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Abstract
Background Drought resistance is an increasingly important trait for many plants—including St. Augustinegrass, 
a major warm-season turfgrass—as more municipalities impose restrictions on frequency and amount of irrigation. 
Breeding efforts have focused on breeding for drought resistance, and several drought-related quantitative trait loci 
(QTL) have been identified for St. Augustinegrass in previous studies. However, the molecular basis of this trait remains 
poorly understood, posing a significant roadblock to the genetic improvement of the species.

Results This study sought to validate those QTL regions in an independent biparental population developed from 
two sibling lines, XSA10098 and XSA10127. The drought evaluation in two greenhouse trials showed significant 
genotype variation for drought stress traits including leaf wilting, percent green cover, relative water content, percent 
recovery, and the area under the leaf wilting-, percent green cover-, and percent recovery- curves. A linkage map 
was constructed using 12,269 SNPs, representing the densest St. Augustinegrass linkage map to date. A multiple 
QTL mapping approach identified 24 QTL including overlapping regions on linkage groups 3, 4, 6, and 9 between 
this study and previous St. Augustinegrass drought resistance studies. At the transcriptome level, 1965 and 1005 
differentially expressed genes were identified in the drought sensitive and tolerant genotypes, respectively. Gene 
Ontology and KEGG analysis found different mechanisms adopted by the two genotypes in response to drought 
stress. Integrating QTL and transcriptomics analyses revealed several candidate genes which are involved in processes 
including cell wall organization, photorespiration, zinc ion transport, regulation of reactive oxygen species, channel 
activity, and regulation in response to abiotic stress.

Conclusions By innovatively integrating QTL and transcriptomics, our study advances the understanding of the 
genetic control of water stress response in St. Augustinegrass, providing a foundation for targeted drought resistance 
breeding.
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Background
Lawn irrigation currently consumes the bulk of home 
water usage in the US [1]. As more municipalities impose 
restrictions on irrigation timing and amount, and as cli-
mate change leads to more sporadic weather patterns 
with the potential for more severe drought [2], the devel-
opment of drought-resistant cultivars is important to 
ensure turfgrasses will remain a part of landscapes. St. 
Augustinegrass [Stenotaphrum secundatum (Walt.) Kun-
tze] is a coarse-textured, warm-season turfgrass com-
monly grown in the southeastern United States, and it 
is known for its shade tolerance and weed suppression 
ability. However, drought resistance in St. Augustinegrass 
often ranks low among warm-season turfgrasses [3].

In turfgrass species, drought resistance mechanisms 
are divided into three components: avoidance, escape 
and tolerance [4]. Drought escape mechanisms involve 
large-scale changes in growth pattern including vary-
ing the timing of the reproductive stage to coincide with 
more available water or entering dormancy during peri-
ods of drought stress and resuming growth when water 
resources are again available [5]. Because dormancy 
results in a reduction of turfgrass quality below accept-
able levels, it is often a trigger for irrigation among con-
sumers and it may ultimately result in over-watering [6]. 
Turfgrass breeders are more focused on breeding for 
genotypes that maintain their green color through avoid-
ance and tolerance. Drought avoidance approaches seek 
to preventatively address drought through maintenance 
of plant water content by either increasing the amount 
of water uptake or decreasing the amount of water loss, 
thereby avoiding tissue dehydration [5]. Meanwhile, tol-
erance is the responsive approach of plants to drought 
stress by sustaining growth despite low water avail-
ability and includes osmotic adjustment, maintenance 
of membrane fluidity, and the accumulation of certain 
metabolites or proteins [7]. Plants have developed intri-
cate molecular pathways to cope with drought stress, 
ensuring their survival in water-stress environments. 
When drought occurs, plants trigger a series of signal-
ing events starting with the perception of water loss, 
including abscisic acid (ABA) and MAPK [8, 9]. Addi-
tionally, drought stress induces the expression of genes 
involved in osmotic adjustment to help maintain cell 
turgor [10, 11]. Plants also activate antioxidant systems 
to combat oxidative stress, which is commonly associ-
ated with water stress [12]. Moreover, drought-respon-
sive transcription factors can coordinate a wide range 
of protective mechanisms, from enhancing root growth 
to modifying cell wall properties, thereby improving the 

plant’s ability to retain water and maintain cellular func-
tion under drought conditions [13].

Previous studies have established variation in drought 
resistance among St. Augustinegrass genotypes [6, 14, 15, 
16], often noting that polyploids [17] and interploids [15] 
have better performance. Certain characteristics have 
been attributed to enhanced drought resistance, namely 
a deeper root system [16, 18]. However, less work has 
centered on identifying genomic regions that could be 
targets for marker-assisted selection (MAS) to improve 
drought resistance in St. Augustinegrass. Quantitative 
Trait Loci (QTL) mapping is a method that identifies 
molecular markers associated with regions controlling 
traits of interest that can be candidates for MAS. The 
creation of a high-density linkage map in St. Augustine-
grass [19] facilitated the first effort to detect QTL for 
drought resistance [20]. Using a population developed 
from the cross between cultivars ‘Raleigh’ and ‘Seville’, 46 
significant associations were found, with co-localization 
of several drought-related traits across greenhouse and 
field environments [20]. Furthermore, morphological 
and canopy traits were evaluated in the same population 
in a later study [21], and several overlapping QTL with 
those identified in Yu et al. [20] were found. However, as 
QTL can be specific to a population and influenced by 
environmental effects, validation of these QTL is neces-
sary before implementing downstream processes such as 
MAS or genomic selection. In addition, the low-density 
genetic linkage maps currently available only allow for 
the identification of QTL regions covering many genes, 
limiting our ability to identify candidate genes.

High-throughput sequencing technologies give the 
opportunity to bridge this gap through the integration 
of QTL mapping and gene expression analysis. Recently, 
a reference-grade chromosome-scale genome assem-
bly for the popular St. Augustinegrass diploid culti-
var ‘Raleigh’ was developed, utilizing data from PacBio 
CCS, Illumina, and Hi-C technologies [22]. In addition, 
RNA-Seq has been successfully applied to characterize 
the transcriptomic profiles in response to abiotic stress 
[23, 24, 25]. Several studies have shown that integrat-
ing QTL mapping and transcriptome study is a robust 
approach to identifying candidate genes, especially for 
complex traits [26, 27]. We hypothesize that the integra-
tion of QTL mapping and transcriptome analysis will 
reveal key genetic regions and candidate genes associated 
with water stress tolerance in St. Augustinegrass. Specifi-
cally, we expect to identify novel genes that play a role 
in physiological processes such as osmotic adjustment, 
stress-induced signaling, and antioxidant defense, which 
could serve as targets for improving drought resistance 
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in this species. Thus, the objectives of this study were to: 
(1) identify and validate drought resistance QTL using a 
new St. Augustinegrass mapping population; (2) conduct 
a transcriptomics analysis among two genotypes display-
ing contrasting performance under drought stress; and 
(3) through a comprehensive analysis, identify candidate 
genes within those QTL regions controlling response to 
drought stress.

Results
Drought-related traits evaluation
The days with the most variance for percent green cover 
and leaf wilting in 2020 were 17 and 19 days after water-
ing, respectively. In 2021, the days with the most vari-
ance for percent green cover and leaf wilting were 14 and 
13 days after watering, respectively. The corresponding 
phenotypic data on those days were selected for further 
analysis and denoted “_20/21” throughout the rest of the 
manuscript. For both years, all traits had a wide range 
of variation and transgressive segregation (Fig.  1). Vari-
ance analysis showed that genotype and genotype x year 
effects were significant for all traits, while year effect was 
significant for all traits except leaf wilting (Additional file 
1). Significant, positive correlations (p-value < 0.001) were 
found among all traits across years, but correlations were 
much higher across traits within a year (r = 0.69–0.98 in 
2020 and r = 0.74–0.98 in 2021) than between the same 
trait across years (r = 0.16–0.33) (Fig. 2).

SNP discovery and linkage map construction
A total of 940  million raw paired-end reads were 
obtained from sequencing, and a total of 66,672 SNPs 
were obtained. Following filtering, 12,269 high-quality 
SNPs were retained in the final linkage map, which con-
tained nine linkage groups (LGs) corresponding to the 
nine chromosomes in a St. Augustinegrass haplotype. 
All linkage groups had between 652 and 2,301 mark-
ers with LG 8 having the fewest and LG 9 having the 
most (Table  1). The length in cM ranged from 77.93 to 
173.62 cM. The largest gap between markers was 3.49 cM 
on LG 5. For most linkage groups, the genomic-informed 
order produced a shorter linkage group, but for linkage 
groups 2 and 5, the MDS order proved better and was 
used in the final map for QTL mapping. Overall, the syn-
teny between markers on the chromosomes and markers 
on the linkage groups was strong (Additional file 2).

QTL detection for drought-related traits
Using a stepwise multiple QTL mapping approach, a total 
of 24 QTL across seven linkage groups were detected 
(Table 2). Overall, ten QTL were identified across years, 
13 QTL were identified from the 2020 trial, and only one 
QTL was identified from the 2021 trial. For leaf wilt-
ing, two QTL were identified across years, three were 

identified from the 2020 trial, and one was identified from 
the 2021 trial, with overlapping regions found on LGs 5 
and 9. For AULWC, all three QTL, located on LGs 2, 3, 9, 
were found from the 2020 trial. For PGC, two QTL were 
identified across years, and four QTL were identified 
from the 2020 trial, with overlapping regions on LGs 2 
and 3. There was one QTL identified for AUPGCC across 
years and another from the 2020 trial, both of them 
located at the peak position 2.4 cM on LG 2. For PR, two 
QTL were identified across years, and one was identified 
from the 2020 trial, with an overlapping region found on 
LG 3. Two QTL for AUPRC were identified across years, 
which were located on LGs 3 and 9. For RWC, one QTL 
was identified across years, while another was identified 
from the 2020 trial, with both sharing an overlapping 
region on LG 3. QTL were also found to be co-localized 
across different traits in this study. On LG 2, QTL for 
PGC and AUPGCC were localized on the peak position 
at 2.4 cM, and a QTL for AULWC was also found in this 
region. On LG 3, QTL for PR and AUPRC were localized 
at the peak position 48.31  cM, QTL for AULWC, PGC 
and RWC were localized at the peak position 101.12 cM, 
and QTL for LW and RWC were found at the peak posi-
tion 107.43 cM. In addition, there were a total of 9 QTL 
for 6 traits overlapping in this interval on LG3. On LG 9, 
QTL for LW, PR and AUPRC overlapped in the interval 
between 38.20 cM and 52.05 cM.

QTL overlap across studies
When comparing the results of this study with two pre-
vious QTL mapping studies in St. Augustinegrass for 
drought tolerance traits [20] and morphological charac-
teristics associated with drought tolerance [21], regions 
of overlap were found on LGs 3, 4, 6, and 9 (Fig. 3). On 
LG 3, PR-3.1, PR-3.2, PGC-3.1, PGC-3.2, LW-3.1, RWC-
3.1, RWC-3.2, and AULWC-3.1 co-localized with RWC-
R3.3 from Yu et al. [20]. On LG 4, PGC-4.1 colocalized 
with GC-R4.1 and Fv/Fm-R4.2 from Yu et al. [20]. On LG 
6, LW-6.1 co-localized with LF-R6.1 from Yu et al. [20]. 
Meanwhile, on LG 9, LW-9.1, LW-9.2, PR-9.1, AUPRC-
9.1 and AULWC-9.1 co-localized with qCDr9.1 and 
qCDs9.1 from Yu et al. [21].

Transcriptome assembly
The raw RNA-Seq reads were derived by sequencing 
cDNA libraries containing leaf and root samples of St. 
Augustinegrass during water stress. Overall, the RNA 
sequencing and following quality control process yielded 
an average of 23,948,230, 24,304,376, 24,560,777, and 
24,144,901 clean reads for SWL, SDL, TWL and TDL leaf 
samples, respectively. For root samples, the quality con-
trol process yielded an average of 25,623,156, 24,257,098, 
24,462,760, and 23,145,965 clean reads for SWR, SDR, 
TWR and TDR, respectively. The de novo assembly was 
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Fig. 1 Histograms of best linear unbiased estimators (BLUEs) for each trait across the two years of evaluation. White triangles indicate the XSA10098 
maternal value while black triangles indicate the XSA10127 paternal value. GH = greenhouse, PGC = percent green cover, LW = leaf wilting, PR = percent 
recovery, RWC = relative water content, AULWC = area under leaf wilting curve, AUPGCC = area under percent green cover curve, AUPRC = area under 
percent recovery curve
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used to build St. Augustinegrass transcripts from the 
clean reads. A total of 997,528 transcripts were obtained 
with an average length of 651 bp, a maximum length of 
55,635  bp, and a minimum length of 201  bp (Table  3). 
Among all the transcripts, 780,061 unigenes were 
obtained with an average length of 444  bp. The unige-
nes were annotated by searching against the public data-
bases (Table 4). The results showed that 291,953 unigenes 
(37.43%) had significant matches in the Swiss Prot data-
base, 119,598 (15.33%) in the Pfam database, 246,449 
(31.59%) in the KEGG database, 289,776 (37.15%) in the 
GO database, and 75,331 (9.66%) in the EggNOG data-
base. In total, there were 305,220 unigenes (39.13%) 

successfully annotated in at least one of the public data-
bases, with 26,412 unigenes (3.39%) in all databases.

Differentially Expressed Genes (DEGs) under water stress
A large number of differentially expressed genes (DEGs) 
were identified between the different treatment and gen-
otype groups. In this study, we paid particular attention 
to the DEGs identified for the comparison between with 
and without drought stress treatment. The comparisons 
included normal watered vs. drought stress in sensitive 
genotype (SW vs. SD), and normal watered vs. drought 
stress in tolerant genotype (TW vs. TD). The number of 
DEGs identified in the sensitive genotype in response to 

Fig. 2 Pearson correlations for all traits across two years. PGC = percent green cover, LW = leaf wilting, PR = percent recovery, RWC = relative water content, 
AULWC = area under leaf wilting curve, AUPGCC = area under percent green cover curve, AUPRC = area under percent recovery curve. Color bar indicates 
correlation coefficient (r). *** indicates p-value < 0.001
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drought stress was 772 up-regulated and 1193 down-reg-
ulated. For the tolerant genotype, 602 DEGs were up-reg-
ulated and 403 DEGs were down-regulated in response 
to drought stress (Fig. 4A, Additional file 3).

A Venn diagram was used to illustrate the unique and 
overlapping genes expressed among comparison groups 
(Fig.  4B). In group A, 118 DEGs were up-regulated in 
both R and S genotypes. In group B, 180 DEGs were 
down-regulated in both genotypes. Group C would have 
contained DEGs that were up-regulated in the S genotype 

and down-regulated in the T genotype, but none of them 
fell into this group. Conversely, 2 DEGs that were up-reg-
ulated in T but down-regulated in the S genotype fell into 
group D. Groups E-H were categorized for DEGs that 
significantly changed only in one genotype and not in the 
other. Group E included 654 DEGs that were only up-reg-
ulated in the S genotype; Group F contained 1011 DEGs 
that were only down-regulated in S genotype. Group G 
included 482 DEGs that were only up-regulated in T gen-
otype, and Group H included 223 DEGs that were only 
down-regulated in T genotype.

GO classification of differentially expressed genes
The DEGs were enriched for GO annotation in terms of 
molecular function (MF), cellular component (CC), and 
biological process (BP). In total, 69 MF, 11 CC and 89 BP 
were classified in group A, while the equivalent number 
in other groups was: 85/31/123 in group B, 121/34/149 
in group E, 154/53/205 in group F, 122/19/177 in group 
G, and 48/19/90 in group H. Figure  5 shows the top 
GO classification (gene ratio > 10%) of groups A and B, 
which include the DEGs commonly up- and down-reg-
ulated in both genotypes. Some stress response-related 
functions, including the abscisic acid metabolic pro-
cess and ethylene biosynthetic process, are enhanced in 
both genotypes. In the down-regulated DEGs, several 

Table 1 Summary of linkage groups including length in cM, 
total markers, markers/cM, average distance between markers, 
and the max gap between markers for each linkage group
Link-
age 
Group

Length 
(cM)

Number 
of markers

Markers/cM Average 
distance 
between 
markers (cM)

Max 
Gap 
(cM)

1 101.89 1275 12.51 0.08 2.2
2 97.73 1313 13.43 0.07 2.05
3 117.39 1444 12.30 0.08 2.76
4 102.34 1579 15.43 0.06 2.23
5 129.28 1331 10.30 0.10 3.49
6 111.32 1119 10.05 0.10 2.12
7 94.79 1255 13.24 0.08 1.88
8 77.93 652 8.37 0.12 3.30
9 173.62 2301 13.25 0.08 3.12

Table 2 Significant quantitative trait loci associated with drought-related traits for the XSA10098 X XSA10127 biparental population
QTL Trait LG Peak Position (cM) % Var Confidence Interval Peak Physical Position (bp) Physical Position Range (bp)
LW-5.1 LW 5 23.66 15.55 16.68–36.06 3,363,900 2,272,746 − 4,598,389
LW-9.2 LW 9 45.27 25.61 37.37–59.13 9,573,540 7,294,000–11,467,984
LW-3.1 LW_20 3 107.43 19.15 101.12–108.19 45,180,406 43,879,062–45,318,615
LW-6.1 LW_20 6 32.35 9.6 20.57–52.29 10,814,818 7,656,452–28,621,279
LW-9.1 LW_20 9 43.19 22.5 38.20–59.13 9,326,977 7,892,898–11,467,984
LW-5.2 LW_21 5 30.31 17.04 16.68–44.13 4,161,518 2,272,746 − 8,515,041
AULWC-2.1 AULWC_20 2 0 28.26 0.00–5.01 8,589,918 8,589,918–10,251,920
AULWC-3.1 AULWC_20 3 101.12 14.92 98.24–108.19 43,879,062 43,307,483–45,318,615
AULWC-9.1 AULWC_20 9 7.11 11.53 7.11–51.01 2,791,778 2,791,593–10,550,638
PGC-2.2 PGC 2 10.24 24.53 0–26.3 11,808,394 8,589,918–17,037,003
PGC-3.2 PGC 3 101.12 12.65 48.31–108.19 43,879,062 21,153,247–45,318,615
PGC-1.1 PGC_20 1 5.31 13.11 5.31–8.71 13,405,134 13,405,134–14,189,176
PGC-2.1 PGC_20 2 2.4 37.06 2.40–3.08 9,330,187 9,330,187–9,524,355
PGC-3.1 PGC_20 3 99.23 12.02 87.32–107.43 43,501,307 40,644,353–45,180,406
PGC-4.1 PGC_20 4 42.27 7.82 34.22–71.06 14,146,107 9,601,868–33,495,704
AUPGCC-2.1 AUPGCC 2 2.4 26.29 0–10.24 9,330,187 8,589,918–11,808,394
AUPGCC-2.2 AUPGCC_20 2 2.4 30.69 0.00–6.12 9,330,187 8,589,918–10,906,196
PR-3.1 PR 3 48.31 14.26 37.06–98.24 21,153,247 18,949,946–43,307,483
PR-9.1 PR 9 43.19 29.08 38.20–54.21 9,326,977 7,892,898–11,027,839
PR-3.2 PR_20 3 98.24 18.3 48.31–108.19 43,307,483 21,153,247–45,318,615
AUPRC-3.1 AUPRC 3 48.31 16.28 41.08–52.54 21,153,247 19,612,007–21,898,037
AUPRC-9.1 AUPRC 9 43.19 27.29 37.37–52.05 9,326,977 7,294,000–10,721,565
RWC-3.1 RWC 3 101.12 15.93 48.31–109.59 43,879,062 21,153,247–45,704,345
RWC-3.2 RWC_20 3 107.43 23.31 96.68–108.19 45,180,406 42,977,450–45,318,615
LG = linkage group, PGC = percent green cover, LW = leaf wilting, PR = percent recovery, RWC = relative water content, AULWC = area under leaf wilting curve, 
AUPGCC = area under percent green cover curve, AUPRC = area under percent recovery curve. Each trait was analyzed using across years, 2020 and 2021 trial
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photosynthetic-related functions were shared across gen-
otypes. More details of GO classification of groups A-H 
can be found in Additional file 4.

KEGG pathway enrichment of differentially expressed 
genes
The DEGs above were annotated using the KEGG data-
base. In total, 15 pathways were enriched for group A, 
33 pathways for group B, 34 pathways for group E, 72 
pathways for group F, 15 pathways for group G, and 21 

pathways for group H. The top pathway (most number of 
genes) for group A is 2-oxocarboxylic acid metabolism, 
the top one for group G is the biosynthesis of secondary 
metabolites pathway, while the top pathway for groups B, 
E, F and H is the metabolic pathway. Figure 6 shows the 
top 20 pathways of groups E-H, which include the DEGs 
only up- or down-regulated in a single genotype. The 
MAPK signaling pathway genes were down-regulated in 
the S genotype, but both up- and down-regulated in the 
T genotype. The details of the KEGG enrichment are pre-
sented in Additional file 5.

Co-localization of the DEGs and drought QTL
Within the QTL overlapping across studies, twelve DEGs 
were identified in both the QTL mapping and transcrip-
tomics studies (Table 5; Fig. 7). Among them, two DEGs 
were identified on chromosome 4, eight DEGs on chro-
mosome 6, and two DEGs on chromosome 9. However, 
four DEGs encoding probable LRR receptor-like ser-
ine/threonine-protein kinase were located in a 16  K bp 
range on chromosome 6; and they might belong to dif-
ferent exons of the same gene. Two DEGs encoding 
zinc transporter might also be exons of the same gene. 
Annotation found these co-localized DEGs represented a 
wide range of biological processes and pathways includ-
ing cell wall organization, photorespiration, zinc ion 
transport, regulation of reactive oxygen species, chan-
nel activity, and regulation in response to abiotic stress 
(Table 5). The DEGs expression patterns show that only 
TRINITY_DN1864_c1_g1, which encodes a protein cys-
teine-rich transmembrane module, was up-regulated in 
the tolerant genotype. Otherwise, all other DEGs were 
down-regulated in the sensitive genotype, except TRIN-
ITY_DN120342_c0_g3, which was down-regulated in 
both genotypes (Fig. 7).

Table 3 Length of the transcripts and unigenes clustered from 
the de Novo assembly
Category Transcript Unigene
Total 997,528 780,061
Max length 55,635 bp 55,635 bp
Min length 201 bp 201 bp
Average length 651 bp 444 bp
200–500 bp 697,409 633,059
500–1000 bp 136,590 87,389
1000–2000 bp 97,721 43,018
> 2000 bp 65,808 16,595
N50 1207 bp 590 bp
N90 251 bp 128 bp
Note: N50 is defined as the length of the shortest contig at 50% of the total 
assembly length; N90 was counted in the similar way

Table 4 The annotation of unigenes in different database
No. Unigenes Percentage (%)

Annotated in Swiss Prot 291,953 37.43
Annotated in Pfam 119,598 15.33
Annotated in KEGG 246,449 31.59
Annotated in GO 289,776 37.15
Annotated in EggNOG 75,331 9.66
Annotated in all databases 26,412 3.39
Annotated in at least one database 305,220 39.13
Total unigenes 780,061

Fig. 3 QTL overlap between the current study and previously identified QTL for drought resistance and morphological characteristics. For black regions 
from current study: PGC = percent green cover, LW = leaf wilting, PR = percent recovery, RWC = relative water content, AULWC = area under leaf wilting 
curve, AUPGCC = area under percent green cover curve, AUPRC = area under percent recovery curve. For blue regions from Yu et al. (2019): RWC = relative 
water content, CC = chlorophyll content, LF = leaf firing, LW = leaf wilting, GC = green cover, NDVI = normalized difference vegetative index. For red regions 
from Yu et al. (2022): LW = leaf blade width, LL = leaf blade length, CD = canopy density, SGO = shoot growth orientation
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Discussion
Drought resistance is a complex trait that is influenced 
by a number of genes, and typically has low heritability 
[28]. QTL mapping has been considered as one of the 
most important approaches for understanding drought 
genetic architecture [29]. However, low-mapping reso-
lution and population specificity are major constraints 
in QTL mapping of complex traits. Recent advances in 
high-throughput genotyping have increased the ability 
to build high-resolution genetic maps. Compared to the 
previous linkage maps for St. Augustinegrass developed 
in Yu et al. [19, 30], the one created in this study repre-
sents the densest map to date. More than four times as 
many markers (12,269) were used in its construction, 

compared with 2,952 in Yu et al. [19] and 2,257 in Yu et 
al. [30]. At the same time, the length of all linkage groups 
ranged from 77.93 to 173.62 cM, differing little from the 
range of 90.0–197.2 cM in Yu et al. [19] and providing a 
strong indication that although many more markers were 
used, the ordering and genotyping was still accurate and 
did not inflate the cM length.

In addition to the resolution of the genetic map, deci-
phering and accurately phenotyping drought-related 
traits has been another challenge for QTL mapping of 
drought resistance. In our previous studies, we charac-
terized physiological and morphological traits under 
drought stress, including leaf water content, leaf wilting, 
leaf firing, NDVI, Fv/Fm, percent green cover, canopy 

Fig. 5 Gene Ontology (GO) classification of the up-regulated DEGs (A) and down-regulated DEGs (B) identified in both genotypes. DEGs were annotated 
in three categories: biological process, cellular component, and molecular function. Hit% is calculated as the ratio of the input number of DEGs and the 
number of total annotated genes in this category

 

Fig. 4 Differentially expressed genes (DEGs) in St. Augustinegrass in response to water stress. (A): Number of DEGs identified in the drought sensitive 
and tolerant genotypes. (B): Venn diagram of DEGs, showing the unique and overlapping genes expressed among comparison groups. SW vs. SD: normal 
watered vs. drought stress in sensitive genotype; TW vs. TD: normal watered vs. drought stress in tolerant genotype. Groups A-H indicate different DEGs 
expression pattern groups
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density, leaf length and width, and shoot growth orienta-
tion, and successfully mapped QTL for these traits [20, 
21]. All these traits were evaluated at the end of drought 
stress to indicate the final damage on the plants. In this 
study, we also adopted the area under the curve approach 
[31], initially developed to measure disease progress, to 
allow for the evaluation of not only an endpoint in the 
drought progression but also variation in dry-down rate. 
Although significant correlations were found for each 
pair of endpoint and progression traits in this study, and 
there were overlapping QTL found between them, some 
specific QTL were also found, indicating progression 
traits exhibit important value for understanding drought 
resistance genetics and ultimately improving selection. 
In addition, the image analysis approach adopted in this 
study provides stable and accurate evaluation compared 
to subjective personnel ratings and further supports 

other studies [32, 33] that the implementation of these 
approaches increases resolution and efficiency for evalua-
tion of drought tolerance in turfgrass research. Lastly, we 
also evaluated percent recovery to determine the recov-
ery rate post-stress, which is also an important mecha-
nism that plants use to adapt to drought stress.

Overall, twenty-four QTL were identified from the 
2020 and 2021 trials and across years. Surprisingly, 
despite ample phenotypic variation and a significant 
genotype effect, only one significant QTL (for leaf wilt-
ing) was found in the 2021 trial. In addition to the genetic 
complexity of drought resistance, environmental variance 
is known to influence the trait behavior and GxE interac-
tion might also play an important role in its expression, 
which makes it even more challenging to detect signifi-
cant QTL and reinforces the need for QTL validation 
under different conditions. While both experiments were 

Fig. 6 KEGG pathway enrichment of the up-regulated DEGs identified in the S genotype (A) and the T genotype (C) and the down-regulated DEGs 
identified in the S genotype (B) and the T genotype (D). Hit% is calculated as ratio of input number of DEGs and number of total annotated genes in this 
pathway
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conducted under greenhouse conditions, the maximum 
temperature was much more stable and higher in 2021, 
contributing to the faster dry-down. Although there 
were significant genotype x year interaction effects for all 
traits, leaf wilting was the only trait that did not show a 
significant year effect (Additional file 1). That could par-
tially explain why only a LW QTL was detected in the 
2021 trial. Likewise, the low correlation between years 
(r = 0.16– r = 0.33) (Fig.  2) can be adjudicated to incon-
sistent environmental conditions, which can introduce 
noise into the data, reducing the power to identify signifi-
cant QTL associations. While some QTL mapping stud-
ies in creeping bentgrass (Agrostis stolonifera L.) have 
attempted to separate drought [34] and heat conditions 
[35], when searching for QTL associated with tolerance 

to those traits, in North Carolina, where our study was 
conducted, these environmental conditions are often 
inseparable. Their interaction adds complexity and fur-
ther demonstrates the need to validate QTL that are sta-
ble across environments prior to their use in MAS.

Overlapping QTL emphasized regions on the genome 
that were responsible for phenotypic variation and well-
conserved across the different traits, populations and 
environments. In this study, overlapping regions across 
traits and years were found on LG 2, 3 and 9. Of the 24 
QTL regions identified in this study, 16 QTL on four LG 
overlapped with either the previous study on QTL map-
ping for drought tolerance traits [20] or morphological 
characteristics associated with drought tolerance [21], 
which used a different population. Notably, although 

Table 5 Co-localized differentially expressed gene and overlapping drought QTL regions across the present study
Gene_id Protein Chr. Physical Position (bp) Function annotation
TRINITY_DN10664_c0_g1 Aquaporin NIP2-2 4 10,146,118–10,146,422 Channel activity, transmembrane transporter 

activity
TRINITY_DN119686_c0_g1 Probable glutathione S-transfer-

ase DHAR2, chloroplastic
4 10,432,628–10,432,944 Involved in scavenging reactive oxygen species 

(ROS)
TRINITY_DN7546_c0_g2 Probable LRR receptor-like ser-

ine/threonine-protein kinase
6 7,942,815–7,942,890 Involved in abiotic stress responses; induc-

tion of the activities of antioxidative enzymes; 
control of stomatal development

TRINITY_DN7546_c2_g1 6 7,944,167–7,944,464
TRINITY_DN17100_c0_g2 6 7,957,142–7,957,310
TRINITY_DN85968_c0_g1 6 7,957,612–7,958,072
TRINITY_DN1864_c1_g1 Protein cysteine-rich transmem-

brane module
6 8,148,983–8,149,282 Regulation of response to salt stress; regulation 

of reactive oxygen species biosynthetic process
TRINITY_DN283583_c0_g1 Retrovirus-related Pol polyprot-

ein from transposon RE1
6 8,247,717–8,247,988 DNA integration; DNA recombination

TRINITY_DN8017_c1_g1 Zinc transporter 6 8,283,935–8,284,983 Zinc ion transmembrane transport
TRINITY_DN213079_c0_g3 6 8,285,892–8,286,045
TRINITY_DN12130_c0_g1 Serine hydroxymethyltransfer-

ase, mitochondrial
9 5,977,060–5,977,249 Involved in photosynthetic pathway, in re-

sponse to drought and salt stress
TRINITY_DN120342_c0_g3 Endoglucanase 10 9 6,093,599–6,093,797 Cell wall organization
Chr.: chromosome.

Fig. 7 Expression pattern of differentially expressed genes co-localized in overlapped QTL regions across the present study
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percent green cover was evaluated in both the current 
study with 6 identified QTL, and in Yu et al. [20] with 
21 identified QTL, only one common region of overlap 
on LG 4 was identified across the populations. A similar 
phenomenon occurred for canopy density evaluations 
in Yu et al. [20, 21]; although the same population was 
being evaluated, only two common QTL regions were 
found. These exemplify the difficulty in identifying stable 
QTL across environments that can be reliably selected 
for MAS. Thus, the QTL overlapping regions across dif-
ferent populations identified in this study on LGs 3, 4, 
6, and 9 will be of interest, which represent strong evi-
dence for their association with the genetic control of St. 
Augustinegrass’ response to water stress, and as such, the 
main targets for developing MAS.

The natural outcrossing nature and high-level hetero-
zygosity of St. Augustinegrass limit the fine mapping of 
large QTL regions. Recently, the integration of QTL map-
ping and transcriptomics offers a powerful approach to 
dissecting the genetic basis of complex traits and under-
standing their underlying molecular mechanisms [27, 36, 
37]. By combining genetic mapping with gene expres-
sion profiling, researchers can identify candidate genes, 
unravel regulatory networks, and discover novel genetic 
variants associated with traits of interest. Among all 
differentially expressed genes identified in this study, 
twelve DEGs were found co-localized in QTL overlap-
ping regions (Table  5; Fig.  7). Most of them have been 
reported to be involved in drought stress response. Prob-
able LRR receptor-like serine/threonine-protein kinases, 
which is a large gene family that has been implicated for 
its role in drought stress particularly with abscisic acid 
signaling [8], were identified. Two zinc transporters were 
identified on chromosome 6. In a transgenic drought-
tolerant maize line, zinc transporter 4 was found to be 
upregulated compared to the wild-type [38]. An endoglu-
canase, which is involved in cellulose degradation [39], 
was annotated on chromosome 9. A transcriptomic anal-
ysis found endoglucanases were downregulated in the 
susceptible line, which was hypothesized to lead to cell 
wall breakdown and hampered root growth, ultimately 
contributing to the lack of drought tolerance [40]. Ser-
ine hydroxymethyltransferase was down-regulated in the 
drought sensitive St. Augustinegrass line in this study; 
similarly, its abundance declined more in a Kentucky 
bluegrass drought-susceptible line compared to drought-
tolerant line [41]. The annotated probable glutathione 
S-transferase has been widely investigated as an impor-
tant enzyme that plays a role in ROS scavenging during 
stress response [12]. Finally, the annotated aquaporin 
is part of a family of proteins involved in water trans-
port [42]. More interestingly, the DEGs expression pat-
tern shows that only TRINITY_DN1864_c1_g1, which 
encodes a protein cysteine-rich transmembrane module, 

was up-regulated in the tolerant genotype. Otherwise, 
all the other DEGs were down-regulated in S_genotype, 
except TRINITY_DN120342_c0_g3 was down-regulated 
in both genotypes (Fig. 7), indicating that the expression 
change of these genes might partially contribute to less 
drought resistance in the sensitive genotype.

Beyond the DEG co-localized in QTL regions, the 
transcriptomics study provided an abundance of gene 
expression profiles and metabolic pathways of drought 
tolerant and sensitive genotypes, which could help us 
to understand how their genetic differences manifest at 
the level of gene expression, and how these differences 
contribute to differential performance under drought 
stress. The MAPK cascade is considered a major signal 
transducer, playing a vital role in drought stress, gener-
ally by responding to ABA and regulating ROS produc-
tion [9]. Numerous components of MAPK cascades have 
been reported to respond to drought in crops. Recent 
RNA-Seq studies found that the expression of several 
MAPK transcripts changed under drought stress in rice, 
wheat, cotton and maize, highlighting the importance 
of MAPKs in drought [43, 44, 45, 46]. In St. Augustine-
grass, we found that the MAPK signaling pathway was 
enriched in down-regulated genes for both genotypes, 
but it was only enriched in up-regulated genes for the 
tolerant genotype (Fig. 6, Additional file 5). The up-reg-
ulation of MAPK signaling pathway genes -- including 
five PP2C genes (Probable protein phosphatase 2  C)-- 
were reported to function as a switch at the center of the 
ABA signaling network under osmotic stress conditions 
[47], and might have contributed to the superior perfor-
mance of the tolerant genotype during drought. In addi-
tion, we also noticed another pathway, starch and sucrose 
metabolism, which was enriched in up-regulated genes 
in both genotypes but only enriched in down-regulated 
genes for the sensitive genotype (Fig. 6, Additional file 5). 
Starch and sucrose are key molecules in mediating plant 
responses to abiotic stresses. Plants generally remobilize 
starch to provide energy and carbon at times when pho-
tosynthesis may be potentially limited during drought 
stress. The released sugars and other derived metabo-
lites support plant growth under stress and function as 
osmoprotectants and compatible solutes to mitigate the 
negative effects of the stress [10, 11]. In the sensitive 
genotype, downregulation of key genes -- including Beta-
glucosidase 31 (TRINITY_DN18016_c0_g1) and Sucrose 
synthase 4 (TRINITY_DN27451_c0_g1)– was observed. 
These genes have been previously implicated in drought 
stress response via starch and sucrose metabolism path-
ways [48, 49]. We speculate that the normal starch and 
sucrose metabolism was more affected by drought stress 
in sensitive genotype, which might lead to its poor per-
formance under stress. Finally, when we investigated the 
DEG showing the opposite changes in the two genotypes, 
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we found two genes TRINITY_DN44494_c0_g1 (Pro-
tein DETOXIFICATION 19) and TRINITY_DN4181_
c0_g1 (Probable cytokinin riboside 5’-monophosphate 
phosphoribohydrolase LOGL9) were up-regulated in 
the tolerant genotype but down-regulated in the sensi-
tive genotype (Additional file 3). Protein DETOXIFI-
CATION has been reported to be of significance in the 
translocation of abscisic acid (ABA), a phytohormone 
with profound role in plants under various abiotic stress 
conditions. Arabidopsis lines over-expressing a cot-
ton DETOXIFICATION gene were highly tolerant to 
drought, salt, and cold stress with high production of 
antioxidant enzymes and significantly reduced levels 
of oxidants [50]. The LONELY GUY (LOG) gene was 
reported to be involved in biosynthesis of cytokinins, 
which are generally considered to be negative regula-
tors of stress [51]. In Arabidopsis, the expression levels 
of GhLOG were changed by drought and salt stresses, 
and the overexpression of GhLOG3 improved salt tol-
erance potentially though regulation of root growth 
[52]. These pathways and genes identified from tran-
scriptomics analysis might partially explain the different 
drought tolerance levels of the two genotypes, pointing 
to their potential value for marker assisted selection of 
St. Augustinegrass. However, the function of these genes 
involved in drought response still needs to be further 
investigated and validated.

Conclusion
Although drought resistance is a complex mechanism in 
plants, the integration of different genetic methods may 
help improve our understanding of how plants adapt to 
drought stress. Overall, our study identified and validated 
drought resistance QTL on different populations in ben-
eficial from higher resolution linkage map and higher 
throughput phenotyping approaches. In addition, the 
comparative transcriptomic analysis between two con-
trasting lines identified differentially expressed genes and 
pathways. Finally, our study integrated St. Augustinegrass 
transcriptomic resources together with QTL mapping to 
explore candidate genes in response to drought stress. 
Our work has implications both for the scientific under-
standing of drought stress in grasses as well as for prac-
tical applications aimed at breeding St. Augustinegrass 
with superior drought resistance.

Materials and methods
Mapping population development
For QTL mapping and validation, a pseudo-F2 map-
ping population was derived from the cross of North 
Carolina State University St. Augustinegrass breeding 
lines XSA10098 and XSA10127, which are both full-
sib progeny of crosses between cultivar ‘Raleigh’ and 
‘Seville’. These breeding lines were selected based on their 

contrasting responses to drought under both greenhouse 
and field conditions from Yu et al. [20]. Crosses were 
verified based on the segregation at two SNP loci using 
allele-specific primers and the PCR Allele Competitive 
Extension (PACE) assay (3CR Bioscience, Harlow, United 
Kingdom).

Greenhouse drought evaluations
The mapping population was vegetatively propagated 
into 15 cm (diameter) x 11 cm (deep) pots containing a 
1:3 mix of sand and Fafard potting mix (Conrad Fafard 
Inc., Agawam, MA). Plants were allowed to grow for 12 
weeks under normal watering conditions to fully estab-
lish. The progenies, along with the parents, were orga-
nized into a randomized complete block design with 
three replicates. The first trial (GH20) took place from 
3 December 2020 to 21 December 2020 and lasted 19 
days. The second trial (GH21) took place from 26 April 
to 9 May and lasted for 14 days. In the beginning of each 
trial, pots were watered to capacity, and water was sub-
sequently withheld to initiate drought. The dry-down 
concluded when each replicate had at least 60% of plants 
showing leaf wilting symptoms, then watering was initi-
ated once again for 10 days of recovery.

Leaf wilting (LW) ratings were taken daily on a 1 to 
5 scale with 5 indicating a healthy, symptom-free turf 
stand, while a score of 1 indicated desiccated turf that 
had lost all its color (Fig. 8). On the last day of the dry-
down, leaf tissue was collected to determine leaf relative 
water content (RWC) using the following equation,

 
RWC = FW − DW

TW − DW
x 100

where FW is fresh weight, DW is dry weight, and TW is 
turgid weight as described in Yu et al. [20]. A panoramic 
180i game camera (Moultrie Feeders, LLC, Birmingham, 
AL) was mounted above each replicate and set to collect 
an image of plants prior to drought stress, and once a day 
throughout dry-down and recovery. Percent green cover 
was calculated from these images in ArcMap (ESRI, Red-
lands, CA). Briefly, images were loaded, and a training 
set was developed to classify green and brown pixels. A 
supervised classification method analyzed the images 
and individual percent green cover values were extracted 
for each pot and normalized to the first date to account 
for any differences in initial establishment. The values in 
dry-down were defined as the trait percent green cover 
(PGC), and values in recovery period were defined as the 
trait percent recovery (PR). In addition, the area under 
the progress curve for leaf wilting, percent green cover, 
and percent recovery (referred to as AULWC, AUPGCC, 
and AUPRC, respectively) was calculated using the agri-
colae R package [53].
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Statistical analysis
A fully random model using both entry and replicate as 
random effects was fit for each day of percent green cover 
and leaf wilting to calculate variances. The day with the 
most entry variance for percent green cover and leaf wilt-
ing from each year was selected to be used for further 
analysis. Pearson correlations between all traits were gen-
erated using the corrplot package in R [54].

For variance analysis, a mixed model was first fit for 
each trait across years with genotype as fixed and year 
and replicate as random terms (Eq. 1.) using ASReml-R 
package [55]

 y = µ 1 + X1g + Z1r + Z2y + Z3gy + e (Eq. 1)

where y is the vector of phenotypic values, µ  is the over-
all mean, 1 is a vector of ones, X and Z represent the 
incidence matrices for fixed and random effects, respec-
tively; g is the fixed vector of genotype effects, and r, y 
and gy are the random vector of effects of rep, year and 
the interaction between genotype and year, respectively. 
Using a Wald test for fixed effects and a likelihood ratio 
test (LRT) for random effects, the significance of each 
term was tested, and variance components were esti-
mated with restricted maximum likelihood. Best linear 
unbiased estimators (BLUEs) generated from Eq. 1 were 
used for QTL analysis of traits across years.

For QTL analysis within each year, a mixed model was 
fit for each trait within a year with entry as a fixed term 
and rep as random (Eq. 2.)

 y = µ 1 + X1g + Z1r + e (Eq. 2)

with terms the same as in Eq. 1. Best linear unbiased esti-
mators were generated for each entry using Eq. 2.

Library construction and sequencing
Young leaves were collected from each of the progeny as 
well as the parents (five replicates per parent to improve 
coverage), and genomic DNA was extracted using the 
CTAB method modified from Afanador et al. [56]. DNA 
quality and purity was validated using a 1% agarose gel, 
and DNA concentration was quantified using a Hoefer 
DQ 300 fluorometer (Hoefer Scientific Instruments, 
San Francisco, CA). The GBS library was prepared by 
the University of Wisconsin Biotechnology Center DNA 
Sequencing Facility by adapting the methods in Elshire 
et al. [57]. Briefly, PstI and MspI (New England Biolabs, 
Ipswich, MA) were used to digest 100 ng of DNA, and 
barcoded adapters were ligated using T4 ligase (New 
England Biolabs, Ipswich, MA). Samples were pooled and 
amplified, and SPRI beads were used to remove adapter 
dimers. The library was quantified using Qubit® dsDNA 
HS Assay Kit (Life Technologies, Grand Island, NY), 
and quality was confirmed using the Agilent Tapestation 
(Agilent Technologies Inc., Santa Clara, CA). Sequenc-
ing was done on an Illumina NovaSeq6000 (Illumina, San 
Diego, CA), at the University of Wisconsin Biotechnology 
Center DNA Sequencing Facility.

SNP calling
The v.4.1 GBS-SNP-CROP (GSC) pipeline [58] was used 
in conjunction with FASTQ [59] to process raw sequenc-
ing data and call SNPs. The GSC pipeline identified reads 
with barcode sequences next to a cut site, trimming them 
and retaining only those reads. Fastp was used to trim 
any remaining barcodes and poly-G sequences and reads 
that had a length of at least 32 bases and at least 40% of 
bases with a Phred quality score of 30 or greater were 
retained. Sequences were demultiplexed and aligned 
to the St. Augustinegrass reference genome [22], using 
the GSC pipeline. Five samples of each parental geno-
type were combined. Filtering and genotypic calls were 
made using the following parameters: mnHoDepth0 = 3, 

Fig. 8 Leaf wilting rating scale for St. Augustinegrass experiencing drought stress. A score of 5 indicates healthy, symptom-free turf while a score of 1 
indicates desiccated turf that has lost all its green color
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mnHoDepth1 = 10, mnHetDepth = 2, altStrength = 0.96, 
mnAlleleRatio = 0.05, mnAvgDepth = 3, and mxAvg-
Depth = 300. SNPs with less than 70% genotype calls were 
removed.

Linkage map construction
The R package MAPpoly (v. 0.3.0) was used to jointly 
construct the linkage map [60] considering markers of all 
possible segregation types. Briefly, a chi-square test using 
a Bonferroni correction to achieve a global significance 
level of 5% was used to assess segregation distortion, and 
any markers deviating from the expected ratios (1:2:1 or 
1:1) were excluded. The pairwise recombination fractions 
were calculated between all markers and considering all 
possible linkage phases. The resulting recombination 
fraction matrix based on the most likely linkage phases 
was used for grouping and ordering markers inside link-
age groups. The unweighted pair-group method with 
arithmetic mean (UPGMA) clustering algorithm was 
used to form linkage groups, and the multidimensional 
scaling (MDS) [61] algorithm was used to order markers. 
The reference genome was used as supporting informa-
tion to group markers; thus linkage groups were formed 
only by markers that agreed with both the UPGMA and 
reference genome information. A hidden Markov model 
was used to assess the best linkage phases and re-esti-
mate the recombination fractions between markers for 
all linkage groups, considering the orders provided by 
the MDS algorithm and the reference genome. The best 
order for each linkage group was selected based on the 
pattern of the recombination frequency heatmap, the 
resulting map size, and the number of retained markers. 
A global error rate of 5% was considered to account for 
sequencing and genotyping errors.

QTL mapping
The R package QTLpoly (v. 0.2.1), which was designed 
for outcrossing species, was used to conduct QTL map-
ping [62], along with BLUEs for each trait from each year 
and from the joint analysis across years. Conditional 
genotype probabilities were first calculated at a step of 1 
centimorgan (cM) using the “calc_genoprob” function in 
MAPpoly. The random-effect multiple interval mapping 
(REMIM) model was used to build a multiple QTL model 
for each trait [62]. First, a null model with no QTL was 
fit, then QTL were added in a forward step one by one 
until no more QTL reached the threshold (P < 0.01). A 
backward elimination was performed with a more strin-
gent threshold level (P < 0.0001) to remove QTL that pre-
sented non-significant effects conditional on the other 
ones. The process was repeated until no QTL was added 
nor dropped from the model, then a last round of model 
refinement was performed to adjust QTL position and 

effect estimates conditional on the remaining QTL in the 
final model.

QTL validation with previous studies
The QTL in this study were compared to those identified 
in the St. Augustinegrass biparental mapping popula-
tion ‘Raleigh’ x ‘Seville’ in Yu et al. [20], which analyzed 
drought tolerance traits, and those in Yu et al. [21], 
which analyzed morphological characteristics related to 
drought tolerance. The comparison was made possible 
by mapping the SNP marker sequences on ‘Raleigh’ x 
‘Seville’ maps to the reference genome to obtain physi-
cal positions. Regions of chromosomes that contained 
co-localized QTL across studies were visualized in Map-
Chart [63].

Materials and treatment for transcriptomics study
XSA10098 (tolerant) and ‘Raleigh’ (sensitive) show-
ing contrasting drought tolerance levels were used in 
the transcriptomics study [20]. Pots were established 
and maintained as the above mapping population in the 
greenhouse, and then subjected to water stress by cutting 
off irrigation. Fully expanded leaves with similar grow-
ing stages were collected when the drought sensitive line 
showed leaf wilting symptoms (14 days after cutting off 
irrigation). Three biological replicates were included for 
each genotype. Samples were frozen in liquid nitrogen 
immediately and stored at -80 oC until RNA extraction. 
The abbreviations [S/T][W/D][L/R] [1, 2, 3] were used 
for sample names in this study: the first letter indicates 
genotype (sensitive or tolerant), the second letter indi-
cates treatment (watered or drought), the third letter 
indicates tissue (leaf or root), and the number indicates 
replication.

RNA extraction, library Preparation and sequencing
RNA extractions and the sequencing library were pre-
pared according to Brown et al. [25]. Briefly, the total 
RNA was extracted using RNeasy Plant Mini Kit (Qia-
gen, Germany), and then subjected to quality and quan-
tity checks (RIN value ≥ 7; total amount ≥ 1.5 ug). For 
library preparation, mRNA was enriched via oligo(dT) 
beads and fragmented in fragmentation buffer. First 
strand cDNA was synthesized using random hexamers 
and reverse transcriptase, then second strand synthesis 
buffer (Illumina, San Diego, CA) was added along with 
dNTPs, RNase H and Escherichia coli polymerase I for 
second strand synthesis. After a round of purification, 
terminal repair and poly-A tailing, Illumina PE adapters 
were ligated and 200 bp cDNA fragments were preferen-
tially selected. Then, cDNA fragments with ligated adapt-
ers were enriched using PCR primers. The library quality 
was assessed by quantifying with a Qubit 2.0 fluorometer 
and qPCR, and insert size was checked on an Agilent 
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2100. The library was sequenced using an Illumina Nova-
Seq sequencing platform and 150  bp paired end reads 
were generated.

Quality control, transcriptome assembly and gene 
annotation
The raw reads were processed to remove reads contain-
ing adapters, uncertain nucleotides (N > 10%), and low-
quality reads. Obtained clean reads were evaluated on 
Q20, Q30, GC content, and used for downstream analy-
ses. Transcriptome assembly was built from paired-end 
reads from leaf samples in this study and root samples 
generated in a separate study [64] using Trinity with min_
kmer_cov set to 2 by default and with all other param-
eters kept as default [65]. Gene function was annotated 
against the Swiss-Prot and Pfam databases and assigned 
to functional categories in the EggNOG, GO and KEGG 
databases by searching BLASTx and BLASTp with an E 
value cutoff 10− 5.

Differential expression analysis
To explore the gene expression change during water 
stress in leaf samples, the read counts were adjusted by 
edgeR package for gene quantification [66]. Differential 
gene expression analysis was performed between samples 
with and without water stress for each genotype. Differ-
ential gene expression analysis of the samples was per-
formed using DESeq R package [67], and the significant 
differential expression was filtered using p value ≤ 0.001 
and| log2(Fold Change)| ≥ 1.

GO and KEGG enrichment analysis
Differentially expressed genes (DEGs) were assigned to 
Gene Ontology (GO) and KEGG pathway enrichment 
analysis via the GOseq R package [68]. Gene length bias 
was adjusted by calculating a probability weighting func-
tion (PWF). A P value < 0.05 was used as the significance 
threshold.

Co-Localization of the DEGs and drought QTL
Sequences of DEGs were aligned to the reference genome 
to obtain their physical positions. Then, the respective 
genomic regions of the above co-localized QTL were 
compared to the locations of the identified DEGs.
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