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Abstract: Diabetic retinopathy (DR) is an ocular complication of diabetes mellitus (DM), a metabolic
disorder characterized by elevation in blood glucose level. The pathogenesis of DR includes vascular,
neuronal, and inflammatory components leading to activation of complex cellular molecular signaling.
If untreated, the disease can culminate in vision loss that eventually leads to blindness. Animal models
mimicking different aspects of DM complications have been developed to study the development and
progression of DR. Despite the significant contribution of the developed DR models to discovering the
mechanisms of DR and the recent achievements in the research field, the sequence of cellular events
in diabetic retinas is still under investigation. Partially, this is due to the complexity of molecular
mechanisms, although the lack of availability of models that adequately mimic all the neurovascular
pathobiological features observed in patients has also contributed to the delay in determining a
precise molecular trigger. In this review, we provide an update on the status of animal models of DR
to help investigators choose an appropriate system to validate their hypothesis. We also discuss the
key cellular and physiological events of DR in these models.

Keywords: animal models of diabetes; diabetic retina; electrophysiology of diabetic retina; cellular
signaling of diabetic retina; tribbles homolog 3 protein

1. Introduction

Diabetic retinopathy (DR) is known to be an eye complication of diabetes mellitus
(DM). If untreated, it can threaten the vision of affected individuals. Current clinical trials
using in vivo imaging techniques have reported dramatic retinal morphological changes
associated with diabetes. A study with 124 human subjects in the early stage of DR reported
a decrease in the thickness of the nerve fiber layer (NFL) with no effects to the outer neural
layer (ONL) of the retina, measured by spectral domain optical coherence tomography
(SD-OCT) [1]. Electroretinographic changes have also confirmed retinal dysfunction in
patients with severe ocular diabetic complications [2,3]. Furthermore, changes in retinal
hemodynamics have also been reported in patients with early DM [4]. Currently, DR
is recognized as a progressive neuro-vascular complication with neuronal dysfunction
proceeding to microvascular damage [5]. The early stage of the disease is known as
non-proliferative diabetic retinopathy (NPDR); it ranges from mild (microaneurysms) to
severe (decrease in the blood flow due to blockade in a larger section of retinal blood
vessels). Proliferative diabetic retinopathy (PDR), an advanced stage in which blood
vessels grow in the retina, often leads to a reduced field of vision and blindness. While
clinical trials concentrate on risk factors, early detection, and evaluations of the progression
of DR in vivo, access to human donor eye tissue provides a great opportunity to study
early molecular changes in the diabetic retina to further understand pathological markers.
Multiple studies with postmortem donor eyes have reported glial cell dysfunction as a
primary change in the diabetic retina. Thus, a recent study with postmortem diabetic ocular
tissue that employed an immunolabelling technique to detect carbonic anhydrase (II) and
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glial fibrillary acidic protein (GFAP) identified the occurrence of Müller cell reactivation in
the human diabetic retina [6,7]. The authors discovered that the Müller cells migrated in
the pre-retinal membranes and overexpressed GFAP in the diabetic donor eyes.

In addition to structural and morphological alterations, molecular changes occurring
in diabetic retinas have also been reported. Thus, studies on post-mortem diabetic eyes
have shown the elevation of inflammatory markers; an increase in pro-death caspase-3, Fas,
and Bax in the retinal ganglion cells (RGC); and GFAP in the retina [8–10]. Several studies
on vitreous extracted from patients demonstrated that levels of interleukin-8, monocyte
chemotactic protein-1, macrophage-colony stimulating factor, platelet-derived growth fac-
tor (PDGF), and vascular endothelial growth factor (VEGF) are elevated compared with
non-diabetic individuals [11–14]. In addition, extracellular matrix proteins and an elevated
expression of genes associated with angiogenesis and apoptosis were identified in fibrovas-
cular membranes extracted from PDR patients during vitrectomy [15]. These analyses have
also helped to identify potential therapeutic targets. Thus, it has been confirmed that VEGF
plays an important role in the development of aberrant neovascularization in diabetic
retinas and that VEGF is a biomarker of microangiopathy in PDR [16]. In addition to
VEGF, increases in the number of apoptotic cells measured by a terminal deoxynucleotidyl
transferase-mediated dUTP nick end labeling (TUNEL) assay, as well as pericyte and
endothelial cell loss, were reported in the retinas of patients with diabetic microvascular
complications [17]. Although studies with human donor tissues are an excellent asset for
improving our understanding of the molecular signaling contributing to DR pathobiol-
ogy, they cannot provide a complete picture of the mechanism of the development of DR.
Moreover, human donor tissues may not be readily available. The use of genetic animal
models addresses these limitations, and they provide an excellent approach to developing
a comprehensive understanding of the cellular pathways associated with DR. While the
choice of the appropriate animal model that mimics all aspects of human DR pathology is
challenging, several models can capture key cellular and physiological events of diabetic
retinopathy in humans. Therefore, in this literature review, we summarize the current status
of the development of animal models used in research focusing on diabetic retinopathy.

2. Experimental Diabetic Retinopathy

One of the key regulators of homeostatic balance within the glucose metabolism in the
body is insulin, which is produced by the beta cells of the pancreas. The insulin receptor–
signaling pathway facilitates the entry of glucose into the cells through the activation of the
protein kinase B (AKT)-mediated glucose transporter (GLUT1). In humans, fasting blood
glucose level (BGL) is maintained in the range of 92–126 mg/dL, while the postprandial
blood glucose level is in the range of 97–140 mg/dL. It is well accepted that under fasting
and postprandial conditions, BGL levels above 126 mg/dL and 180 mg/dL, respectively, are
considered sustained hyperglycemia [18]. It is now accepted that hyperglycemia primarily
drives NPDR, while sustained hypoxia results in the progression of PDR. Thus, based on
these facts, animal models that mimic the pathophysiological events of DR were developed.
These models differ by the approaches used to induce hyperglycemia (pharmaceutical
agents, pancreatectomy, or genetically modified animals [19–23]), their classification in the
phylogenic tree (rat, mouse, rabbit, monkey, zebrafish, dog, pig, cat, and tree shrew), the
observed neuronal and vascular changes, and the activation of cellular signaling (Table 1).



Int. J. Mol. Sci. 2022, 23, 1487 3 of 22

Table 1. Current animal models of diabetic retinopathy.

Hyperglycemia Induction
Method Species Dosage Hyperglycemia References

1. Streptozotocin (STZ)
mouse,

rat, rabbit, tree shrew,
monkey, cat

mouse and rat—intraperitoneal (IP) 40–80 mg/kg
(5 days), mouse—IP 150–200 mg/kg (single

dose), rat—IP 30–80 mg/kg (single dose),
rabbit—intravenous (IV) 110 mg/kg (single

dose), tree shrew—IP 80 mg twice a week apart
and IP 175 mg/kg (single dose).

mouse and rat
approx. 1-week

post-STZ
[24–31]

2. Alloxan mouse,
rat, rabbit, swine, dog

rat-IP 80–140 mg/kg (single dose),
rat-subcutaneous (SC) 80–120 mg/kg (single

dose), dogs-IV 50 mg/kg (single dose).
[27,32–34]

3. Pancreatectomy cat, dog [35–37]

4. High galactose /fat
type 2 diet

mouse,
rat, dog, swine,

zebrafish, monkey
[22,35,38–40]

Spontaneous Hyperglycemia
Mouse Hyperglycemia

1. Ins2Akita mouse: Type I Diabetes Mellitus (DM), mutation in insulin 4 weeks [41,42]

2. Non-obese mouse (NOD): Type I DM, autoimmune model 12 weeks [43,44]

3. db/db (Leprdb) mouse: Type II DM 8–10 weeks [45]

4. Kimba mouse:Transgenic mouse (tr029VEGF) [46]

5. Akimba mouse: Ins2Akita /VEGF (+/−) 4 weeks [47]

Rat Hyperglycemia

1. Biobreeding rats: Type I DM, autoimmune model 3 months [48,49]

2. Wistar Bonn/Kobori (WBN/Kob) rats: Type II DM 9 months [50]

3. Zuker diabetic fatty (ZDF) rats: Type II DM 5–10 weeks [51,52]

4. Otsuka Long-Evans Tokushima fatty (OLETF) rats: Type II DM 5 months [53]

5. Spontaneous diabetic torii (SDT) rats: Type II DM 5 months [54]
Neovascularization

Mouse

1. Oxygen induced retinopathy (OIR) [55]

2. Kimba mouse [46]

3. Akimba mouse [47]

Rat, Canine

1. Oxygen induced retinopathy (OIR) [56–58]

Rabbit

1. Implantation of human recombinant VEGF in the vitreous [59]

Zebrafish

1. Angiogenesis [60,61]

Monkey

1. Implantation of human recombinant VEGF in the vitreous [59]

Induction of Hyperglycemia

The pharmacological induction of hyperglycemia with streptozotocin (STZ) is the
method used most frequently to develop a type 1 diabetes (T1D) model. Antibiotic STZ is
produced by the bacterium Streptomyces achromogens and possesses a broad spectrum of
antibacterial properties. Highly reactive methyl nitrosourea moiety is responsible for its
cytotoxic effect, resulting in pancreatic β cell necrosis, whereas glucose moiety facilitates
its transports to the pancreatic β cells. STZ acts via the GLUT2 receptors abundantly
present on β cell plasma membranes, which make pancreatic β cells a specific target of
STZ [19]. When administered either on five consecutive days or as a single dose, STZ leads
to hyperglycemia [24]. For example, it has been reported that the STZ dosage for multiple
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intraperitoneal (IP) injections ranges from 40 to 80 mg/kg body weight (bw). A single dose
administered within the range of 150–200 mg/kg bw in mice or 30–100 mg/kg bw in rats by
IP injection also induces hyperglycemia [25–28]. In rabbits, intravenous injection (IV) with a
dose of 110 mg/kg bw has been reported to trigger hyperglycemia [29]. In contrast, a single
dose of 175 mg/kg is required to induce hyperglycemia in tree shrews [31]. Interestingly,
the maintenance of fasting or non-fasting conditions before STZ injection does not change
the postinduction hyperglycemic effect of STZ [62]. The hyperglycemia after STZ injection
is usually seen within one to four weeks in most species. In some cases, insulin injections
are necessary for hyperglycemic mice and rats to control the extreme fluctuations in the
BGL, although they are not always necessary for STZ models [24]. An alternative to STZ,
Alloxan, can also be used to induce hyperglycemia. This drug is commonly used in mice,
rats, rabbits, and pigs. A pyrimidine derivative, alloxan, directly targets the beta cells of
the pancreas, causing apoptosis by inhibiting the enzyme glucokinase and subsequently
increasing the BGL due to lack of insulin production [21,35]. In rodent models, alloxan-
induced hyperglycemia can be developed within one week of administration, while it takes
less than a day in dogs [32].

Surgical and diet-induced hyperglycemia are alternative methods to induce exper-
imental hyperglycemia. For example, in canine models, hyperglycemia develops three
to four weeks after the surgery [35,36]. To accelerate the induction of hyperglycemia, the
pharmacological approach can be combined with pancreatectomy. In addition to the above
methods, dietary modifications can cause changes in the BGL. A high glucose/galactose
diet is one such approach. Thus, Engerman and Kern used a high galactose diet to induce
DR in dogs [22]. Other researchers have documented that diet-induced hyperglycemia
leads to the development of DR in mice and rats [35]. However, it is worth mentioning
that this approach can take years to develop DR in dogs and monkeys, while in rodents,
the development of DR occurs much faster [22,38]. Genetic models of hyperglycemia
were generated in rodents and zebrafish carrying gene mutations that lead to spontaneous
hyperglycemia. These models are relatively easy to work with, and economical to develop
and inbreed in controlled environments.

3. Rodent Models of Diabetic Retinopathy

Rat models. There are several spontaneous hyperglycemic rat models, including
bio-breeding (BB) rats developing T1D, Wistar Bonn/Kobori (WBN/Kob), Zucker dia-
betic fatty (ZDF), Otsuka Long-Evans Tokushima fatty (OLETF), and spontaneous dia-
betic Torii (SDT) rats developing T2D. The BB rats manifest autoimmune DM and DR
based on hyperglycemia registered at three months of age and retinal vascular changes at
8–11 months [48,49]. In WBN/Kob male rats, the onset of hyperglycemia occurs at nine
months of age [50]. In contrast, ZDF rats develop hyperglycemia earlier, between 5 and
10 weeks of age. These animals are considered a non-insulin-dependent DM model. They
are obese and carry a missense mutation known as (fa/fa) mutation in the leptin receptor
gene (Lepr). Originally, these rats were derived from the Zucker rats, which are an obesity
disease model [51,52]. Male OLETF rats develop high BGL starting at five months [53]. In
the SDT rat model, detection of glucose in the urine, which is a common sign of glucosuria
and kidney damage in patients, was reported at 20 weeks of age in males and at 45 weeks
of age in females [54].

Mouse models. Ins2Akita, non-obese NOD, Kimba and Akimba mice developing T1D,
and db/db mice developing T2D are the most popular genetic models of DM. Ins2Akita mice
have a point mutation in insulin2 (earlier reported locus Mody4), which causes abnormal
insulin production by the pancreatic cells, leading to pancreatic cell death. The heterozy-
gous Ins2Akita males are progressively hyperglycemic starting at four weeks of age, while
females exhibit mild symptoms of DM. They have an average life span of 305 days and
are primarily a model of early retinal complications caused by diabetes in humans [41,42].
Another model of T1D is the NOD mouse. These mice mimic human autoimmune insulin-
dependent DM and exhibit CD4 and CD8 T cell-mediated autoimmune destruction of the
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pancreas [43,44]. Interestingly, there is a gender-based variability in the timeline for the
development of hyperglycemia in these mice. Thus, 80% of the NOD females develop
hyperglycemia at the age of 12 weeks, while males develop hyperglycemia later, at around
20 weeks of age [44]. The recently developed Kimba mice are a transgenic line (tr029VEGF)
that mimics both NPDR and mild PDR [46]. This model is used for breeding with the
Ins2Akita mice to generate an Ins2Akita/VEGF+/−genotype and is known to be a new model
for the comprehensive study of the mechanism of DR as a complication of T1D [47]. An-
other model, homozygous for the mutation (Leprdb) db/db mice, manifests signs of T2D
and develops hyperglycemia at the age of 8–10 weeks (300 mg/dL B6.BKS(D)-Leprdb/J,
stock#000697) and at the age of 6 weeks (300 mg/dL, BKS.Cg-Dock7m +/+ Leprdb/J, stock#
000642). These mice are widely used because, in addition to hyperglycemia, they model
obesity and metabolic disorders [45].

3.1. Pathological Signs in Rodent Models of Diabetic Retinopathy
3.1.1. Neovascularization and Microvascular Changes in Diabetic Rodents

The most critical pathologic findings of PDR are neovascularization, hemorrhage,
and fibro-vascular proliferation, leading to retinal traction and detachment and vitreous
hemorrhage [63]. Oxygen-induced retinopathy (OIR) in rodents is an accurate and repro-
ducible model of vascular proliferative changes in the retina [55]. Hypoxia-driven vascular
proliferative changes seem to be similar to those seen in the retinopathy of prematurity,
age-related macular degeneration, and diabetic retinopathy. OIR was developed in canine
models for the first time in the early 1950s. In this model, Arnall Patz and colleagues
investigated the effects of hyperoxia on retinal vessel development to study proliferative
retinopathy [56,57]. To develop this model, one-day-old pups were exposed to hyperoxia
for four consecutive days. In the early 1990s, this approach was introduced in rodents by
Dr. Smith and her colleagues and has gained increasing popularity. In addition to OIR
canines and rodents, aberrant angiogenesis has also been reported in zebrafish, rabbit, and
monkey models.

The rodent OIR model is the most common approach to investigating the effect of
hypoxia on the retina since it mimics the characteristics of human retinal proliferative
changes [55,58,64]. Because retinal vasculature develops in the first two weeks of birth
in rodents, researchers can leverage this opportunity to analyze the aberrant vascular
development triggered by hypoxia. In this model, hypoxia is induced at postnatal day (P) 7
after the regression of hyaloid vessels to avoid the development of mixed hyaloidopathy.
The rodent pups were then exposed to hyperoxia (75% oxygen) for five consecutive days
from P7 to P12 and then observed at room air from P13 to P17 [55]. The peak changes
of neovascularization are usually observed at P17, and these are resolved by P25. The
C57BL/6 mice or the Sprague Dawley (SD) rats are the common strains employed in this
model due to their neovascular susceptibility to hypoxia [58,64,65]. The OIR mice devel-
oped irregular blood vessels and a reduction in the retinal inner and deep plexuses at P18,
mimicking retinal proliferative events triggered by hypoxia in patients with diabetic compli-
cations [66]. Downie and colleagues reported an increase in extraretinal neovascularization
and impaired pericyte distribution in the OIR SD rat retinas as early as P18 [67].

Genetically modified Akimba, Akita, and Kimba mice manifest vascular dysfunction.
Akimba mice were specifically developed to study the microvascular changes of DR and
showed these changes at the early age of eight weeks old [47]. Thus, at eight months
of age, these mice developed neovascularization, retinal edema, and detachment that
progressed further through 25 weeks of age [47]. In the Kimba mice, abnormal blood
vessel development was seen as early as P28, while an increase in vascular permeability
and adherent leukocytes was observed at six weeks of age. Additionally, loss of retinal
capillaries, neovascularization, an increased avascular area, alteration in the vessel length,
and pericyte loss were reported from nine weeks to the advanced age of 24 weeks [46,68].
Vascular dysfunction in Ins2Akita mice presents as an increase in leukocytosis at eight
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weeks, compromised vascular permeability at 12 weeks, microaneurysms at six months,
and neovascularization at nine months of hyperglycemia [42,69].

STZ mice also show microvascular changes earlier in the course of diabetes compared
to STZ-induced hyperglycemic rats. For example, vascular permeability detected by
imaging the distribution of fluorescein-conjugated dextran is compromised in these animals
as early as eight days post-STZ injection [70]. However, a decrease in arteriolar diameter and
velocity were reported at four weeks and eight weeks post-STZ injection, respectively [26].
Later in the course of diabetes (six to nine months), the STZ-induced hyperglycemic mice
manifested pericyte loss and developed acellular capillaries [71].

In albino Wistar–Kyoto rats, the blood retinal barrier (BRB) disruption occurs as early
as two weeks post-STZ injection. Several studies reported early neovascular changes such
as adherent leukocytosis and thickening of the basement membrane occurring at 8 and
12 weeks, respectively [8,72,73]. Gong et al. noted that neovascularization in STZ-injected
SD rats can be observed at three to four months after induction of hyperglycemia. An
increase in VEGFR1 and VEGFR2 expression levels was associated with neovascularization
in STZ-induced rats [74]. Similar findings were observed in the Alloxan-induced diabetic
rats; leukocytosis and neovascularization were reported at two and nine months after
induction of hyperglycemia, respectively. At two months of sustained hyperglycemia,
the authors observed pericyte loss, the formation of acellular capillaries, and basement
membrane thickening [75,76]. In contrast, several other studies reported that BB rats with
autoimmune T1D manifested these retinal changes as early as four months, while this
model as well as genetic ZDF and obese OLETF rat models demonstrated BRB breakdown
and pericyte loss at six to eight months [48,49,51,53,77,78]. Overall, these studies imply that
the observed vascular dysfunction could vary in rat models of DR triggered by different
insults. In addition to rats, hyperglycemia induced by a high-fat diet in db/db mice
with T2D also leads to an increase in vascular permeability and basement thickness at
13–14 weeks of hyperglycemia [79,80]. Moreover, these mice also demonstrate pericyte loss,
blood retinal barrier disruption, and vascular leakage at 12 months of age [39].

Neuronal cell death and gliosis are observed in the diabetic retina of animals with dia-
betes. Thus, in hyperglycemic rats, GFAP activation has been reported. STZ injection results
in an increase in GFAP immunoreactivity in the retina as early as six to seven weeks [81]
and as late as 8–16 weeks post-injection [81,82]. Retinal cell loss and functional changes
have also been reported as early as two weeks and as late as 24 weeks post-STZ injection.
Moreover, an increase in apoptotic cell death in the ONL, INL, and RGC layers resulting in
a decrease in the total retinal thickness has been detected between 12 and 16 weeks post-
STZ injections in rats [82,83]. In contrast, necrotic RGC death was reported at four weeks
post-STZ treatment in rats [83]. These rats also manifested severe loss of photoreceptors at
12 and 24 weeks, [83] while in WBN/ Kob rat retinas, photoreceptor degeneration occurs
earlier, at four weeks of age [50]. Our recent study also confirmed RGC function loss and
cell death in STZ-induced hyperglycemic mice at 32 weeks post-injection [84] and tree
shrews at 16 weeks post-injection [31]. In addition to retinal neurons, RPE degeneration
was reported in diabetic retinas. Thus, in four-month-old diabetic BB rats, hyperglycemia
induces RPE degeneration through focal necrosis [85]. In hyperglycemic OLETF rat retinas,
the decrease in the thickness of the RPE layer along with a reduction in the INL and ONL
thicknesses occurs later, at nine months after induction of hyperglycemia [53]. Much later,
at 50 weeks post-hyperglycemia induction, retinal detachment and fibrous proliferation
occurs in Torii (SDT) rats with spontaneous diabetes [54]. In other model of spontaneous
diabetes, ZFD rats, extensive glial activation along with photoreceptor outer segment (POS)
degeneration occurs in 32-week-old retinas [86].The latter agrees with multiple studies
demonstrating the thinning of the INL and IPL in OIR rat pups at P18 [67,84,87,88]. In
addition, the thinning of the inner limiting membrane (ILM) is observed in STZ-induced
SD retinas [85].

In STZ-induced diabetic mice, RGC loss occurs between 6 and 12 weeks [89]. RGC
death occurs through apoptosis. The number of RGC apoptotic positive cells measured
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by TUNEL is 25% higher than that in control retinas [90]. These data are similar to our
observation of about a 30% RGC death with this model, [84] although another study
reported that the RGC density across the retina varies at 20 weeks post-STZ treatment [91].
A few studies with Ins2Akita mice detected early cone photoreceptor cell loss at three
months. The authors observed a significant reduction in the IPL and INL thicknesses along
with a diminishing number of RGCs at 22 weeks and 36 weeks of hyperglycemia [42,92].
Similarly, the OCT analysis of 16- and 28-week-old diabetic db/db mice retinas showed
thinning in the NFL and RGC layer at a rate of 0.104 µm per week, resulting in a reduction
of the total retinal thickness by 28 weeks [91,93]. The 28-week-old diabetic db/db mice
also showed TUNEL positive photoreceptor cells and reduction in the ONL thickness.
STZ-induced hyperglycemia in mice also leads to GFAP overexpression in retinal astrocytes
at five weeks post-STZ treatment, while Müller cell gliosis are not seen even after 15 months
of DM [71,94]. In contrast, the OIR mice demonstrated a reduction in the total retinal, INL,
and IPL thicknesses, as well as distorted photoreceptor OS, neuronal loss, hyperactivity
of Müller cells, and microglial activation at P18 [66]. Our experiments with OIR pups
confirmed these findings [84].

3.1.2. The Detection of Functional Changes of the Neural Retina in Diabetic Rodents

Several studies with diabetic rats have reported ERG findings. First, there is a delay in
the implicit time detected at four to seven weeks post-STZ. Second, a decrease in the a-wave
of the scotopic ERG amplitude was detected at 10 weeks, while the b-wave amplitude was
found to be reduced at 25 weeks after the induction of hyperglycemia [81,95–97]. Similar
ERG findings were observed in SDT rats at 44 weeks post-STZ treatment [98,99] and mice
and rats with proliferative retinopathy at P18 [66,67,87,88]. In the STZ-treated mice, retinal
functional test showed a decrease in the implicit time for OP at 4-6 weeks, reduction in the
scotopic ERG a and b-wave amplitudes at six months and diminished photopic ERG nega-
tive amplitudes at eight months after the induction of hyperglycemia [84,100–102]. More-
over, db/db (Lepr db), Ins2Akita, and high fat diet-induced diabetic mice manifested similar
retinal function changes detected by ERG at 6, 9 and 12 months, respectively [39,69,92,103].

3.2. Cellular Signaling Changes in the Diabetic Rodent Retina
3.2.1. Insulin Signaling in the Diabetic Retina

Basal insulin receptor (IR) signaling has been extensively studied in the STZ-induced
diabetic SD rat retina. It has been observed that the phosphorylation of insulin recep-
tor (IR) in hyperglycemic retinas remained unchanged up to eight weeks post-injection,
whereas PI3K activity was reduced by 25% compared to the controls. At 12 weeks post-
STZ injection, both kinase activity and auto-phosphorylation of the IR were significantly
decreased, suggesting that the basal IR activity is diminished in the diabetic retina. It was
also demonstrated that Akt1 kinase activity was significantly diminished at eight weeks
post-STZ injection, suggesting compromised glucose flux [104]. Kondo and colleagues
observed important differences in insulin signaling between STZ-induced hyperglycemic
mice and db/db mouse models developing DR. Specifically, IR expression and tyrosine
phosphorylation were upregulated the first week post-STZ treatment in mouse retinas, but
no changes were observed in 8- to 10-week-old db/db mice. Moreover, IRS-1 expression
was unaltered, while IRS-2 expression was increased in both db/db and STZ-induced
diabetic mouse retinas. In contrast, a few studies have reported a reduction in IR phos-
phorylation and an increase in the activity of the protein tyrosine phosphatase-1B (PTP1B)
in the rod’s inner segments one-week post-STZ injection in mice [105]. An analysis of
phosphorylated PTP1B in these mouse retinas point to PTP1B as a promising therapeutic
target to delay neurodegeneration in diabetic retinas [106]. Reduced IR kinase activity
at 12 weeks of hyperglycemia was also reported in a study with Ins2Akita mice [42]. The
potential contribution of excess glucose to local impairment of retinal insulin receptors and
AKT activity has been proposed [104]. Our recent study confirmed an excess of glucose in
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diabetic retinas [84]. Moreover, other studies have reported reduced AKT phosphorylation
as an early event in diabetic retinas with T1D [104,107] and T2D [108,109].

3.2.2. Unfolded Protein Response (UPR) and Inflammation in the Diabetic Retina

Endoplasmic reticulum (ER) stress is one of the important features of the molecular
pathobiology of the diabetic retina. Three independent UPR arms became activated during
the ER stress response in diabetic retinas, including PKR-like ER kinase (PERK) and eu-
karyotic translation initiation factor 2α (eIF2α); inositol-requiring protein 1α (IRE1α)-X-box
binding protein 1 (XBP1); and activating transcription factor 6 (ATF6)[110]. Activation of
PERK kinase signaling results in phosphorylation (p) of eukaryotic translation initiation
factor 2α (eIF2α), leading to global translational arrest and upregulation of activating
transcriptional factor 4 (ATF4), C/ERB homologous protein (CHOP), and tribbles homolog
3 (TRIB3) proteins. The triggering of ATF6 is associated with its autophosphorylation,
translocation to Golgi, and cleavage leading to active p-ATF6 transcriptional factor. After
autophosphorylation, IRE1α, possessing both the RNAse and kinase activities, trims the
Xbp1 transcriptional factor, leading to the formation of activated transcriptional factor,
which controls a variety of gene expressions. Cellular stresses such as hypoxia and glucose
imbalance can trigger UPR. ER stress markers are upregulated in diabetic rat retinas as
early as eight weeks after the onset of diabetes induced by STZ in SD rats [111]. Apoptotic
protein caspase 12, CHOP, and phosphorylated c-Jun N-terminal kinase 1 (MAPK) were
dramatically upregulated in these retinas. In addition, the elevation of MAPK kinase was
detected in RGCs [111]. However, the differences in the expression of the upstream and
downstream mediators of PERK signaling, Grp78 and Atf4 genes, respectively, were not
significant in this study. These findings suggest that AFT4 might not be the only signal-
ing molecule responsible for the increased VEGF level in diabetic retinas [112]. Using
immune-histochemical detection, the investigators reported the elevation of HIF-1α, ATF6,
XBP1, and CHOP proteins in STZ-induced diabetic rat retinas at two and four months [82].
This elevation was accompanied by a decrease in the autophagy marker LC3B-II levels,
indicating a potential reduction in autophagy in the diabetic retinas of mice with four
months of hyperglycemia [82]. Pro-apoptotic BAX was detected in hyperglycemic ZFD rat
retinas at six weeks of age [113].

Inducing diabetes and DR by STZ injection in mice, Chung et al. and Zhong et al.
reported the activation of the ER stress response and pro-inflammatory signaling [114,115].
They found that the diabetic mouse retinas manifest increased expression of GRP78, pPERK,
CHOP, VEGF, and peIF2α four weeks after STZ-induced hyperglycemia. Moreover, ATF4
deficiency resulted in altered inflammatory gene expression [115]. In addition to UPR
markers, the above-mentioned study reported that MCP-1 and TNF-α expression simulta-
neously increased in diabetic retinas during the four-week period [114]. Interestingly, this
study also highlighted that UPR signaling could be resolved later in diabetic mouse retinas,
at six weeks post-STZ injection. In contrast, genetically modified Akita mice demonstrated
an increase in p-elF2α and GRP78 proteins (PERK arm) in addition to elevated IRE-1 and
TNFα expression at 12 weeks of age [116,117]. Elevated levels of GRP78, ATF4, and peIF2α
were also found in the OIR model at P15 [117,118] and in 15-month-old db/db (Lepr db)
mice [119]. Moreover, our study showed that limiting ATF4 expression in hypoxic retinas
significantly reduced the degree of neovascularization in the OIR mouse retinas, [118] and
the deficiency in ATF4 could reduce IL-1β in diseased retinas [120].

Our recent study with diabetic TRIB3 KO demonstrated that TRIB3 is a master regula-
tor of insulin signaling and glucose metabolism in the retina (Figure 1). Thus, we revealed
that TRIB3 is induced in diabetic retinas, leading to overexpression of HIF1a, GFAP, VEGF,
GLUT1, and EGFR proteins. In turn, HIF1a regulates GLUT1 expression and, together with
TRIB3, controls the uptake of glucose in the retina. Moreover, TRIB3 mediates the retinal
ganglion cell fate decision, while TRIB3 KO results in neuronal survival and improvement
of vascular health.
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Figure 1. Tribbles homolog 3 (TRIB3) protein controls the development and progression of diabetic
retinopathy. The PERK UPR marker TRIB3 is a known psuedokinase that binds and prevents AKT
phosphorylation by PDK1. In addition, it controls the expression of HIF1α, EGFR, GFAP, and
inflammatory cytokines in cells. In hyperglycemic retinas and retinas of mice with proliferative
retinopathy, TRIB3 is significantly upregulated. This results in overexpression of HIF1α, EGFR,
GFAP, and inflammatory cytokines (Icam1, Nf-kb1, Rc3h1, Zc3h12a, VEGF, COX2, and AIF1, [84]).
In turn, overexpressed HIF1α leads to GLUT1 activation and, together with TRIB3, increases the
influx of glucose, which affects the overall glucose metabolism in diabetic retinas. Aberrant glucose
flux and hyperglycemia in diabetic retinas are responsible for the activation of PKC, HMP, AGE,
and polyol pathways, which eventually leads to chronic UPR activation. TRIB3-mediated pro-
inflammatory cytokine expression results in chronic inflammation, GFAP increase leads to the retinal
gliosis observed in proliferative retinas, and VEGF elevation triggers neovascularization in the late
stages of DR. Image created by Biorender.com, (accessed on 30 May 2021).

Changes in inflammatory gene expression across varied rodent models of DR have
also been reported. For example, six-week-old ZFD rat retinas manifest an increase in
the levels of TNF-α and NF-kB [113]. Inflammatory proteins such as clusterin, the tissue
inhibitor of metalloproteinase (TIMP)-1, β-2 microglobulin, and von Willebrand factor
were overexpressed in the SD rat retinas at four weeks and, particularly, at three months
post-STZ injection. In addition, the overexpression of fibroblast growth factor-2 (FGF2)
was detected in the ONL of diabetic rat retinas at three months post-STZ. It is also worth
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mentioning that inflammatory changes are strain-dependent in diabetic rat models. For
example, compared to Long-Evans and Brown Norway rats, SD rats show inflammatory
changes more similar to those found in human diabetic retinopathy [121]. SD rat pups with
OIR were also reported to overexpress inflammatory markers at P16 [58,64].

Overall, the above-mentioned studies emphasize that alterations in cellular molecular
signaling often precede retinal pathophysiological events. These findings suggest that
dysfunctional insulin signaling, ER stress response, and inflammation are involved in the
pathological progression of DR and can be targeted to develop novel cellular therapies for
DR (Table 2).

Table 2. Cellular signaling, loss of retinal function and integrity in rodent models of diabetic retinopathy.

Molecular Signaling

Model Changes Duration of
Hyperglycemia References

1. STZ Rat

Elevated CHOP, Caspase 12, MAPK retinal cytokines 8 weeks

[82,104,111,121]

Reduced IR kinase activity 8 weeks

Elevated retinal cytokines 3 months

Reduced IR kinase activity and autophosphorylation and
downregulation of IRS-2 & PI3K 3 months

Upregulation of HIF-A, ATF-6, XBP1 4 months

2. ZFD Rat Elevated Bax, TNF-α and NF-kappaB 6 weeks [113]

3. OIR Rat Elevated VEGF, PDEG and TNF-α P16 [58,64]

4. STZ Mouse

Upregulation of GRP78, pPERK, CHOP, VEGF, pEIF2α, retinal
cytokine and TNF-α 4 weeks

[84,105,106,114–117]
Elevated IR expression and tyrosine phosphorylation;

upregulated IRS-2 and reduced PDK1/ AKT protein levels and
phosphorylation

1 week

Reduced IR phosphorylation 1 week

Upregulation of TRIB3 and inflammatory cytokines (Icam1,
Nf-kb1, Rc3h1, Zc3h12a, VEGF, COX2, and AIF1) 4 weeks

5. Ins2Akita
Mouse

VEGF and TNF-α elevation, increased mRNA expression;
protein expression of GRP78 and elevated peIF2α and ATF4 and

reduced IR kinase activity
12 weeks [42,116,117]

6.
Leprdb

(db/db) Mouse

Increased IRS-2 expression and reduced PDK1/ AKT protein
levels and phosphorylation 10 weeks

[116,119]
GFAP activation, increased expression of HIF-A, VEGF, GRP78,

p-IRE-1, CHOP, Casapase-3 and ATF4 15 months

Microangiopathy

Model Changes Duration of
Hyperglycemia References

1. STZ Rat

Blood retinal barrier disruption 2 weeks

[8,72,74]Adherent leukocytes 8 weeks

Thickened Basement Membrane (BM) 12 weeks

Neovascularization 3–4 months

2. Alloxan Rat

Leukocytosis 2 months
[75,76]Neovascularization 9 months

Pericyte loss, acellular capillaries, and BM thickening 12 months

3. BB Rat

Basement membrane thickening 4 months
[48,49,77]

Blood retinal barrier breakdown 6 months

Pericyte loss 8 months

4. ZDF Rat BM thickening, pericyte loss and acellular capillaries 6 months [51,52]

5. OLETF Rat BM thickening, pericyte loss and acellular capillaries 9 months [53,78]
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Table 2. Cont.

Molecular Signaling

Model Changes Duration of
Hyperglycemia References

6. OIR SD Rat Increased extra retinal neovascularization and impaired pericyte
distribution P18 [67]

7. STZ Mouse

Increased vascular permeability 8 days

[26,70,71,84]Decreased arteriolar diameter and velocity 8 weeks

BM thickening 4–15 months

Pericyte loss, acellular capillaries and pericyte ghost 6–9 months

8. Ins2Akita
Mouse

Leukocytosis 8 weeks

[42,69]
Increased vascular permeability 12 weeks

Blood vessels in the outer plexiform layer (OPL) and
microaneurysms 6 months

Acellular capillaries, BM thickening and neovascularization. 9 months

9. Kimba Mouse

Abnormal blood vessel development around photoreceptor P28

[46,68]
Increased vascular permeability and adherent leukocytes 6 weeks

Loss of retinal capillaries, neovascularization, increased
avascular area and alteration in the vessel length 9 weeks

Pericyte loss 24 weeks

10. Akimba Mouse
Microaneurysms, neovascularization, blood vessel constriction,

beading, vessel edema, capillary dropout, and new vessel
formation it the ONL

8 weeks [47]

11. OIR Mouse Irregular blood vessel development and reduced inner retinal
plexus and deep plexus P18 [66]

12. Db/db Mouse

Increased vascular permeability and BM thickening 13–14 weeks
[79,80]Pericyte loss 18 weeks

Acellular capillaries 26 weeks

13. High-fat diet
Mouse

Pericyte loss, blood retinal barrier disruption and vascular
leakage 12 months [39]

Retinal Integrity

Model Changes Duration of
Hyperglycemia References

1. STZ Rat

Decreased pre- and post-synaptic photoreceptor ribbon
synapses 4 weeks

[81–83]Increased GFAP reactivity 6–7 weeks

Loss of ONL, INL, GCL 12–16 weeks

Severe photoreceptor cell loss 24 weeks

2. WBN/Kob Rat
Photoreceptor degeneration 4 weeks

[50]
Severe OS and ONL degeneration 5–14 months

3. BB Rat RPE degeneration 4 months [85]

4. ZDF Rat Decreased OS, damage to amacrine cells and RPE with gliosis 32 weeks [86]

5. OLETF Rat Decreased INL and photoreceptor cells 9 months [53]

6. OIR Rat Reduction in OS, INL, IPL, total retinal thickness, astrocytes and
increased muller activity P18 [67,87]

7. High
galactose Rat

Increased gliosis and reduced INL and
OPL 28 months [85]

8. STZ Mouse

GFAP hyperactivity 5 weeks

[71,84,89,91,94]

Reduced ONL, INL thickness 6–14 weeks

Total retinal thickness reduced 20 weeks

No retinal cell loss and gliosis 8–12 months

Reduced RGCs 8 months
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Table 2. Cont.

Molecular Signaling

Model Changes Duration of
Hyperglycemia References

9. Ins2Akita
Mouse

GFAP hyperactivity 8 weeks

[42,92]Reduced IPL, INL and cone photoreceptors 3 months

Reduced RGCs 22 weeks

Decreased presynaptic and post-synaptic photoreceptor ribbons 36 weeks

10. db/db Mouse
Reduced NFL and RGCs 16-28 weeks

[91,93]
Reduced total retinal thickness 28 weeks

11. Akimba Mouse Photoreceptor cell death 28 weeks [47]

12. OIR Mouse
Total retinal thickness reduction, distorted photoreceptor OS,

neuronal loss, hyperactivity of Müller cells, microglial activation
and disrupted INL and IPL

P17-188 [66,84]

Retinal Electrophysiology

Model Changes Duration of
Hyperglycemia References

1. STZ Rat

Decrease in OP amplitude 2–7 weeks

[81,98,99]Decrease in OP implicit time 7 weeks

Decreased a- and b-wave amplitude 10–12 weeks and
at 44 weeks

2. OIR Rat Decreased a- and b-wave amplitude P18 [67,87,88]

3. STZ Mouse

Reduced OP amplitude and implicit time 4–6 weeks

[84,100–102]Reduced a- and b-wave amplitude 6 months

Reduced PhNR amplitude 8 months

4. Ins2Akita
Mouse Decreased OP amplitude, delay in the OP and decreased b-wave 9 months [42,92]

5. Db/db Mouse Delay in the b-wave, delay in the OP implicit time and
decreased amplitude of both photopic and scotopic b-wave 16–24 weeks [93,103]

6. OIR Mouse Significant decrease in the amplitude of a- and b-wave P18 [66]

7. High-fat diet
Mouse Decreased OP amplitude 12 months [39]

4. Non-Rodent Models of Diabetic Retinopathy

The induction of hyperglycemia and the development of DR in dogs are very often
achieved with a high-galactose diet. These treated dogs develop DR pathology changes sim-
ilar to those found in patients with DR. It is worth mentioning that dogs with STZ-induced
diabetes leading to DR were the first animal models to develop both NPDR and PDR [122].
In these dogs’ retinas, the researchers detected an NPDR marker—pericyte loss—at nine
months post-STZ injections. PDR complications such as hemorrhages, microaneurysms,
basement membrane (BM) thickening, vitreous detachment, and neovascularization usually
develop in this model later—within 28 to 68 months post-STZ treatment [33,122].

Diabetic swine are another model of DR. The retinas of these animals have many simi-
larities to human retinal tissues. Alloxan-induced T1D and diet-induced T2D pig models
are frequently used models of DR. Alloxan treatment leads to the development of pericyte
loss and BRB breakdown at 20 weeks after hyperglycemia in these pig’s retinas [34]. In con-
trast, another study found that Alloxan induces Müller cell contraction-promoting activities
affecting the vitreous at 30 days after induction of hyperglycemia in the swine model [123].
These findings suggest that the swine Müller cell contraction-promoting activity resulting
in retinal detachment at the advanced stages of diabetes is similar to the changes seen
in humans with DR. Another swine model is the combination model of DM and hyper-
cholesteremia (DMHC). This model demonstrated increased BRB permeability, gliosis,
microglial activation, and decreases retinal thickness at 24 weeks [124]. Kleinwort et al.
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reported intraretinal microvascular abnormalities and central retinal edema observed in a
swine model of DR two years after the onset of hyperglycemia [125]. In four-month-old
Ossabaw pigs fed with a western diet (high fat/high fructose corn syrup/high calories),
Lim et al. reported development of chronic DM at 10 weeks. These animals also mani-
fested retinal INL disruption, thickened BM, the formation of pericyte ghosts and acellular
capillaries, and an increase in fibronectin expression at the age of six months [126].

The major drawback of DR studies on large animals is the delay in the development of
histological features, making large animals less attractive species. Hatchell and colleagues
were the first to develop the feline diabetic model using pancreatectomy and monitor them
for nine years with regular checks for hyperglycemia every six months. They reported the
presence of thickened BM at three months, microaneurysms at five years, and neovascu-
larization around 6.5–8 years post-surgery in the diabetic cat retina [37]. Rhesus monkeys
can develop DR through the implantation of 100 µg of human recombinant VEGF [59] or
through STZ-induced hyperglycemia. Retinal pathobiology associated with diabetes in
these animals were observed after six years of hyperglycemia [127].

In addition to large diabetic models, small non-rodent animals manifest some features
of DR after induction of hyperglycemia. For example, tree shrews are closely related to the
primate animals that have cone-dominant retinas. Recently, our group validated tree shrews
as a novel model of T1D manifesting some features of diabetic retinopathy [31]. Thus, we
propose that diabetic tree shrews develop the retinal phenotypes of cone photoreceptor
degeneration and RGC dysfunction, and mimic early stages of hyperglycemia-induced DR.
Besides the fact that this model lays the groundwork for better understanding molecular
pathophysiology of DR in humans, it can be an ideal bridge between the non-human
primate and rodent models of diabetes; it simulates critical pathophysiological aspects of
human DR and could be used to evaluate the effect of systemic pathogenesis of human
diabetes, including the affected pancreas, liver, and kidneys on the development and
progression of DR. A rabbit model was generated by STZ injections, resulting in the
development of DR. Forty percent of diabetic rabbits with an average BGL of 200 mg/dL
develop retinopathies after 135 days of initial STZ injections. Zebrafish von Hippel-Lindau
(vhl) mutants and transgenic zebrafish (Fli-EGFP-Tg) exposed to hypoxic conditions also
manifest features of DM [60,61].

4.1. Pathological Changes in Non-Rodent Animal Models of Diabetic Retinopathy

After 135 days of initial STZ injections, hyperglycemic rabbits developed high-incident
DR, classified as serious vasculopathy with retinal hemorrhages, vascular lesions, and
venous thrombosis, as well as more severe DR, classified as PDR [29]. In another rabbit
model of angiogenesis generated by the implantation of human recombinant VEGF at a
dose of 30 µg, the vitreous showed abnormal tortuous blood vessels followed by vascular
leakage at 14 days and neovascularization in the retina at 21 days of transplantation [59].
In zebrafish exposed to hypoxia, the retina demonstrated new sprouts in the optic capillary
plexus and the formation of capillary tips 12 days post-exposure [60]. Aberrant blood
vessel formation and an increase in VEGF mRNA expression was reported in a genetic
fish model of DR, the mutant vhl zebrafish, at two days post-fertilization [61]. Zebrafish
immersed in a high-glucose solution over a period of 30 days showed irreversible reduction
in the IPL and INL of the retina and thickening of the blood vessels and their basement
membrane [128,129]. The genetic manipulation and easily achievable hypoxic conditions
with this model favors the use of zebrafish as a model for DR.

Primates closely mimic the disease pathology of the human retina. The implantation
of human recombinant VEGF in the rhesus monkey resulted in an increase in vascular
permeability, a breakdown of BRB, and the tortuosity of the blood vessels in the vitreous at
two to three weeks post-treatment [59]. STZ-induced diabetes leads to retinal pathology
after six years of hyperglycemia in monkeys that include the presence of cotton-wool spots,
macular atrophy, arteriolar occlusion, focal intraretinal capillary leakage, and capillary
dilatation [127]. In addition to STZ-induced hyperglycemia, the markers of DR were
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also observed in mild hypertensive rhesus monkeys. Retinopathy in these animals was
categorized into three stages: (1) microvascular abnormality with capillary dropout, (2)
vascular leakage, intraretinal exudates, and cystoid degeneration with cotton wool spots,
and (3) vascular occlusion and retinal atrophy [40]. In obese monkeys with T2D, these
retinal findings develop slowly over a period of 1.25 to 15 years [130]. With aging, diabetic
rhesus monkeys with T2D demonstrated a decline in retinal function measured by mERG
recording; the a-wave of the scotopic ERG and the oscillatory potential were reduced
in animals aged over five years [30]. Interestingly, the development of DR in monkeys
could be achieved more quickly. For example, a recently developed diet-induced primate
model of the marmoset monkey manifested development of DR within 2.5 years. Marmoset
monkeys, which are smaller than rhesus macaques and easier to maintain, develop diabetes-
induced retinal phenotype faster than other monkey models and thus present an excellent
animal model of DR [38]. Table 3 summarizes major pathological changes observed in
non-rodent models of diabetic retinopathy.

Table 3. Pathological changes in non-rodent models of diabetic retinopathy.

Model Pathological Changes Induction of DR References

1. VEGF-induced angiogenesis
Rabbit

Tortuous blood vessels
2 weeks

[59]Vascular leakage

Neovascularization 3 weeks

2. Alloxan Rabbit
Increase in the oxidated proteins and lipids

6 weeks [132]
Decline in p-PI3K/PI3K, p-AKT/AKT and p-GSK3/GSK3 ratios

3. STZ Rabbit
Retinal hemorrhages and venous thrombosis

19 weeks [29]
Vascular lesions

4.
Hypoxic

Zebrafish/vhl-mutant
Zebrafish

Aberrant blood vessel formation 2-days-post-fertilization
(dpf)

[60,61]
Formation of capillary tips and sprouts in optic capillary plexus 12 dpf

Increased mRNA VEGF

5. Hyperglycemic Zebrafish

Increased Vegf, Il-6, Il-1β, Stat3, and Tnfα mRNA expression 3-6 dpf [131]

Reduction in the IPL and INL

30 dpf [128,129]Thickening of the blood vessels

BM thickening

6.
VEGF induced

angiogenesis-Primate

Vascular permeability

2–3 weeks [59]Breakdown of BRB

Tortuosity of the blood vessels

7. STZ Primate

Presence of cotton-wool spots

6 years [127]
Macular atrophy

Arteriolar occlusion

Focal intraretinal capillary leakage

Capillary dilatation

8. Obese Primate
Decreased a-wave of the scotopic ERG

5 years [130]
Reduced oscillatory potential

9. Diet-induced DR Marmoset

Excess vascular permeability.

2.5 years [38]
Increased acellular capillaries and pericyte loss

BM thickening and vessel tortuosity

Thickening of the retinal foveal

Microaneurysms
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Table 3. Cont.

Model Pathological Changes Induction of DR References

10. STZ Tree shrew

Upregulation of TRIB3

16 weeks [31]Upregulation of p-AKT/AKT→ p-mTOR/mTOR

Increased IRS

RGC function loss and cell death

11. STZ Dog

Pericyte loss 9 months

[33,122]

Hemorrhages and microaneurysms

28–68 months
BM thickening

Vitreous detachment

Neovascularization

12. Pancreatectomy Cat

BM thickening 3 months

[37]Microaneurysm 5 years

Neovascularization 6.5–8 years

13. Alloxan Pig Pericyte loss and BRB breakdown 20 weeks [34]

14. STZ Pig
BRB permeability

24 weeks [124]Gliosis and microglial activation

Decrease in retinal thickness

15. High-fat diet Pig

INL disruption

6 months [126]BM thickening

Pericyte ghosts and acellular capillaries

Increase in fibronectin expression

4.2. Cellular Signaling Changes in the Diabetic Retina of Non-Rodent Models

It is worth mentioning that the reports on the alteration of cellular signaling in non-
rodent diabetic retinas are scarce in the PubMed system. Thus, it has been demonstrated
that high glucose triggers the Vegf, Il-6, Il-1β, Stat3, and Tnfα mRNA expression in Zebrafish
retinas that were associated with an increase in TUNEL+ cells in the retina. [131] Rabbits
with T1D mellitus induced by alloxan injection and analyzed at six weeks after induction of
diabetes manifest an increase in the oxidated proteins and lipids, a decrease in enzymatic
activity (catalase, glutathione peroxidase and superoxide dismutase), and a decline in
p-PI3K/PI3K, p-AKT/AKT and p-GSK3/GSK3 ratios [132]. In contrast, our study with
diabetic tree shrews demonstrated that diabetic retinas experience the elevation of TRIB3
and p-AKT/AKT→ p-mTOR/mTOR signaling, whereas the IRS level at 16 weeks of
hyperglycemia was reduced [31]. Although retinal vascular leakage was not observed
in these animals, the retina VEGF level was slightly increased, suggesting that vascular
abnormalities could be detected later in diabetic tree shrews.

5. The Limitation of Animal Models of Diabetic Retinopathy

In this review, we highlighted the differences between various models of DR (Figure 2).
The cellular molecular pathology associated with the long-term development of diabetes
seems not to be uniform across different research groups. For example, Martin and col-
leagues reported retinal cell loss in STZ-treated mouse retinas, while Feit-Leichman and
co-authors observed no changes in the retinas of these diabetic mice [71,90]. These findings
could be attributed to the different strains used for the development of STZ-induced hyper-
glycemia. In addition, although high BGL is consistent across the studies, investigating
groups may use additional injections of STZ to maintain high BGL in experimental animals.
Interestingly, STZ-induced hyperglycemia is gender dependent. Male mice are more prone
to STZ-induced pancreatic damage compared to females because the effect of STZ is in-
hibited by the female hormone estrogen [133]. Saadane and colleagues recently reported
that increasing the STZ dose by almost 36% yields hyperglycemia levels and subsequent
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retinal pathological changes in females similar to those found in males [134]. Despite these
limitations, the chemical induction of hyperglycemia is still the fastest method to induce
diabetes compared with spontaneous T1D and T2D models. The OIR mouse model is
a particularly strain-dependent model, and the maintenance of genetic background in
experimental mice is of the utmost importance [65]. The rodent models, in comparison to
large mammals, provide better accessibility to molecular changes and genetic manipulation,
as well as a shorter time period for the development of diabetes and easier handling. The
only advantage of using primates and other large animals is their close resemblance to
human retinal physiology. Thus, choosing the appropriate animal model for DR research is
a challenging process and requires careful evaluation.
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Figure 2. Animal models of diabetic retinopathy were developed to mimic non-proliferative and pro-
liferative stages of diabetic retinopathy (DR). These models were created by inducing hyperglycemia
or hypoxic conditions. Observed retinal pathophysiological features present neuronal function and
cell loss in addition to vascular dysfunction. These models include rodents, cats, dogs, pigs, non-
human primates, and zebra fish. They are genetically modified and/or pharmacologically-induced
animal models of DR. (ERG-Electroretinogram; ER- Endoplasmic reticulum; ZDF- Zucker diabetic
fatty; OLETF- Otsuka Long-Evans Tokushima fatty; vhl- von Hippel-Lindau).

6. Conclusions

The current review emphasizes several critical factors that should be considered before
making a decision on a suitable animal model of DR. In particular, factors such as the
duration of the study, the methods of induction of hyperglycemia, and the established
molecular and pathophysiological markers of diabetic retinopathy should be considered
carefully. Because not all animal models accurately mimic the diabetic human retinal
pathology, it is important to evaluate the strengths and weaknesses of each animal model
to properly design research experiments.
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