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Avalanche precursors of failure in 
hierarchical fuse networks
Paolo Moretti   1, Bastien Dietemann1, Nosaibeh Esfandiary1 & Michael Zaiser1,2

We study precursors of failure in hierarchical random fuse network models which can be considered 
as idealizations of hierarchical (bio)materials where fibrous assemblies are held together by multi-
level (hierarchical) cross-links. When such structures are loaded towards failure, the patterns of 
precursory avalanche activity exhibit generic scale invariance: irrespective of load, precursor activity 
is characterized by power-law avalanche size distributions without apparent cut-off, with power-law 
exponents that decrease continuously with increasing load. This failure behavior and the ensuing super-
rough crack morphology differ significantly from the findings in non-hierarchical structures.

Hierarchical materials are characterized by microstructure features that repeat on different length scales in a 
self-similar fashion. Biological materials provide compelling examples. Collagen, for instance, exhibits a hier-
archical fiber organization which at different length scales comprises molecules, microfibrils, fibers, and fiber 
bundles1. Such complex organization was shown to provide enhanced toughness over assemblies of isolated 
collagen molecules. Several authors (see e.g.2) have suggested that hierarchical organization may delay or pre-
vent the nucleation and spreading of critical flaws which control failure of non-hierarchical heterogeneous 
materials3,4. Models of hierarchical materials have mostly used hierarchical generalizations of the well-known 
equal-load-sharing fiber bundle model (ELS-FBM) which is a mean-field model for brittle fracture in disordered 
materials (see e.g.5). In hierarchical variants, fibers are recursively grouped into bundles and load is assumed to 
be distributed equally among the intact fibers within each bundle - a salient feature which makes such models 
amenable to analytical treatment as renormalization arguments can be used to deduce the overall strength6 and 
the statistics of damage accumulation. Hierarchical fiber bundle models have been used in the context of bio-
materials (see e.g.7) and also of composites8. A variant which consists in envisaging the structural elements of a 
hierarchical fiber bundle not as simple fibers but as chains-of-bundles does not greatly alter the basic conceptual 
framework since, at least in the limit of elastic-brittle local constitutive behavior, the properties of a bundle can be 
inferred from those of the single fibers using standard methods9 and those of a chain-of-bundles then be deduced 
by weakest-link statistics. Models of this type were introduced for a speculative nanotube-space-elevator cable10 
and for hierarchical bio-materials7.

Practically all investigations of hierarchical fiber bundles focus on the effective strength of the hierarchical struc-
tures, whereas fundamental questions concerning the nature of the failure process (critical behavior vs. sub-critical 
crack nucleation-and-growth) and the concomitant nature and statistics of precursor events have received little 
attention9. In fact, because of their mean-field nature, ELS-FBM and their generalizations are not well suited for 
investigating spatial patterns of damage accumulation and failure. In the present work we therefore depart from 
the fiber bundle paradigm. To explore how hierarchical organization affects the precursor activity in the run-up 
to failure and ultimately changes the mode of failure, we formulate for the first time hierarchical generalizations of 
the well-known random fuse network (RFN)11,12 which, unlike ELS-FBM, is known to capture essential features of 
spatial stress patterns occurring during failure of continuous media such as the r−1/2 character of crack-tip stress 
singularities. At the same time we emphasize that RFN models, representing a scalar caricature of tensorial elasticity, 
can provide a quantitative description of fracture of materials only in exceptional cases, such as tearing of thin sheets 
loaded in anti-plane shear or uniaxial loading of materials with zero Poisson ratio (for an example see13).

Results
Construction and statistical properties of hierarchical fuse networks.  Our aim is to generalize fuse 
network models in such a manner that they can be used as concept models for investigating the impact of hierar-
chical architecture on the mode of failure of materials, highlighting substantial differences between hierarchical 
and non-hierarchical materials, and drawing analogies with the behavior of hierarchically architectured systems 
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outside the realm of materials mechanics. To this end, we generalize the RFN model into a hierarchically cross-
linked network of breakable fibers of heterogeneously distributed strength, which we denote as Hierarchical Fuse 
Network (HFN). The construction of such a network is illustrated in Fig. 1. The network consists of inter-con-
nected links of unit length and unit conductance (fuses) that are contained between two bus bars, which we 
visualize as located at the top and the bottom of the network. Through the bus bars, a load on the network is 
imposed, either in the form of a prescribed voltage between top and bottom bar or in terms of a prescribed total 
current flowing from top to bottom. The vertical direction is hence referred to as the loading direction (or load 
parallel-direction), whereas the horizontal direction is referred to as the load-perpendicular direction.

As zeroth-order module we define a vertical (load-parallel) link. The first-order network, which in Fig. 1 
consists of four zeroth-order modules plus one load-perpendicular cross-link, is referred to as the HFN gener-
ator (other forms of generators are explored in the Supplementary Information). A hierarchical network is then 
constructed recursively as follows: From the first order network, n = 1, we obtain a network of order n = 2 by 
replacing each zeroth-order module with the generator itself. Hence, the second order network consists of four 
generator (first-order) modules plus a connecting horizontal cross-link of length 22 − 1. Accordingly, a network of 
order n + 1 is constructed by replacing, in a network of order n, each module of order n − 1 by a module of order 
n and connecting the central network by a link of length 2n − 1. A network of order n that has been constructed 
in this manner represents an anisotropic structure consisting of 2n − 1 load-parallel wires of length 2n which are 
cross-linked in a hierarchical manner. The quantity L = 2n, which defines the linear dimension of the network, is 
also referred to as the network size.

In addition to the deterministically constructed HFN (henceforth referred to as D-HFN), we consider several 
randomized variants. To construct these, we impose periodic boundary conditions in the load perpendicular 
direction on the D-HFN, by replacing the central cross-link of length L − 1 by one of length L and closing peri-
odically. A row is defined as a set of load-perpendicular links that share the same vertical position, and a column 
is defined as a set of load-perpendicular links that share the same horizontal position. Variant networks as illus-
trated in Fig. 2, top, are then constructed as follows: (i) A network constructed by starting from a D-RFN and 
then first randomly reshuffling the columns and then the resulting rows is denoted as S-HFN (first reshuffling the 
rows and then the columns produces statistically equivalent results). (ii) A network constructed by independently 
rotating the rows of a D-HFN by random integers i ∈ [0…L − 1] across the periodic boundaries is denoted as 
R-HFN. (iii) We take the HFN cross-links and distribute them randomly over the L2 possible cross-linking sites. 
This process creates a non hierarchical structure with equal degree of cross-linking, which we denote as a refer-
ence random fuse network, R-RFN.

The cross-link structure of the different HFN variants can be statistically characterized in two manners illus-
trated in Fig. 2, bottom left. We may focus on the row structure and envisage the network as an assembly of 
load-perpendicular cross-links, where the length of a cross-link is understood as the number of horizontally con-
nected elementary links. Alternatively, we may envisage the network as an assembly of load-parallel gaps, where 
the length of a gap is referred to as the number of vertically adjacent locations where an elementary cross-link 
is missing. Interestingly, the different network variants differ substantially in the statistics of these elements, see 
Fig. 2.

For the D-HFN, both cross-link lengths ncl (number of horizontally connected cross-links) and gap lengths ngp 
(number of vertically adjacent gaps) are power-law distributed, ∝ ∝ κ−p n p n n( ) ( )gp cl gp,cl where the recursive con-
struction implies the exponent κ = 3. The random re-shuffling of columns and rows which produces a S-HFN 
does not change these power-law distributions of cross-link lengths and gap lengths. While the short-length 
behavior of the distributions is slightly modified, the power-law exponent of the distributions which governs the 
decay at large scales is unaltered (red circles and connecting red line in Fig. 2). The R-HFN possesses by construc-
tion the same cross-link statistics as the D-HFN since rotating a row across the periodic boundaries does not 
change the lengths of the connected cross-links. However, the gap statistics in this case becomes exponential, see 

Figure 1.  Hierarchical fuse network. Deterministic recursive construction of a hierarchical fuse network  
(D-HFN); a network of n hierarchical levels consists of 4 modules, each of which represents a network of n − 1 
hierarchical levels; a network of n + 1 hierarchical levels is generated from a n-level network by substituting 
each of these 4 modules by the level-n-network.
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Fig. 2. Finally, for the R-RFN both the cross-links and the gaps are exponentially distributed as expected when 
cross-links are randomly distributed over the network. We thus have three kinds of networks: Networks with 
power-law distributed gaps and cross-links (D-HFN and S-HFN), networks where cross-links are power-law 
distributed but gaps are exponentially distributed (R-HFN) and networks where both links and gaps are exponen-
tially distributed (D-HFN).

Points where links are mutually connected are referred to as nodes; a network of size L has L(L − 1) nodes. 
Once the network morphology is established, we assign to each link a critical current: The link connecting nodes 
k, l fails once the current Ikl flowing through this link exceeds the critical value tkl. Stochastic material heterogene-
ity is mimicked by taking the thresholds tkl to be independent random variables which we assume to be uniformly 
distributed between 0 and 1, representing an assembly of highly unreliable elements. Other critical current distri-
butions yield qualitatively similar results, see Supplementary Information.

Behavior under load.  The networks can be loaded by adjusting the voltage difference V between the bus 
bars to maintain a fixed total current I (load control), or vice versa (voltage control). Except where explicitely 
noted, in the following we present results for the case of load control. The voltage Vk at node k represents a 
displacement-like variable, while the currents Ikl flowing between nodes represent stress-like variables. The equi-
librium equations for this scalar model of elasticity result from Kirchhoff ’s node law, imposing that the algebraic 
sum of all forces (currents) at a node must be zero. We follow the standard loading protocol for quasi-static RFN 
simulations12 (see Methods section). Under load control, the external load (the imposed current) is increased 
to the precise level where the first link breaks and then kept fixed while link failure leads to load re-distribution 
which may trigger further failures: damage accumulates through bursts of local failures (avalanches). The number 
of failures occurring as a consequence of internal load re-distribution at fixed total current defines the avalanche 
size s. Subsequent to an avalanche the load is again increased to induce link breaking, and this is repeated until 
global failure disconnects the network.

Figure 3a shows average current-voltage characteristics for the HFN (voltage control). Comparison between 
the different simulated network variants demonstrates that R-HFNs possess the highest peak current (which 
corresponds to the failure current in current control), followed by the reference RFN, D-HFN and S-HFN. While 
the peak currents for all morphologies are of the same order of magnitude, the crack patterns are significantly dif-
ferent between D-HFN and S-HFN on the one hand, and R-HFN and reference RFN on the other hand. We show 
in Fig. 3b a typical crack profile for a D-HFN close to failure together with a crack profile for a reference RFN. The 
RFN crack profiles exhibit typical self-affine shapes as studied extensively in the literature on RFN models (see 
e.g.14). The crack shape in both D-HFN and S-HFN is qualitatively different. In these networks the hierarchical 
structure with a power law distribution of vertical gaps imposes wide discontinuous jumps in the crack profile 
which are visually reminiscent of crack profiles encountered e.g. in bone15.

Figure 2.  Hierarchical fuse network variants. Top: Structure of regular and randomized RFN, n = 4: regular 
D-HFN, S-RFN with random permutation of both columns and rows, R-HFN with randomly rotated rows, 
R-RFN reference random fuse model with randomly placed cross-links; Bottom: size statistics of load-
perpendicular cross-links and load-parallel “gaps” for the different network variants, using logarithmic 
binning into bins of size 2m. Data in the plot is for systems with n = 9, except where explicitly noted. The plot is 
accompanied by a graphical representation of links and gaps in a S-HFN with n = 4 and with periodic boundary 
conditions along the load-perpendicular direction.
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Avalanche statistics.  To understand the differences between D-HFN and S-HFN on the one hand, and 
R-RFN and R-HFN on the other hand, we study the size distributions of avalanches of link breakings that occur 
prior to global system failure. We resolve these distributions with respect to the applied load (current): the loading 
curve is subdivided into load value intervals and avalanche size distributions are computed separately for each 
interval. For non-hierarchical RFN, the statistics of precursors to failure is well established: avalanche activity in 
the run-up to failure is characterized by truncated power-law distributions of avalanche sizes of the form
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with a fixed exponent τ and a cut-off that increases with load and diverges at the point of failure14,16. More real-
istic spring or beam models17,18 yield similar results. The same picture can also be found in our own simula-
tions of R-RFN where the lateral cross-links between the load carrying fibers are located randomly to create a 
non-hierarchical reference structure, see Fig. 4 top right, where the avalanche size distributions can be well fitted 
by Eq. 1 with τ = 2.3 and 1/σ = 1.95. For comparison, ref.14 reports values of τ ≈ 2 and 1/σ ≈ 1.4 with a weak 
dependence on lattice morphology. While these exponent values differ from the mean-field values τ = 1.5 and 
σ = 1, the avalanche size distributions are of the same type as for ELS-FBM. A similar picture emerges from sim-
ulations of R-HFN as shown in Fig. 4 bottom right. In the case of D-HFN and S-HFN, the picture is completely 
different as avalanche sizes are distributed as power laws with continuously varying exponents throughout the 
loading curve without an apparent cut-off. The distributions cannot be meaningfully fitted by Eq. 1 but are well 
represented by modified Pareto distributions,

=
+ τP s N

s s
( )

( ) (2)0

where now the exponent τ decreases with increasing load I in an approximately linear manner (Fig. 4, left-hand 
side). Only at the peak current the distributions for HFN and RFN approach each other, as in the former case the 
cut-off diverges while for the HFN the exponent of the scale free distribution approaches the asymptotic value 
τ = 2.3 that also characterizes the random reference network. We may thus conclude that, while RFN exhibit a 
kind of critical-like behavior which is scale free only at the point of failure, in D-HFN and S-HFN such scale free 
behavior is a robust, intrinsic feature of the dynamics as the avalanche size distributions have power-law charac-
teristics without cut-off even far away from the peak load.

The role of the network structure.  In order to understand the origin of this robust scale free behavior, 
we note that hierarchical modular organization has been known to produce generic scale invariant behavior 
in systems apparently unrelated to materials mechanics. Models of activity propagation in both real and com-
puter generated mappings of the human brain, in particular, have produced similar avalanche size distributions 
with continuously varying, non-universal exponents19. Power-law distributed avalanche sizes are believed to be 
a direct consequence of the morphology of the brain networks, which are organized into a hierarchy of modules 
of exponentially increasing size yet exponentially decreasing number. Thus, scale free dynamic patterns are a 
consequence of scale invariant hierarchical organization of the underlying network, a consideration that holds 
for processes as varied as activity propagation and percolation, and is backed by renormalization results20. In such 
structures, critical points marking phase transitions may be replaced by extended critical-like regions (“Griffiths 
phases”) as discussed by Moretti and Muñoz19 and here for the first time observed in the context of mechanical 
breakdown.

To understand how hierarchical organization ensures the scale free statistics of precursor activity, we compare 
the behavior of the different network variants. The behavior of the D-HFN and the randomly re-shuffled S-HFN 

Figure 3.  Behavior of HFN under load. (a) Averaged current-voltage curves (voltage control) for the different 
network variants, with L = 512; (b) crack shape in a D-HFN and a reference R-RFN, with L = 512.
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is essentially the same: in both cases we observe power-law avalanche size distributions with an exponent τ that 
decreases towards the value at failure, τ = 2.2, as an approximately linear function of the current I. At large ava-
lanche sizes, the distributions are very clean power laws. At small sizes, deviations show up which can be charac-
terized by a Pareto scale parameter s0 that goes to zero in a linear manner as the current approaches the critical 
value Ip (Fig. 4 left-hand side and insets). Networks with differing generators and differing threshold current sta-
tistics show similar behavior (see Supplementary Information). Differences between D-HFN and S-HFN concern 
only the numerical values of τ and s0, which are both smaller for the S-HFN but approach common values at 
failure. The behavior of the R-HFN is qualitatively different from the hierarchical networks but identical to that of 
a reference network with completely random cross-links. In both cases, one finds the same truncated power-law 
distributions with exponent τ = 2.2 and a cut-off that diverges as the current approaches Ip. Since the R-HFN has 
the same distribution of cross-link lengths as the D-HFN but the same exponential distribution of gap sizes as the 
random reference network, we can safely conclude that the robust scale-free behavior of the avalanche statistics 
in the hierarchical networks results from the scale-free gap size distribution, both in deterministic network mod-
els (D-HFN) and in more realistic randomized variants (S-HFN). This expectation is in line with the fracture 
pattern of a D-HFN in Fig. 3b, which demonstrates that the final crack is deflected on all scales by the vertical gaps 
which interrupt stress transmission at the crack tip, leading to a super-rough crack morphology. This qualitative 
idea is borne out by a quantitative analysis of the distribution of vertical deflections Δy of the crack which is 
characterized by truncated power laws, φΔ ∝ Δ Δθ−p y y y L( ) ( / ) where the cut-off is given by the system size, as 
shown in Fig. 5. The observed exponent θ = 1.75 differs from the value θ′ = 2 for the gap size distribution along a 
horizontal line, indicating non-trivial dynamics as stress concentrations at the tip of the emergent crack interact 
with the network morphology. R-RFN and R-HFN, on the other hand, exhibit an exponential distribution of Δy 
with an average deflection that is slightly larger than the mean gap size.

Discussion
We have proposed a simple model of stress redistribution and failure in a model material with a hierarchical 
microstructure. Analogously to heterogeneous materials that lack multi-layer hierarchical organization, dam-
age accumulation proceeds intermittently in the form of avalanches, which are broadly distributed in size. We 
observe however that in the hierarchical case this phenomenology cannot be interpreted as critical behavior in 
the vicinity of a continuous phase transition, as paradigmatically implemented in fiber bundle models with equal 
load sharing. Avalanches with power-law distributions without apparent cut-off are observed generically, i.e. for 
any value of the applied load. Avalanche exponents vary continuously, suggesting that the concept of universality 
class cannot be invoked. We argue that failure patterns, as well as deformation/load patterns, arise naturally from 
the hierarchical microstructure of the deforming medium, which is scale invariant by construction. The fracture 
patterns reflect the same scale invariance and strongly differ from the self-affine crack morphologies generally 
observed in non-hierarchical random fuse networks14. Fracture occurs not by nucleation-and-propagation of a 
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critical crack as typical of non-hierarchical or R-RFN (see Supplementary Video 1), but by coalescence of multi-
ple, widely separated flaws as crack propagation is interrupted by the presence of hierarchically distributed gaps 
on all scales (see Supplementary Video 2). This intrinsic tendency of the hierarchical-modular microstructure to 
localize damage reflects the generic capability of hierarchical networks to localize activity patterns, reported for 
a wide range of biological19,21,22 and even information processing networks with hierarchical microstructure23. 
Further work is needed to systematically quantify how the scale-free dynamics of damage accumulation and the 
ensuing crack profiles relate to the parameters governing the scale invariant microstructures (exponents of the 
distribution of link and gap sizes), which can be “tuned” by changing the number of horizontal and vertical links 
in the D-HFN generator. This tuning capability may represent the ultimate advantage of hierarchical microstruc-
tures, as recently suggested in the context of friction24.

The results obtained here represent first steps towards a qualitative understanding of failure processes in hier-
archically organized materials. For a quantitative description of failure in complex biomaterials, which combine 
hierarchical morphology with a composite microstructure containing multiple phases, it will be necessary to go 
beyond the simplified caricature of load transfer in terms of a scalar load variable that is inherent in fuse models 
and move towards models that allow for a fully tensorial description of deformation and failure of hierarchically 
organized multi-phase composites.

Methods
Simulations are conducted using the standard quasi-static method for the Random Fuse Model12. At every itera-
tion, both current and voltage are tuned to the lowest values which ensure that one link is broken. This is obtained 
as follows: (i) a fixed external V = 1 is applied to one of the buses, while the other is kept at V = 0 (ii) voltages at 
each node k are computed solving Kirchhoff ’s node law, (iii) currents Ikl at each link kl are computed using Ohm’s 
law, (iv) the link with the maximum Ikl/tkl is removed (tkl being the random threshold assigned to the link), (v) 
the global values of V and I are adjusted by the factor tkl/Ikl (which yields the failure of link kl), and are recorded 
in the I − V curve. The resulting quasi-static I − V curve allows one to extract information both for current- and 
voltage-control loading schemes. In the case of current-control, the size of an avalanche is defined as the num-
ber of links that fail without any further increase in the applied load. Avalanche statistics data, as in Fig. 4, are 
obtained by subdividing the interval of applied currents into sub-intervals. Avalanche size distributions are com-
puted separately for each sub-interval.
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