (ND indicates tissue not detected). Pictures were

taken using an Olympus light microscope, and pictures were analysed using Image Pro-Software at 40× magnification. Scale bar is 70 lm.

Data information: Results are representative of three independent experiments.
Source data are available online for this figure.
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Materials and Methods

ES cell gene targeting and mice

Map3k1 kinase-deficient mice (Map3k1DKD) were generated as previ-

ously described (Gao et al, 2004). To createMap3k1mPHD gene knockin

mice, a targeting vector containing a loxP-flanked neomycin resistance

cassette and a mutated exon 7 was inserted into the Map3k1 locus on

chromosome 13. Targeted Map3k1mPHD/+ and Map3k1mPHD ES cells

were generated according to standard procedures (Gossler et al, 1986)

and genotyped by Southern blotting or genomic PCR (Ledermann,

2000; Xia et al, 2000). Four independently generated Map3k1mPHD

D

E

Map3k1+/ KD Map3k1 KD Map3k1mPHD/+WT

B
22

0

WT Map3k1mPHD/+

C
D

8

CD4

WT

0 10 30  60   0  10  30  60

Map3k1mPHD/+

Time (min)

IB: pItch

IB: Itch

IB: Tubulin

H
ea

rt
Te

st
is

WT Map3k1mPHD/+

WT Map3k1mPHD/+

A B C

F

0 

0.05 

0.1 

0.15 

M
as

s 
(g

)

Testis
*

0

0.2

0.4

0.6

0.8

M
as

s 
(g

)

Heart
*

IgM

Map3k1mPHD/+WT

H
ea

rt

WT Map3k1mPHD/+

Te
st

is

Figure 9. Analysis of Map3k1mPHD/+ mice.

A Testis and heart were extracted from WT and Map3k1mPHD/+ mice.
B Quantitation of the mass (g) of testis and heart tissues from ( ) WT and ( ) Map3k1mPHD/+ mice. The average mass (� SEM) of testis and heart from 3 independent

experiments was statistically analysed, where appropriate, by two-tailed Student’s t-test (*P ≤ 0.05).
C Testis and heart were extracted from WT and Map3k1mPHD/+ mice. H&E-stained cardiac and testis tissue sections were prepared from WT and Map3k1mPHD/+ mice.

Pictures were taken using an Olympus light microscope, and pictures were analysed using Image Pro-Software at 40× magnification. Scale bar is 50 lm. Arrows
indicate Leydig cells in the testis.

D Bone marrow was harvested from WT, Map3k1mPHD/+, Map3k1+/DKD and Map3k1DKD mice. Cells were stained with antibodies for the B-cell markers B220 and IgM and
analysed by FACS.

E Splenocytes from WT and Map3k1mPHD/+ mice were stained with antibodies for the T-cell markers CD4 and CD8 and analysed by FACS.
F T cells were purified from WT and Map3k1mPHD/+ mice and costimulated with anti-CD3 and anti-CD28 antibodies for 10, 30 and 60 min or left unstimulated. Lysates

were made, and IB was performed using the indicated antibodies.

Data information: Results are representative of three experiments.
Source data are available online for this figure.
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knockin ES cell clones were injected into C57BL/6 blastocysts and the

resulting transgenics were genotyped by PCR (Zhang et al, 2003). To

create Tab1�/� gene knockout ES cells, a targeting vector containing a

loxP-flanked neomycin resistance cassette and a mutated exon 1 was

inserted in the Tab1 locus on chromosome 15. Targeted ES cells were

generated according to standard procedures (Gossler et al, 1986) and

genotyped by Southern blotting or genomic PCR (Ledermann, 2000).

NOD.CB17-Prkdcscid/lcrCrl mice were purchased from Charles River

Laboratories. All mice were bred and maintained under pathogen-

free conditions in conventional barrier protection in accordance with

the guidelines of the Home Office and Imperial College London.

Reagents and antibodies

Phospho-SMAD antibody sampler kit (9963) was from Cell Signaling.

Mouse anti-TRAF2 (sc-7346), rabbit anti-STAM (sc-33588), goat anti-

TAB1 (sc-6052), rabbit anti-MEKK1 (sc-252) and rabbit anti-Abin1

(or TNIP1) (sc-134660) antibodies were from Santa Cruz Biotechnol-

ogy. Mouse anti-HA (32-6700), mouse anti-Myc (R950-25) and mouse

anti-Ub (13-1600) antibodies were from Invitrogen. Rabbit anti-p38

(9212), rabbit anti-pp38 (9211), rabbit anti-SAPK/JNK (9252), rabbit

anti-Itch (12117), rabbit anti-TAK1 (4505), rabbit anti-pTAK1 (4508),

rabbit anti-pSAPK/JNK (9251) and rabbit anti-Lys63-linked Ub

(5621) antibodies were from Cell Signaling. Rabbit anti-pItch

(AB10050) antibody was purchased from Merck Millipore. Mouse

anti-p-ERK (M8159), rabbit anti-ERK (M5670), mouse anti-tubulin

(T5168), mouse anti-T7 (T8823) and rabbit anti-Flag (F7425) anti-

bodies were from Sigma. Anti-CD3 (555273) and anti-CD28 (347690)

antibodies were from BD Biosciences. pCMV-Myc mouse MEKK1 and

pCMV-Myc mouse MEKK1 C438A, I440A plasmids were purchased

from GenScript. pCMV6-XL4 TRAF2, pCMV6-XL4 TNIP2 and pCMV6-

Myc TNIP1 were from Origene. pCMV TAB1 and pCMV mTAB1 were

purchased from GenScript. Rabbit anti-pMEKK1 was custommade by

ThermoScientific. Rabbit anti-phospho MEKK1 was generated as

previously described (Matsuzawa et al, 2008). TGF-b and EGF (100-35)

were purchased from Peprotech. Chemical inhibitors include AG-490

(EGFR inhibitor, Santa Cruz Biotechnology), NSC697923 (UBE2N

inhibitor, Millipore), (5Z)-7-Oxozeaenol (TAK1 inhibitor, Sigma),

SB431542 (TGFbR inhibitor, Sigma) and SB203580 (p38 MAPK inhib-

itor, Sigma). Nocodazole and sorbitol were purchased from Sigma.

Cells and cell culture conditions

HEK 293 cells were maintained in DMEM (22320, Invitrogen)

supplemented with 10% FBS (SH3007003, Thermo Scientific) and anti-

biotics in a humidified atmosphere at 37°C. Cells were passaged

every 2–3 days when approaching full confluence. T cells were isolated

from mouse splenocytes using CD4 Microbeads (130-049-201, Miltenyi

Biotec) according to the manufacturer’s instructions (Gallagher et al,

2007). Mouse ES cells were grown in mESC medium (KnockoutTM

DMEM supplemented with 10% FBS, non-essential amino acids

solution, L-glutamine, recombinant human LIF and 2-mercaptoethanol)

in a humidified atmosphere at 37°C. Cells were passaged every 2 days.

EB formation assays

ES cells were plated in low attachment 6-well plates in mESC

medium with 5% FBS and no LIF at a density of 1 × 105 cells per

well (Doetschman et al, 1985; Dang et al, 2002; Wu et al, 2010).

They were collected 6 or 9 days later for RNA extraction.

Tumourigenesis assays

Pluripotent ES cells were injected subcutaneously into the flank of

NOD.CB17-Prkdcscid/lcrCrl mice (1 × 106 cells in PBS/animal)

(Dressel et al, 2008). Mice were monitored daily for 5 weeks before

the animals were culled and tumours extracted.

Yeast two-hybrid

Y190 yeast were transformed and grown as previously described

(Gallagher et al, 2007).

Transfection

HEK 293 cells were plated in 6-well plates at a density of 1 × 106

cells per well. The following day cells were transfected with

Lipofectamine 2000 (11668-019, Invitrogen) or Jet Prime (114-07,

Polyplus) transfection reagents according to the manufacturer’s

instructions. Cells were collected and lysed 48 h later. ES cells

were transfected using Xfect Mouse Embryonic Stem Cell Transfec-

tion Reagent (631321, Clontech) according to the manufacturer’s

protocols.

Ubiquitination and kinase assays

TRAF2, TNIP1, TNIP2, TAB1 and STAM1 were overexpressed in

HEK 293 cells, immunoprecipitated, washed extensively and protein

eluted. Subsequently, they were incubated for 1 h at 37°C with the

ubiquitination assay enzymes E1 (100 nM), UBE2N:UBE2V1

(0.36 lM) or UBE2D2 (0.5 lM), Ub or no K Ub (150 lM) and ATP,

with or without WT MEKK1 PHD (100 ng) or MEKK1 mPHD

(100 ng) (Matsuzawa et al, 2008). All ubiquitination assay reagents

were from Boston Biochem. Kinase assays were performed as previ-

ously described (Gallagher et al, 2002).

Western blotting and immunoprecipitation

Cells were lysed in whole-cell lysis buffer (50 mM Tris pH 7.6,

150 mM NaCl and 1% Triton X-100) (Gao et al, 2004). For detec-

tion of ubiquitination, 20 mM N-ethylmaleimide (NEM) (E1271,

Sigma) was added to the buffer. For immunoprecipitation, cells

were lysed in buffer containing 20 mM Tris pH 7.6, 120 mM

NaCl, 0.5 mM EDTA, 1.5 mM MgCl2 and 0.5% Triton X-100. All

buffers were supplemented with protease and phosphatase inhibi-

tors (Sigma). Following cell lysis, proteins were resolved in SDS

polyacrylamide gels and transferred to PVDF membranes, blocked

in 5% milk, incubated with specific primary and secondary

antibodies and detected with ECL solution (32106, Pierce) or

immunoprecipitated with 1–2 lg of the antibody of interest over-

night at 4°C (Gao et al, 2004). Immunoprecipitates were captured

with protein A/G Plus agarose beads (sc-2003, Santa Cruz).

Beads were washed three times in lysis buffer without Triton

X-100, and proteins were eluted in elution buffer (1858606,

Pierce) or released by boiling in Laemmli Sample buffer (161-0737,

Bio-Rad).
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Protein purification

BL21 (DE3) E. coli cells were transformed with pGEX KG MEKK1

PHD and were grown in Luria Broth (LB) media at 37°C (Lu et al,

2002). At an OD600 of 0.6 protein production was induced with 1 mM

IPTG. Cells were further grown for approximately 18 h at 18°C. After

bacterial cell lysis, supernatant was applied to GST column (GE

Healthcare) to capture MEKK1 PHD. Protein was eluted from the

column with a buffer containing PBS, 50 mM reduced glutathione

and 1 mM DTT, pH 7.8. Full-length His-MEKK1, His-MEKK1 mPHD,

His-TAB1 and His-TAK1 were overexpressed and purified from Sf9

cells as previously described (Gallagher et al, 2002). Proteins

expressed in HEK 293 cells were IP, bound to HiTrap Protein G

columns (GE Healthcare Life Sciences), washed extensively and then

eluted for further assays according to the manufacturer’s protocols.

Proliferation assays

Proliferation was measured using a CellTrace CFSE Cell Proliferation

kit (Life Technologies) according to the manufacturer’s protocols.

Protein microarray

UBE1 (100 nM), UBE2N:UBE2V1 (500 nM) and purified MEKK1

PHD-GST (50 or 250 nM) were used in ubiquitination assays in the

presence of biotin-Ub (100 lg/ml) (Invitrogen). Arrays probed with

buffer only or UBE1 and UBE2N:UBE2V1 without MEKK1 PHD served

as negative controls. Ubiquitination of the immobilised proteins on

the arrays treated with UBE1, UBE2N:UBE2V1, and MEKK1 PHD-GST

was evaluated by the Z-score and background subtracted signal

values within the array relative to the control assays.

Real-time PCR

Total RNA was extracted using the RNeasy Midi kit (Qiagen) accord-

ing to the manufacturer’s instructions. RNA was converted to cDNA

using the High-Capacity cDNA Reverse Transcription kit (Applied

Biosystems). cDNA was amplified using SYBR Green PCR Master

Mix (Applied Biosystems) and primer pairs of interest (Supplemen-

tary Table S4) (Gao et al, 2004).

Affymetrix microarray global gene expression screening

Total RNA was converted to cRNA using the WT Expression kit

(Ambion). Quality of cRNA was assessed with a 2100 Bioanalyser.

cRNA was converted to second-strand cDNA using the WT Expres-

sion kit (Ambion). cDNA was fragmented and labelled using the

GeneChip WT Terminal Labelling kit (Affymetrix). Labelled cDNA

was hybridised to a GeneChip Mouse Gene 1.0 ST Array. Gene-

Spring software was used for data analysis and quality control.

Probes were normalised by quantile normalisation among all micro-

array data.

Molecular modelling of the MEKK1 PHD

The amino acid sequence of mouse MEKK1 PHD (residues 432–485)

was submitted to the Phyre2 server to produce the WT MEKK1 PHD

model (Kelley & Sternberg, 2009). The side chain of residues 438

and 440 was then manually truncated to an alanine to create the

mutant MEKK1 PHD model.

Bioinformatics

GeneSpring software was used to create heat maps of the Protoarray

and Affymetrix data according to the software vendor’s instructions.

Ingenuity IPA and iReport were used according to the software

vendor’s protocols for bioinformatics analysis.

Accession numbers

ArrayExpress accession: E-MTAB-1679. IMEx accession: IM-22822.

Supplementary information for this article is available online:

http://emboj.embopress.org
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