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Simple Summary: Prognosis for acute myeloid leukemia (AML) patients is poor, particularly in
TP53 mutated AML, secondary, relapsed, and refractory AML, and in patients unfit for intensive
treatment, thus highlighting an unmet need for novel therapeutic approaches. Targeting the stem
cell oncoprotein BMI1 in leukemic cells may represent a promising novel treatment option for poor
risk AML patients, especially in combination with other targeted therapies. Here we tested the BMI1
inhibitor PTC596 in combination with a variety of targeted therapies in AML cell lines and patient
samples in vitro. In addition, we defined the biomarkers of response to the combination treatments
in the leukemic cells. The combination treatment with the BMI1 inhibitor PTC596 and the MCL1
inhibitor S63845 may be an effective treatment in CD34+ adverse risk AML with elevated MN1 gene
expression and MCL1 protein levels, while combination treatment with BMI1 inhibitor PTC596 and
the MEK inhibitor trametinib may be more effective in CD34+ adverse risk AML with elevated BMI1
gene expression and MEK protein levels. The determination of gene and protein expression levels
in leukemic cells as biomarkers of response to targeted combination therapies may be helpful to
optimize treatment efficacy.

Abstract: Purpose: Prognosis for acute myeloid leukemia (AML) patients is poor, particularly in TP53
mutated AML, secondary, relapsed, and refractory AML, and in patients unfit for intensive treatment,
thus highlighting an unmet need for novel therapeutic approaches. The combined use of compounds
targeting the stem cell oncoprotein BMI1 and activating the tumor suppressor protein p53 may
represent a promising novel treatment option for poor risk AML patients. Experimental Design:
The BMI1 inhibitor PTC596, MCL1 inhibitor S63845, and MEK inhibitor trametinib, as well as
the p53 activator APR-246 were assessed as single agents and in combination for their ability to
induce apoptosis and cell death in leukemic cells. AML cells represented all major morphologic and
molecular subtypes including FLT3-ITD and FLT3 wild type, NPM1 mutant and wild type, as well
as TP53 mutant and wild type AML cell lines and a variety of patient derived AML cells. Results:
AML cell lines were variably susceptible to PTC596 and to combination treatments with PTC596
and MCL1 inhibitor 563845, MEK inhibitor trametinib, or TP53 activator APR-246, independent of
TP53 mutational status. Susceptibility of patient samples for PTC596 in combination with 563845
or trametinib was significant for the majority of adverse risk primary and secondary AML with
minimal efficacy in favorable risk AML, and correlated significantly with CD34 positivity of the
samples. BMI1 and MN1 gene expression, and MCL1 and MEKI protein levels were identified
as biomarkers for response to PTC596 combination treatments. Conclusions: The combination of
PTC596 and S63845 may be an effective treatment in CD34+ adverse risk AML with elevated MN1
gene expression and MCL1 protein levels, while PTC596 and trametinib may be more effective in
CD34+ adverse risk AML with elevated BMI1 gene expression and MEK protein levels.

Keywords: acute myeloid leukemia (AML); B-cell-specific Moloney murine leukemia virus inte-
gration site 1 (BMI1); hematopoietic progenitor cell antigen cluster of differentiation 34 (CD34);

Cancers 2021, 13, 581. https:/ /doi.org/10.3390/ cancers13030581

https:/ /www.mdpi.com/journal/cancers


https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-3128-1573
https://orcid.org/0000-0002-8406-4436
https://orcid.org/0000-0001-8771-947X
https://doi.org/10.3390/cancers13030581
https://doi.org/10.3390/cancers13030581
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13030581
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/13/3/581?type=check_update&version=1

Cancers 2021, 13, 581

20f16

meningioma 1 (MN1); myelodysplastic syndrome (MDS); myeloid cell leukemia 1 (MCL1); tumor
suppressor protein 53 (TP53)

1. Introduction

Acute myeloid leukemia (AML) is a clonal blood malignancy characterized by ar-
rested maturation and abnormal proliferation of hematopoietic precursor cells. At the
cellular level, specific genetic and epigenetic alterations lead to changes in cellular sig-
naling pathways, including the common inactivation of the TP53 tumor suppressor axis,
thereby contributing to the blockade of differentiation and accumulation of leukemic blasts
in the blood and bone marrow [1].

The meningioma 1 (MN1) gene is expressed in CD34 positive hematopoietic stem cells
and down-regulated during myeloid differentiation [2]. Increased MN1 gene expression in
myeloid stem cells leads to enhanced proliferation and loss of myeloid differentiation [3].
MNT1 overexpression has been linked to shorter overall (OS) and disease-free survival
(DFS) of patients diagnosed with acute myeloid leukemia with normal cytogenetics [4-8].
Correlation analysis of MN1 with myeloid gene expression levels revealed the positive
association of MN1 and BMI1, CD34, FOXP1, and MDM?2 expression indicating the stem
cell gene BMI1 as putative MN1 target gene [9]. While there are currently no compounds
targeting MN1, inhibitors targeting BMI1 are being tested in clinical studies for various
solid tumors.

B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1), the first func-
tional gene in the PcG family, was identified in a mouse lymphoma in 1993. BMI1 induces
self-renewal of hematopoietic (HSC) and leukemic stem (LSC) cells [10]. BMI1 gene expres-
sion levels correlate well with progression and prognosis of myelodysplastic syndrome
(MDS) and acute myeloid leukemia (AML) [11]. BMI1 plays an important role in the devel-
opment of malignant tumors including solid tumors of the brain, breast, colon, head and
neck, liver, lung, and prostate, as well as hematologic malignancies including lymphoma
and leukemia [12,13]. Increased BMI1 expression in tumor cells is associated with poor
prognosis. BMI1 is a novel target for cancer therapy [14] and may be a valid target in AML
therapy. BMI1 inhibition eliminates cancer stem cells [15]. PTC596 is a novel BMI1 inhibitor
currently in clinical trials for ovarian, fallopian, and peritoneal cancer, glioma, and ad-
vanced solid tumors (NCT02404480, NCT03605550, NCT03761095). PTC596 is tolerable
with manageable gastrointestinal side effects [16].

Targeting mutated TP53 is a novel approach to restore the crucial p53 tumor suppres-
sor function. APR-246 triggers an upregulation of genes involved in cell cycle control and
apoptosis in both TP53 mutant and wild type cancer cells [17]. APR-246 has various other
effects, including induction of oxidative and ER stress [18]. The first-in-human study of
APR-246 in hematologic malignancies (NCT00900614) demonstrated good tolerance and a
tavorable pharmacokinetic profile, with upregulation of p53 target genes and induced apop-
tosis [19]. Three clinical trials have been recruiting to test the safety and efficacy of APR-246
treatment in advanced esophageal carcinoma (NCT02999893), high grade ovarian cancer
(NCT02098343), and mutant TP53 hematologic myeloid malignant disease (NCT 03072043).
Finally, a phase I/1I study to investigate the safety and clinical activity of APR-246 in
combination with a BRAF inhibitor in patients with mutant-BRAF unresectable metastatic
melanoma resistant to anti-BRAF/anti-MEK inhibitors has started (NCT03391050).

In previous studies, we observed a considerable anti-leukemic efficacy of the MCL1-
inhibitor 563845 and the MEK inhibitor trametinib. Hematological cells with susceptibility
to the single compounds as well as to the combined treatment were defined by elevated
MCL1- and MEK-protein levels, independent of the mutational status of FLT3 and TP53 [20].

Here we investigated the combined treatment of PTC-596 with the MCL1-inhibitor
563845 and the MEK-inhibitor trametinib, as well as the p53 activator APR-246 on AML cells
in order to identify a potentially effective treatment specifically for aggressive AML, in par-
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ticular in patients with refractory disease and in patients unfit for intensive chemotherapy.
The study might provide the rationale for initiating a clinical study in aggressive AML
evaluating PTC596 combination therapies.

2. Materials and Methods
2.1. Patient Samples

Mononuclear cells of AML patients diagnosed and treated at the University Hospital,
Bern, Switzerland, between 2005 and 2018 were included in this study. Informed consent
from all patients was obtained according to the Declaration of Helsinki, and the studies were
approved by decisions of the local ethics committee of Bern, Switzerland, decision number
#221/15. Peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells
(BMMCs) were collected at the time of diagnosis before initiation of treatment. The AML
cells were analyzed at the central hematology laboratory of the University Hospital Bern
according to state of the art techniques [21]. Mutational screening for FLT3, NPM1, TP53,
and conventional karyotype analysis of at least 20 metaphases were performed in all
samples. The recent samples were analyzed by NGS sequencing of the myeloid panel genes.

2.2. AML Cell Lines

OCI-AML2 (AML-M4, FLT3wt, DNMT3A R882C, NPM1wt, TP53wt); OCI-AML3
(AML-M4, FLT3wt, DNMT3A R882C, NPM1mut, TP53wt), MOLM-13 (AML-MS, t(9;11),
FLT3-ITD, TP53wt), MOLM-16 (AML-MO, FLT3wt, TP53mut), ML-2 (AML-M4, t(6;11),
FLT3wt, TP53mut), PL-21 (AML-M3, FLT3-ITD), and HL-60 (AML-M2, FLT3wt, TP53 null)
cells were supplied by the Leibniz Institute DSMZ, German Collection of Micro-organisms
and Cell Cultures. AML cells were grown in RPMI 1640 media (SIGMA-ALDRICH,
St. Louis, MO USA) supplemented with 20% fetal bovine serum (FBS, Biochrom GmbH,
Germany) in a standard cell culture incubator at 37 °C with 5% COs.

2.3. Cytotoxicity Assays

For assays with AML cell lines, cells were plated at a density of 5 x 10°/mL and
treated with targeted compounds or conventional induction therapy. For assays with pa-
tient derived mononuclear cells, the cells were cultured for 2 h prior to treatment. The BMI1
inhibitor PTC596, the FLT3 inhibitor midostaurin (PKC412), the MCL1 inhibitor S63845,
the MEK inhibitor trametinib, and the p53 activator APR-246 were purchased at MedChem-
Express (Monmouth Junction, NJ, USA). Conventional induction therapy consisted of
equimolar solution of cytarabine and idarubicin purchased at Sigma-Aldrich (St.Louis, MO,
USA) and SelleckChem (Houston, TX, USA). Cell viability was determined after 20 h of
treatment using the MTT-based cell proliferation kit I (Roche). This time point was selected
because the cellular responses were effectual for the calculation of combination indexes
after 20 h of treatment with two compounds in leukemic cells. For AML cell lines, four in-
dependent assays (biological replicates) with four measurements (technical replicates) per
dosage were performed. For hematological patient samples, two independent assays with
three technical replicates per dosage were performed. For the calculation of combination
indexes three dosages of PTC596 and two dosages of the other compounds were applied
alone and in combination. Combination indexes were calculated on Compusyn software.
Data are depicted as XY graphs, column plots, or scatter plots with mean values and
SD. Statistical analysis was done on GraphPad Prism (GraphPad Software, San Diego,
CA, USA) in grouped analysis and significance calculated by t-test for column graphs or
Mann-Whitney test for scatter plots.

2.4. Measurement of mRNA Expression by gPCR

RNA was extracted from AML cells and quantified using qPCR. The RNA extraction
kit was supplied by Macherey-Nagel, Diiren, Germany. Reverse transcription was done
with MMLV-RT (Promega, Madison, WI, USA). Real-time PCR was performed on the
ABI7500 Real-Time PCR Instrument using ABI universal master mix (Applied Biosystems,
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Austin, TX, USA) and gene specific probes Hs01104728_m1 (ABL1), Hs00180411_m1 (BMI1),
Hs00923894_m1 (CDKN2A), Hs00159202_m1 (MN1), and Hs02758991_g1 (GAPDH).

Measurements for BMI1 and MN1 were normalized with ABL1 values, measure-
ments for CDKN2A were normalized with GAPDH values (ddCt relative quantitation).
Assays were performed in three or more independent experiments. Statistical analysis was
done on GraphPad Prism software using two-tailed t-tests. Data are depicted in column
bar graphs plotting mean with SD values.

2.5. Measurement of Protein Levels by Enzyme-Linked Immunosorbent Assay (ELISA)

Protein extraction was done according to standard protocol. In short, cell pellets
were lysed in RIPA buffer. GAPDH, MCL1, and MEK]1 protein levels were determined
with double-antibody Sandwich ELISA (SEB932Hu, SEC615Hu, SED559Hu, Cloud-Clone
Corp., Houston, TX, USA). MCL1 and MEK1 values were normalized with GAPDH
values. Two independent assays with three technical replicates were performed per sample.
Statistical analysis was done using averaged normalized values and linear regression on
GraphPad Prism software. Data are depicted as XY graphs with linear regression.

2.6. Antibodies and Cytometry

Staining for apoptosis was done using AnnexinV-CF488A (Biotium, Germany) in
AnnexinV buffer and Hoechst 33,342 (10 pg/mL) for 15 min. at 37 °C, followed by several
washes. Propidium iodide was added shortly before imaging on the Nucleocounter NC-
3000 (ChemoMetec, Denmark). For cell cycle analysis, cells were incubated in lysis buffer
with DAPI (10 pg/mL) for 5 min. at 37 °C and analyzed on NC-3000 imager.

3. Results
3.1. Susceptibility of AML Cell Lines to PTC596 and APR-246

To determine the sensitivity of AML cells to the BMI-1 inhibitor PTC596 and the p53
activator APR-246 AML cells were subjected to in vitro cytotoxicity assays. AML cells were
treated with the compounds for 20 h in dose escalation experiments before cell viability
assessment. The AML cell lines covered the major morphologic and molecular subtypes
including, particularly, FLT3-ITD and FLT3 wild type, N°PM1 mutant and wild type, as well
as TP53 wild type, mutant, hemizygous, and null cells (Table 1).

Table 1. Genetic variants in acute myeloid leukemia (AML) cell lines.

D AML (FAB) Oriei FLT3 TP53 Other Gene K ¢
Classification ngin Gene Gene Mutations aryotype
NRAS Q61L .
HL-60 M2 de novo wt null CDKN2A R80X hypotetraploid
MLL-AF6/(t6;11) )
ML-2 M4 T-ALL wt wt KRAS A146T t6;11
MOLM-13 Mba, relapse MDS ITD wt MLL-AF9/(19;11) t9;11
V173M MLL V1368L .
MOLM-16 MO, relapse de novo wt 2385 MTOR T571K hypotetraploid
wt DNMT3A R635W
OCI-AML2 M4 de novo A680V wt MLL K1751 * +6, +8, 3926
DNMT3A R882C
OCI-AML3 M4 de novo wt wt NRAS Q61L +1. 45, +8
NPM1 1.287fs
PL-21 M3 de nov ITD wt KRAS Al146V hypertetraploid
¢ novoe P336L P36fs ypertetraplo
SKM-1 M5, refractory MDS wt R248Q ASXL1, TET2 del9

Abbreviations: Wild type (wt); internal tandem duplication (ITD). * is the official denotation for a stop codon.
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The susceptibility to PTC596 was elevated in TP53 null HL-60 cells with IC50 of 220 nM,
intermediate in TP53 wild type MOLM-13 and OCI-AMLS3 cell lines with IC50 values of
300-500 nM, and rather low in TP53 mutant cells lines PL-21, MOLM-16, and SKM-1 with
IC50 values of 800-1200 nM. ML-2 cells with MLL-AF6 transfusion oncogene and adverse
risk were least susceptible to PTC596 with IC50 at 1500 nM (Figure 1A,B). With respect
to APR-246, the susceptibility was elevated in TP53 mutant cell lines with IC50 values of
20-30 uM, intermediate in TP53 wild type and hemizygous cell lines with IC50 values of
50-70 uM, and reduced in TP53 null HL-60 cells with IC50 of 80 uM. The TP53 wild type
ML-2 cells were most susceptible to APR-246 with IC50 of 22 uM (Figure 1C,D).

A)ﬁo.l c}ﬁD
100 « 100
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=70 —e-HL-60 10 —-HL-60
< ~-MOLM-13 = ~+-MOLM-13
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> —_—
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ML-2 ML-2
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0 0
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B) D)
IC50 values PTC596 (nM) IC50 values APR246 (uM)
MOLM-13 300 MOLM-13 48
MOLM-16 1100 MOLM-16 28
OCI-AML2 850 OCI-AML2 65
OCI-AML3 550 OCI-AML3 60
HL-80 220 HL-60 75
PL-21 800 PL-21 60
SKM-1 1200 SKM-1 55
ML-2 1500 ML-2 22

Figure 1. Dose response of AML cell lines treated with PTC596 or APR-246. Dose response curves
and IC50 values in AML cell lines treated with PTC596 (A,B) and APR-246 (C,D). Cell viability data
are average values of multiple repeat measurements per dosage. Standard deviation was 3-6%.

In order to define the most effective treatment combinations, we focused on inhibitors
expected to elicit synergistic effects in combination with PTC596 based on previous studies
with FLT3-, MDM2-, MCL1-, and MEK-inhibitors [20,22,23] as presented in Figure 2.

3.2. PTC596 Combination Treatment in AML Cell Lines

Cell viability was determined in AML cell lines treated with increasing dosages of
single compounds and in combination treatments using the BMI-1 inhibitor PTC596 and a
variety of targeted therapies including the TP53 activator APR-246 (Figure 3A), the MCL1
inhibitor S63845 (Figure 3B), and the MEK inhibitor trametinib (Figure 3C). Combination
indexes were calculated according to Chou Talalay (Table 2, Figure S1). Some cell lines
were additionally treated with PTC596 in combination with the FLT3-ITD inhibitor PKC-
412 (midostaurin), the MDM2 inhibitor HDM?201, and conventional induction therapy
(CI). For the TP53 wild type cell lines, overall solid response to combination treatments
was detected in the MDS-AML cell line MOLM-13, which presented moderate synergy
to PTC596 in combination with 563845, trametinib, or PKC-412, as well as mild synergy
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to PTC596 in combination with HDM201 and APR-246. Maximal synergistic effects were
present in OCI-AML3 cells treated with PTC596 and trametinib and in ML-2 cells treated
with PTC596 and 563845. OCI-AMLS3 cells also presented moderately synergistic effects
to PTC596 in combination with 563845. ML-2 response was moderately synergistic to
PTC596 in combination with trametinib and mildly synergistic in combination with APR-
246. Cytotoxic effects in the TP53 wild type OCI-AML2 and the TP53 null HL-60 cell
responses were additive in the combination of PTC596 with 563845 or trametinib (Table 2).

For the TP53 mutant cell lines, maximal synergistic effects to combination treatments
were detected in SKM-1 cells with PTC596 and trametinib. Moderate synergies were
present in the combinations of PTC596 and trametinib in PL-21 and MOLM-16 cells, as well
as in the combination of PTC596 and 563845 in MOLM-16 and SKM-1 cells, with mildly
synergistic effects in the TP53 hemizygous PL-21 cells. PTC596 and APR-246 elicited
moderate synergistic effects in PL-21 cells and mildly synergistic effects in MOLM-16 and
SKM-1 cells (Table 2).

The combination of PTC596 and conventional induction therapy consisting of equimo-
lar cytarabine and idarubicin (20-100 nM) yielded overall antagonistic effects in the tested
AML cell lines (Table 2).

Intensive
induction e FLT3 PKC-412
[ chemotherapy F | inhibitor | midostaurin
EISS
CD34
J ITD

< |
N
TP53 @
activator

BMI1
inhibitor

APR-246 \ MEK
| inhibitor
trametinib
@D ¢

PTC-596

inhibitor

HDM-201

inhibitor
Cellcycle $63845

1
progression Aroplosis

Figure 2. Schematic representation of the FLT3-ITD signaling pathways and downstream effects. FLT3-ITD is a constitutively
active growth factor receptor signaling via PI3K-AKT, via RAS-MEK-ERK, and via STAT5 leading to cell growth and
proliferation via p53 inhibition and MCL1 induction. p53 function can be reactivated by APR-246 treatment leading to
inhibition of MCL1 gene expression. MCL1 function can be inhibited by 563845, by PTC596 via BMI1 inhibition, and
by APR-246 via p53 induction. Oncogenic functions are indicated in red, tumor suppressor functions in green, chemical

inhibitors in pink, chemical activators in blue.
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Figure 3. Susceptibility of AML cell lines to various treatment combinations. Cell viability was
determined in AML cells after 20 h treatment with single compounds and in combination with
PTC596 and APR246 (A), PTC596 and 563845 (B), and PTC596 and trametinib (C).

Table 2. Combination index values AML cell lines (Chou and Talalay).

caltine Tt 'Soms Tametmb  Pkoniz  mowan  FTOS+Cl

OCI-AML2 0.9-1.1 0.9-1.1 0.9-1.1 nd 0.9-1.1 nd

OCI-AML3 09-11 0.3-0.5 0.1-0.3 09-1.1 09-11 1.1-1.5

MOLM-13 09-1.1 0.4-0.6 0.3-0.5 0.3-0.5 0.7-0.9 1.1-1.5

HL-60 0.7-0.9 0.8-1.0 0.8-1.0 nd nd 1.3-2.1
PL-21 0.4-0.6 0.7-0.9 0.4-0.6 nd nd >3
MOLM-16 0.7-0.9 0.5-0.7 0.3-0.5 nd nd nd
SKM-1 0.7-0.9 0.3-0.5 0.1-0.3 nd nd nd
ML-2 0.7-0.9 0.1-0.3 0.4-0.6 nd nd nd

Combination indexes were calculated according to Chou Talalay [24]. Interpretation of combinatorial effects: Strong synergy CI = 0.1-0.3,
moderate synergy CI = 0.3-0.7, mild synergy CI = 0.7-0.9, additive effects CI = 0.9-1.1, antagonism CI > 1.1. * Conventional induction
therapy (idarubicin, cytarabine).
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3.3. Dose-Dependent Induction of Apoptosis and Cell Death in AML Cell Lines

The effects of PTC596 and trametinib or 563845 alone and in combination on induction
of apoptosis, cell cycle arrest, and cell death were determined in cytometric assays. In the
TP53 wild type cell lines strong response to combination treatments were detected in
MOLM-13 cells with induction of G2 arrest by PTC596, induction of apoptosis and cell
death when treated with PTC596 in combination with S63845, HDM-201, PKC-412, and
trametinib (Figure 4A,B, Figures 52 and S3). OCI-AMLS3 cells also responded with enhanced
apoptosis and cell death when treated with PTC596 in combination with 563845 or trame-
tinib (Figure 4C,D). OCI-AMLS3 cells showed minor induction of G2 arrest in the cytometric
assays, however, the BMI1 target gene CDKN2A expression was strongly upregulated in
the combination treatments (Figure 4E,F) indicating induction of cell cycle arrest.
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Figure 4. Dose-dependent induction of apoptosis and cell death in AML cells treated with PTC596
alone and in combination with targeted compounds. Cytometric analysis in AML cells treated for
20 h with PTC596 alone and in combination with PTC596 (P), S63845 (S), HDM201 (H), PKC412
(PKC), trametinib (T) to measure induction of apoptosis using annexinV and PI staining, induction of
cell cycle arrest and cell death (subGl1 fraction) using DAPI staining in MOLM-13 (A,B); OCI-AML3
(C-F); and SKM-1 (G,H). Relative quantitation of CDKN2A mRNA in OCI-AML3 cells treated for
20 h with PTC596 (P), S63845 (S), trametinib (T) alone or in combination (E,F).
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In the TP53 mutant cell lines, strong responses to combination treatments were de-
tected in SKM-1 cells with induction of G2 arrest by PTC596, apoptosis, and cell death
when treated with PTC596 in combination with 563845 and trametinib (Figure 4G,H).

Induction of apoptosis and cell death was also present in TP53 mutant (MOLM-16
and SKM-1) and TP53 wild type cells (ML-2 and OCI-AML3) when treated with PTC596
and APR-246 (Figure 5).

A) ML-2 annexinV B) OCI-AML3 cell cycle
a0
8]
52
DMSO P400 A10 A20 P400 P400 DMSO P100 P400 A10 A20 P100 P400 P400
A10 A20 A10 A10 A20
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C) MOLM-16 annexinV SKM-1 cell cycle
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19
- H

80
64 (65| g2
51 las
DMSO P100 A10 A20 P100 P100 DMSO P100 P400 A10 A20 P100 P400 P400
A10 A20 A10 A10 A20
oannlo oann hilPl lo bG1 - S 5G2
mann hilPl lo mannex hi/Pl hi msu e es e

Figure 5. Dose-dependent induction of apoptosis and cell death in AML cells treated with PTC596
in combination with APR-246. Cytometric assays in AML cells treated for 20 h with PTC596 (P)
and APR-246 (A) alone and in combination to measure induction of apoptosis using AnnexinV /PI
staining in ML-2 (A) and MOLM-16 (C), and induction of cell death (subGl1 fraction) using DAPI
staining in OCI-AML3 (B) and SKM-1 (D) cells.

3.4. PTC596 Combination Treatments in Leukemic Cells In Vitro

Strong synergistic effects were elicited in the combination of PTC596 with trametinib
or 563845 in the majority of the tested AML cell lines, these treatment combinations
were applied to patient derived hematological cells and normal bone marrow. A total
of ten primary AML, seven secondary AML post MDS (MDS-AML), one MDS, two B-
ALL, and five normal bone marrow samples were subjected to single compound and
combination treatments. In the combination of PTC596 and 563845 strong cytotoxic effects
were detected in two AML and one MDS-AML: AML1, classified as FLT3 mutant adverse
de novo AML with 90% blast count; AMLS, a relapsed t-AML; MDS-AMLS5, a DNMT3A,
TET2, NPM1 mutant secondary AML. Moderate cytotoxic effects were present in AML2 to
5, all classified as FLT3 and NPM1 mutant de novo AML with intermediate risk, and in the
two B-ALL samples. Mild cytotoxic effects were detected in the rest of the AML and MDS-
AML samples, AMLY to 9, classified as AML with NPM1 mutant or inv(16)/CBFB-MYH11
and favorable risk, and AML 10, a TP53 mutant AML (Figure 6A,C).
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Figure 6. PTC596 combination treatment in patient samples in vitro. Cell viability as determined
in AML, MDS-AML, and B-ALL cells treated for 20 h with single compounds and in combination
with PTC596 and S63845 (A,C,E,G) or PTC596 and trametinib (B,D,F,H). Statistical significance of
cell responses to combination treatment was analyzed in hematological samples correlated to CD34
positivity (E,G) and grouped into leukemic cells with CD34 > 30% or CD34 < 30% and normal bone
marrow cells (F,H).

In the combination treatments with PTC596 and trametinib strong cytotoxic effects
were present in four MDS-AML and one B-ALL: MDS-AML 1, 3, 6 with adverse risk,
the TP53 mutant MDS-AML2, and the B-ALL2. The FLT3 and NPM1 mutant AML samples
(AML2 to 5) and the TP53 mutant AML10, as well as MDS-AMIL 4, 7, and 8 showed moder-
ate response to PTC596 and trametinib. MDS-AMLS5, the DNMT3A, TET2, NPM1 mutant
secondary AML, was not susceptible to trametinib. AML7 to 9, classified as AML with
mutated NPM1 or inv(16) and favorable risk showed mild cytotoxic effects (Figure 6B,D).
The cytotoxic effects elicited by the combination treatments were analyzed in the hemato-
logical cell samples correlated to CD34 positivity (Figure 6E,F) and grouped into leukemic
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cells with CD34 > 30% and CD34 < 30%, compared to normal bone marrow. The group with
elevated CD34 positivity consisted of seven MDS-AML, one MDS, three AML, and two B-
ALL samples, the group with reduced CD34 positivity consisted of eight AML samples.
There was a significant correlation of CD34 positivity and response to PTC596 combination
treatments (Figure 6G,H).

3.5. Biomarkers of Response to PTC Combination Treatments in Leukemic Cells

In order to define biomarkers of response the gene expression of BMI1 and MN1
as well as the protein levels of MCL1 and MEK1 were determined in the mononuclear
cells isolated from AML patients at diagnosis (Table 3), and correlated to the response to
PTC596 combination treatments (Figure 7A-H). BMII gene expression and MEK1 protein
levels were positively associated to the response to PTC596 and trametinib (Figure 7B,H),
while MN1 gene expression and MCL1 protein levels were positively associated to the
response to PTC596 and 563845 (Figure 7C,E). MN1 and BMI1 gene expression were posi-
tively correlated (Figure 7I). There was a robust correlation of MN1 gene expression with
C34 positivity (Figure 7J). There was also a positive association of BMI1 gene expression
and MEKT1 protein levels with CD34 positivity (Figure 7K,L).

Table 3. Clinical characteristics, gene expression, and protein levels in the hematological samples.

Mutation Karyo- Blast

ID Class Stage Profile Type Risk Sorce Count CD34+ BMI1 MN1 MCL1 MEK1
Al AML de FLT3 inv(4) adv PB 90% 55% 1.2 3.1 2.0 0.1
M1 novo
AML de FLT3 . Y o
A2 M5 Novo NPM1 norm inter PB 40% 9% 2.1 0.1 1.0 0.1
AML de FLT3 . o o
A3 M1 VO NPMI1 norm inter PB 91% 1% 0.39 0.01 0.9 0.01
AML de FLT3 . o o
A4 M1 VO NPMI1 norm inter PB 90% 1% 1.43 0.01 0.8 0.01
AML de FLT3 . Y o
A5 M5 Novo NPM1 norm inter PB 90% 1% 1.26 0.02 1.1 0.01
A6 tAML  relapse NPM1 norm adv PB 56% 68% 0.82 7.9 2.2 0.01
A7 tAML sec norm inv(16) fav BM 30% 3% 0.32 0.01 0.5 0.01
A8 AML de NPM1 norm fav PB 38% 1% 0.61 0.01 0.4 0.01
M>5 novo
A9 AML de NPM1 norm fav PB 26% 7% 0.25 0.01 0.6 0.01
M4 novo
AML FLT3
A10 Ma sec TP53- norm adv PB 46% 1% 0.51 0.01 0.7 0.14
G245S
AML post 0 0
MA1 MO MDS norm norm adv PB 90% 98% 4.2 3.9 0.5 0.2
AML post TP53- . o o
MA2 M4 MDS N259V T(2;5) adv PB 25% 71% 1.9 0.01 0.6 0.18
AML post del5, o o
MA3 M2 MDS norm del7 adv PB 60% 80% 42 5.1 0.5 0.19
CEBPA
post ASXL1 o o
MA4 AML MDS EZHD norm adv BM 13% 26% 1.3 1.1 1.5 0.15

RUNX1
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Table 3. Cont.
ID  Class Stage “ufation Karyo-  pig gorce Bt cpggr BMH  MN1 MCL1 MEK1
Profile Type Count
DNMT3A
MAS5 AI\I/EL 15[(]);; TET2 norm fav PB 81% 80% 2.0 14 25 0.01
NPM1
MAG6 MDS ng\e/o KRAS del(7q) adv PB 19% 60% 0.63 2.9 1.1 0.16
post . o o
MA7 AML MDS JAK2 norm inter PB 8% 17% 1.43 0.5 0.9 0.19
AML post . o o
MAS M4 MDS norm norm inter PB 20% 53% 1.38 19 0.8 0.1
TCL TCL CR norm norm na BM 0% 0% 0.41 0.01 0.5 0.01
MCL MCL ngso norm norm na BM 15% 5% 0.32 0.01 1.2 0.02
BA1 BALL %€ BCR- 190)  na PB 8%  63% 083 3.9 15 0.02
novo ABL1
BA2 B-ALL de MLL- t(4;11) na BM 51% 85% 5.52 5.8 1.4 0.2
novo AF4
M
1-4 MM CR norm norm na BM 0% 1% na na na na

Abbreviations: Classification (class), acute myeloid leukemia (AML), MDS-AML (M-AML), myelodysplastic syndrome (MDS), T-cell
lymphoma (TCL), mantle cell lymphoma (MCL), B-cell acute lymphoblastic leukemia (B-ALL), multiple myeloma (MM), secondary (sec),
adverse (adv), intermediate (inter), favorable (fav), peripheral blood (PB), bone marrow (MB), complete remission (CR). Gene expression
levels for BMI1 and MNT1 genes, protein levels for MCL1 and MEK1.
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Figure 7. Biomarkers of response to PTC596 combination treatments. AML cell responses to combi-
nation treatments PTC596 and S63845 (A,C,E,G) or PTC596 and trametinib (B,D,F,H) were correlated
to BMI1 gene expression (A,B), MN1 gene expression (C,D), MCL1 protein levels (E,F), and MEK1
protein levels (G,H). Positive association of MN1 and BMI1 gene expression (I). Positive association
of MN1 gene expression (J), BMI1 gene expression (K), and MEK1 protein levels (L) with CD34
positivity of leukemic cells.
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4. Discussion

In order to determine the susceptibility of AML cell lines to the BMI1 inhibitor PTC596
and the TP53 activator APR-246, a dose escalation screening was performed. Susceptibility
to PTC596 varied in the tested AML cell lines with elevated susceptibility of the TP53 null
cell line HL-60, the TP53 wild type AML cell line OCI-AML3, as well as the MDS-AML cell
line MOLM-13, and reduced susceptibility of the TP53 mutant cell lines MOLM-16, SKM-1,
and PL-21 as well as the TP53 wild type cell line ML-2. The susceptibility of TP53 null cells
to PTC596 indicated a p53 independent mechanism of action. Susceptibility of MOLM-13
and OCI-AMLS3 cells had been previously described for the BMI1 inhibitors PTC-209 [25]
and PTC596 [26].

Susceptibility to the p53 activator APR-246 was comparable in all AML cell lines with
elevated susceptibility in the TP53 wild type ML-2 and the TP53 mutant MOLM-16 cells
indicating a p53 independent mechanism of action. APR-246 has been described as a small
molecule that restores and enhances the function of mutated or wild type p53 [17,27]. APR-
246 triggers an upregulation of genes involved in cell cycle control and apoptosis in TP53
wild type and TP53 mutant cancer cells. Moreover, APR-246 elicits p53-independent effects
including production of ROS, thereby inducing oxidative stress, as well as upregulation of
heat shock proteins and UPR response genes, thereby inducing ER stress [17].

In order to define the most effective treatment combinations, we focused on inhibitors
expected to elicit synergistic cytotoxic effects in combination with PTC596 based on pre-
vious studies with FLT3-, MDM2-, MCL1-, and MEK- inhibitors [20,22,23]. In the current
study, we found synergistic cytotoxic effects for combinations of PTC596 with APR-246,
563845, trametinib, in many AML cell lines, including the TP53 double mutant MOLM-16,
which turned out to be resistant to various other targeted therapies in the past. Here for the
first time, MOLM-16 cells were susceptible to a targeted treatment with PTC596, and the
effects were enhanced in combination with 563845 or trametinib.

Synergistic effects of PTC596 with 563845 and trametinib were to be expected, as PTC59
reduces MCL-1 expression in AML cells and may influence expression of MCL1 inducers
including MEK, ERK, AKT, STAT3, and STATS5 [26], while 563845 inhibits MCL1 directly,
and trametinib inhibits MEK. In a previous study, we found that susceptibility to the MCL-1
inhibitor 563845 and the MEK inhibitor trametinib correlated to the cellular MCL1 and
MEK1 protein levels [20]. AML cell lines MOLM-13 and OCI-AML3, which were suscepti-
ble to 563845, had elevated MCL1 levels, while OCI-AML2 and MOLM-16, which were
resistant to 563845, had reduced MCL1 levels. AML cell lines MOLM-13 and OCI-AMLS3,
which were susceptible to trametinib, had elevated MEK levels, while OCI-AML2 and
MOLM-16, both unsusceptible to trametinib, had very low MEK levels.

In the current study, we found antagonistic effects in the combination of PTC596 and
conventional induction therapy in various AML cell lines. Similar antagonistic effects
of PTC596 and doxorubicin or cytarabine had been previously described in mantle cell
lymphoma [28]. The molecular mechanism underlying this antagonism is unclear. How-
ever, it seems that BMI1 inhibitors should not be applied in combination with doxorubicin
or cytarabine, and by inference, the combination of PTC596 with other anthracyclines or
nucleoside derivatives may also be unfavorable.

The effects of PTC596 and trametinib or 563845 alone and in combination on induc-
tion of apoptosis, cell cycle arrest, and cell death were determined in cytometric assays.
PTC596 induced G2 arrest and apoptosis, as published previously [26]. Effects on cell
cycle arrest, apoptosis, and cell death induced by PTC596 were enhanced by APR-246,
563845, trametinib, PKC412, or HDM201, as expected from the synergistic effects in the
cytotoxicity assays.

Susceptibility of patient samples for PTC596 in combination with 563845 or trametinib
was significant for the majority of adverse risk AML and MDS-AML samples, with least
efficacy in favorable risk AML. In previous studies, BMI-1 protein levels were described
to be significantly higher in patients with unfavorable cytogenetics compared with those
with intermediate or favorable cytogenetics [25], and CD34 positive AML cells were more
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susceptible to PTC596 than mature AML cells [26]. The novel BMI-1 inhibitor PTC596
downregulated MCL-1 and induced mitochondrial apoptosis in a p53-independent manner.
PTC596 effectively killed CD34 positive AML stem/progenitor cells while sparing normal
hematopoietic stem/progenitor cells. In a recent phase I study, the most frequently reported
PTC596-related treatment-emergent adverse events were mild to moderate gastrointestinal
symptoms, including diarrhea, nausea, vomiting, and fatigue. Only one patient treated
with 10.4 mg/kg experienced dose-limiting toxicity of neutropenia and thrombocytopenia,
both of which were reversible [16]. In our study, the susceptibility of leukemic cells to
PTC596 in combination with 563845 or trametinib also correlated significantly to CD34
positivity of the hematological samples. As secondary AML post MDS (MDS-AML) and
B-ALL are characterized by a high degree of CD34 positivity these patient subsets may
profit most from a PTC596 combination treatment. There is an apparent expansion of CD34
cells during the evolution from MDS to secondary AML [29], and CD34 is a prognostic
biomarker for ALL [30], hence MDS-AML and B-ALL may both be valid targets for combi-
nation treatments with PTC596 and S63845 or trametinib. In addition to CD34 positivity,
MNT1 gene expression and MCL1 protein levels were biomarkers for response to PTC596
combination treatments with 563845, while BMI1 gene expression and MEK1 protein levels
were biomarkers of response to PTC596 combination treatments with trametinib. The deter-
mination of gene and protein expression levels in leukemic cells as biomarkers of response
to targeted combination therapies may be helpful to optimize treatment efficacy. The com-
bination of PTC596 and 563845 may be an effective treatment in CD34 positive AML with
elevated MCL1 protein levels, while PTC596 and trametinib may be more effective in CD34
positive AML with elevated MEK1 protein levels, including TP53 mutant AML.

5. Conclusions

In this study, we tested the BMI1 inhibitor PTC-596 alone and in combination with
a variety of novel targeted agents in AML cell lines and primary AML blast cells in cell
viability assays. The AML cell lines included a variety of cyto-morphologic FAB subtypes
as well as molecular subtypes, including FLT3-ITD and FLT3 wild type, NPM1 mutant
and NPM1 wild type, TP53 mutant and TP53 wild type cell lines. The results suggest
that BMI1-inhibition by PTC-596 can induce cell cycle arrest and apoptosis in AML cells
independent of TP53 status. In fact, best response to PTC-596 was detected in TP53 null
cells, in minimally differentiated AML and in secondary AML post MDS. Induction of
apoptosis and cell cycle arrest were analyzed. Effective combination treatments were
validated in cytotoxicity assays with normal bone marrow and AML patient samples.
Strong synergistic effects were detected in both TP53 wild type and TP53 mutant AML
cell lines treated with PTC596 in combination with the MCL1 inhibitor 563845 or the
MEK-inhibitor trametinib. In addition, mild synergistic effects were detected in both TP53
wild type and TP53 mutant AML cell lines treated with PTC596 and the TP53 activator
APR-246. Strong cytotoxic effects were also detected in some AML patient cells treated
with PTC596 in combination with 563845 or trametinib, in particular in adverse risk AML
including a TP53 mutant MDS-AML and a relapsed t-AML. The susceptibility of leukemic
cells to PTC596 in combination with 563845 or trametinib correlated significantly to CD34
positivity of the hematological samples. These results indicate that the combination of
PTC596 and 563845 or trametinib may be both effective and specific treatments to target
adverse risk AML, especially with elevated CD34 positivity, thus providing the rationale
for initiating clinical studies evaluating these treatment combinations.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
694/13/3/581/s1, Figure S1: Combination index (CI) MOLM-13. Figure S2: Imaging cytometry of
annexin V stained MOLM-13 cells. Figure S3: Imaging cytometry of DAPI stained MOLM-13 cells.
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