
EXTRA VIEW

Identification of cell cycle-targeting microRNAs through genome-wide screens
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ABSTRACT
By performing nine genome-wide microRNA (miRNA) screens, we recently uncovered a new class of
miRNAs, which target multiple cyclins and cyclin-dependent kinases (CDKs). Systemic delivery of selected
cell cycle-targeting miRNAs to mouse xenograft models resulted in potent anti-tumorigenic effects
without affecting animals’ health. Here, we provide an in-depth description of our miRNA screening
methodology, analyses of selected cell cycle-targeting miRNAs, and discuss why miRNA therapy might be
a viable therapeutic option for cancer patients.

KEYWORDS
cyclins; cyclin-dependent
kinases; cell cycle; cancer;
microRNAs

Introduction

Cyclin-CDK complexes phosphorylate a number of proteins
necessary for progression of cells through the cell cycle. In the
early G1 phase, mitogenic stimulation elevates the levels of
D-type cyclins (cyclins D1, D2 and D3), which bind and acti-
vate the cyclin-dependent kinases CDK4 or CDK6. Later dur-
ing the cell cycle, E-type cyclins (cyclins E1 and E2) activate
CDK2 and contribute to entry of cells into the DNA synthesis
(S phase). Progression through the S phase is driven by cyclin
A2-CDK2 kinase, while cyclin B-CDK1 regulates multiple
mitotic events preceding cell division.1,2

Cyclins and CDKs are frequently overexpressed in human
cancers.1,3-7 Analyses of several murine cancer models revealed
the requirement for specific cyclins and CDKs both in tumor
initiation as well as in tumor maintenance.8-17 This line of
research has recently been translated from bench-to-bedside
through the use of CDK inhibitors in cancer treatment. Two
inhibitors of CDK4 and CDK6, palbociclib and ribociclib have
received approval from US Food and Drug Administration
(FDA) for treatment of hormone receptor-positive advanced or
metastatic breast cancers. The FDA approval was preceded
by clinical trials in which cancer patients receiving CDK4/6
inhibitors experienced prolonged progression-free survival.18-22

The third CDK4/6 inhibitor, abemaciclib, has completed a clin-
ical phase 3 trial for hormone receptor-positive advanced breast
cancer, also resulting in significantly improved progression-free
survival of patients.23 However, when reported, there was
little effect on overall survival, possibly due to compensatory
actions by other cyclins and CDKs in the face of CDK4/6 inhi-
bition.19 Hence, the use of agents targeting multiple cell cycle
factors may offer improved therapeutic efficacy by delaying,

possibly preventing, the emergence of resistant tumor cell
populations.

MicroRNAs (miRNAs), through their property to repress
several different transcripts, might represent suitable tools to
simultaneously target multiple components of the core cell
cycle machinery.24 However, the therapeutic application of
miRNAs in combating diseases, including cancer, has been lim-
ited so far. The major obstacles are related to difficulties with
efficient in vivo delivery and the wide targeting spectrum of
many miRNAs.25-27 Here, we present a follow-up of our recent
study describing identification of a novel class of cell cycle-tar-
geting miRNAs, and their successful therapeutic application in
mouse xenograft models.28

Results

Genome-wide screens for miRNAs regulating 30UTRs
of cyclins and CDKs

To identify miRNAs directly regulating the core cell cycle
machinery, we developed a luciferase-based screening method-
ology in which we cloned the longest annotated 30UTRs of
cyclins D1, D2, D3, E1, E2, CDK1, CDK2, CDK4 and CDK6
into a dual firefy/renilla luciferase reporter vector. Cloned
30UTRs were subsequently stably expressed in U2OS cells,
thereby generating nine different 30UTR reporter cell lines.28

Each reporter cell line expressed the firefly luciferase gene
placed upstream of the respective 30UTR. In addition, cells
expressed the renilla luciferase driven by the SV40 promoter.
In these reporter cell lines, repression of the 30UTR by a partic-
ular miRNA is expected to reduce the firefly luciferase expres-
sion, thereby decreasing the firefly/renilla luciferase ratio.
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In order to validate each reporter cell line, we turned to
miRNAs previously reported to target a particular cyclin or
CDK. For example, numerous miRNAs have been described to
repress cyclin D1 expression, among which miR-15a is particu-
larly well documented.29-35 miR-15a targets two conserved sites
in the distal end of the cyclin D1 30UTR (nucleotides 1961–
1967 and 2033–2040 in cyclin D1 30UTR).36 Premature cleav-
age and polyadenylation of 30UTRs are frequently observed in
tumors and exploited by cancer cells to avoid miRNA regula-
tion.37,38 Indeed, the cyclin D1 transcript has been reported to
harbor premature cleavage and polyadenylation sites in tumor
cells that exclude miR-15a-binding sites.38 We used miR-15a to
evaluate the response of our cyclin D1-30UTR reporter cell line
to miRNA expression. Ectopic expression of miR-15a resulted
in a robust (>2-fold) repression of normalized firefly luciferase
expression (i.e., firefly/renilla ratio) compared to a scrambled
negative miRNA control, with satisfying Z scores (data not
shown).

We next proceeded with screening the entire library of 885
mimic miRNAs, representing essentially all annotated miRNAs
in the human genome at the time our screens were performed
(miRBase v.14), against cyclin D1-30UTR cells. The screen was

carried out in triplicate, with each replicate on a separate plate,
on a total of sixty 96-well plates. miR-15a consistently scored
as one of the top hits regardless of plate identity (Fig. 1A and B,
red dots), confirming the technical robustness of the screen.
This was further visualized by pairwise correlations of the three
replicates from the cyclin D1 screen (Fig. 1C-E). Using a crite-
rion of at least 40% repression, we found that nearly 100 miR-
NAs regulated the cyclin D1 30UTR.28 Similar screens were
performed for miRNAs regulating other major cyclins and
CDKs (a total of nine screens).28

Identification and analyses of cell cycle-targeting miRNAs

By analyzing the results of the nine 30UTR screens, we uncov-
ered a novel, previously unanticipated class of miRNAs target-
ing all or nearly all major cyclins/CDKs and named this group
“cell cycle-targeting miRNAs”.28 We further demonstrated that
cell cycle-targeting miRNAs displayed reduced expression in
several cancer types as compared to the adjacent normal tis-
sue.28 To test for a possible connection between cell cycle-
targeting miRNAs and the levels of cyclins/CDKs in vivo, we
correlated the expression of each miRNA present in our

Figure 1. Screening for miRNAs regulating cyclin D1 30UTR. (A) A scatter plot displaying average firefly to renilla luciferase ratios across all screening plates. Red dots rep-
resent a positive control, miR-15a. Yellow dots represent a negative control. Grey dots represent wells without miRNAs. (B) Rank plot displaying average firefly to renilla
luciferase ratios for all miRNAs present in the library. Red dots represent a positive control, miR-15a. (C-E) Correlation plots of firefly to renilla luciferase ratios between
replicates A, B and C of the cyclin D1 30UTR screen. A simplified version of panel E was previously shown in Figure S1A in Hydbring et al.28
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screening library (885 miRNAs) with transcript levels of nine
cyclins/CDKs in 12 cancer types annotated in the Cancer
Genome Atlas (TCGA). Multi-dimensional scaling analysis
revealed three distinct clusters of miRNAs in relation to cyclin/
CDK mRNAs, with shorter distance between a given miRNA
and a given cyclin/CDK representing stronger anti-correlation
between their expression levels (Fig. 2A). Interestingly, miR-
195-5p, a cell cycle-targeting miRNA identified in our screens,
displayed the strongest average anti-correlation with the levels
of cyclins/CDKs (Fig. 2A, the brown cluster). A more detailed
analysis revealed that of all cancer types analyzed, breast carci-
nomas displayed the strongest cumulative anti-correlation
between miR-195-5p and cyclin/CDK transcript levels
(Fig. 2B).

We further investigated the expression of a panel of cell
cycle-targeting miRNAs in a genetic mouse model of hepatocel-
lular carcinoma, driven by constitutively active b-catenin (a
transcriptional activator of cyclin D139,40) and a receptor tyro-
sine kinase c-Met. In this model, aggressive liver cancer is
induced within 6 weeks following hydrodynamic tail vein injec-
tion of DNA encoding constitutively active b-catenin and c-
Met.41 Mice were euthanized 10 weeks after hydrodynamic tail
vein injections, and liver tumor nodules along with surround-
ing liver tissue were analyzed for expression of eight selected
cell cycle-targeting miRNAs. We observed reduced expression
of all eight miRNAs in tumor nodules compared to non-tumor
tissue (Fig. 2C). Five of these miRNAs displayed reduced
expression in multiple human cancer types,28 indicating that

Figure 2. Analysis of cell cycle-targeting miRNAs. (A) Multi-dimensional scaling (MDS) analysis to visualize anti-correlations between expression levels of cell cycle-target-
ing miRNAs and cyclin/CDK mRNAs (expression data was from TCGA). Grey dots represent all miRNAs, blue dots depict the indicated cyclins and CDKs. The distance
between a miRNA dot and a dot representing a cyclin or a CDK indicates anti-correlation in expression (shorter distance – stronger anti-correlation) for this miRNA and a
given cyclin or CDK. The three clouds are highlighted by hand to visualize clusters naturally arising from the MDS dimension reduction. The plot illustrates that expression
of some miRNAs strongly anti-correlates with multiple cyclins/CDKs. miR-195-5p is highlighted in orange. (B) Cumulative anti-correlations between miR-195-5p expression
levels and transcript levels of the nine cyclin/CDKs. BRCA, breast carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; COAD, colon ade-
nocarcinoma; KIRC, kidney renal carcinoma; LAML, acute myeloid leukemia; LGG, lower grade glioma; LUAD, lung adenocarcinoma; OV, ovarian carcinoma; PRAD, prostate
adenocarcinoma; READ, rectum adenocarcinoma; SKCM, skin cutaneous melanoma; UCEC, uterine corpus endometrial carcinoma. (C) miRNA expression analysis of eight
cell cycle-targeting miRNA in mouse liver tumor nodules (N D 14) and adjacent tissue (N D 6). Mouse hepatocellular carcinoma was induced by hydrodynamic tail vein
injection of DNAs encoding c-Met and constitutive active b-catenin.
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repression of cell cycle-targeting miRNAs may represent a
general molecular mechanism operating in cancer cells.
These results further suggest that a broad dampening of cell
cycle-targeting miRNA expression may contribute to initiation
of tumorigenesis.

Prediction of tumors’ response to cell cycle-targeting
miRNAs

We profiled the response of 122 cancer cell lines from the Cancer
Cell Line Encyclopedia (CCLE) to four cell cycle-targeting

miRNAs, miR-193a-3p, miR-195-5p, miR-214-5p and miR-
890.28 By intersecting our observed response of these cell lines to
cell cycle-targeting miRNAs (i.e., reduction in cell number com-
pared to a scrambled miRNA control) with publicly available
mRNA expression data of these cell lines (from CCLE), we
derived an elastic net regression model to predict the response of
tumors to cell cycle-targeting miRNAs. In order to create this
algorithm, 90 cell lines (out of 117 analyzed) were randomly
selected as training data to learn the relationship between their
gene expression profiles and their response to cell cycle-targeting
miRNAs. The expression of individual genes was first correlated

Figure 3. The work-flow for development of the response prediction algorithm.
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to cell lines’ response to miRNAs, and genes with correlation
coefficient >0.1 were kept to train the elastic net regression
model (Fig. 3). We ran 200 times bootstrap and applied elastic
net model to the resampled data. Each time only a small fraction
of genes had significant coefficients and were retained in the
model. We then counted the number of times a gene was
retained and choose the most frequently (more than 35%)
retained genes as features. Finally, a 10-fold cross-validation was
applied to choose regularization parameters and the final model
was fitted using the whole data set before predicting new samples.

We next tested this algorithm by analyzing global gene
expression of a patient-derived dermatofibrosarcoma protu-
berans. The algorithm ranked miR-193a-3p as the most
potent miRNA against this tumor, out of four tested cell
cycle-targeting miRNAs.28 Indeed, systemic delivery of miR-
193a-3p to mice bearing xenografts of this tumor signifi-
cantly blunted tumor growth in vivo.28 These observations
suggest that our elastic net regression model can be used to
predict the response of patient-derived tumors to cell cycle-
targeting miRNAs.

Cell cycle-targeting miRNAs specifically affect tumor
growth

To evaluate a therapeutic potential of cell cycle-targeting miR-
NAs, we systemically administered two cell cycle-targeting
miRNAs, miR-193a-3p or miR-214-5p, encapsulated into lipi-
doid nanoparticles, to seven mouse xenograft models including
three treatment-refractory patient-derived tumors.28 This
nanoparticle-based delivery resulted in a significant tumor
growth reduction in all of these models, without causing any
detectable adverse effects for animals’ health.28 To analyze
whether this was due to a preferential uptake of miRNA by
tumor cells, we harvested ten organs and tumors from miRNA-
treated animals, and analyzed the levels of this miRNA by RT-
qPCR. Prior to miRNA-administration, xenografted tumors
displayed overall low endogenous levels of cell cycle-targeting
miRNAs, as compared to normal organs (Fig. 4A-B). Following
miRNA delivery, the most significant miRNA uptake was
observed in livers and spleens, whereas the uptake to tumor
cells was less pronounced (Fig. 4A-B). Hence, the therapeutic
effect of cell cycle-targeting miRNAs cannot be explained by
their preferential uptake by tumor cells. We have also deter-
mined that, upon systemic miRNA administration in vivo, the
reduction of cyclin/CDKs levels in tumor cells was comparable
with that in infiltrating normal mouse cells. Likewise, miRNA
transfection into in vitro cultured cells caused a similar reduc-
tion of cyclin/CDK levels in tumor cells and in non-trans-
formed cells (data not shown). These results indicate that the
response of tumor cells to cell cycle-targeting miRNAs is likely
not caused by a preferential depletion of cyclins/CDKs in
tumor cells. Instead, we propose that healthy cells are better
equipped to cope with a reduction in the levels of cell cycle pro-
teins than tumor cells

Discussion

Our recent work28 along with the data presented here high-
lights cell cycle-targeting miRNAs as an attractive therapeutic

option against aggressive human tumors. Using nanoparticle-
based delivery method, we achieved substantial anti-tumor
effects with no detectable toxicity against normal organs. We
believe our approach for miRNA selection and validation, in
particular an unbiased screening strategy, has been essential for
the therapeutic success in vivo.

In our approach, we first identified miRNAs that target
multiple cyclins and CDKs using genome-wide screens.
This potentially could have been done in silico. Indeed, sev-
eral prediction algorithms are available to identify candidate
miRNAs that target a given transcript.24,42-53 Our systematic
miRNA screens confirmed overall a good congruency
between predicted versus observed targeting by miRNAs.28

However, prediction programs often neglect cryptic miRNA
binding sites and are therefore less reliable than the biologi-
cal assays. Indeed, if solely relying on algorithms predicting
miRNA targeting, we would not have been able to uncover
the full range of cell cycle-targeting miRNAs. Moreover, we
followed our screens by profiling selected miRNAs against a
panel of human cancer cell lines, and chose the most potent
ones for in vivo delivery.

Figure 4. Nanoparticle-mediated miRNA uptake in vivo. (A) Expression levels of
endogenous miR-193a-3p (blue bars) and exogenous miR-193a-3p (red bars) in
the indicated normal mouse organs and in tumors derived from HCC1806 and
CAL51 cells, relative to the ubiquitously expressed and highly abundant small RNA
U6. N D at least 3 mice per tumor/organ. This chart was created by re-plotting the
data shown in Figures S6A and S6O, Hydbring et al.28 (B) Expression levels of
endogenous miR-214-5p (blue bars) and exogenous miR-214-5p (red bars) in the
indicated mouse organs and in tumors derived from LoVo and A549 cells, relative
to the ubiquitously expressed and highly abundant small RNA U6. N D at least 3
mice per tumor/organ. Bars displaying endogenous miR-214-5p levels are re-plot-
ted from data shown in Figure S8A, Hydbring et al.28
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We propose that with proper selection strategy, individual
miRNAs may represent very attractive anti-cancer therapeutic
compounds. A therapeutic miRNA can be selected based on tar-
geting multiple proteins within the same pathway, in particular
in pathways that are essential for cancer cells. If desired, a combi-
nation of two or more miRNAs can be used, thereby targeting
parallel pathways. Targeting factors in overlapping biological
pathways is likely to blunt the tumors’ ability to activate compen-
satory mechanisms and result in a durable biological response.
Importantly, tumor-suppressive miRNAs may be downregulated
in tumor cells,25,26 and this may increase tumor cell sensitivity to
their expression. Lastly, miRNAs reduce, but not extinguish
expression of their targets, and this may offer a therapeutic win-
dow of selectively targeting cancer cells. We believe that this
likely explains why normal cells can tolerate expression of cell
cycle-targeting miRNAs better than cancer cells.

A major challenge in therapeutic application of miRNAs is
their limited delivery to solid tumors.25,26,54,55 However, we
achieved significant anti-tumor effects in vivo, despite modest
miRNA uptake into tumor cells. We hypothesize that an
improved delivery of cell cycle-targeting miRNAs might cause a
stronger anti-tumor effect, possibly leading to tumor regression.
Indeed, we observed that high-level overexpression of
cell cycle-targeting miRNAs in several cultured human cancer
cell lines essentially wiped out tumor cells, by triggering tumor
cell death.28 An efficient in vivo administration of miRNAs is dif-
ficult due to their size and double-stranded nature, which requires
complex delivery vehicles. In our study, miRNAs were encapsu-
lated into lipidoid nanoparticles,28 originally developed for deliv-
ery of siRNAs to hepatocytes.56 It is likely that customized
chemical engineering of nanoparticles, including surface coating
using tumor cell- specific ligands,57-60 will significantly improve
miRNA delivery and augment their therapeutic efficacy in vivo.

Materials and methods

Analyses of cell cycle-targeting miRNA levels in mouse
liver tumors

Mouse liver tumor nodules and adjacent tissue were dissected
from mice 10 weeks post hydrodynamic injection of DNA encod-
ing c-Met and constitutive active b-catenin. Hydrodynamic injec-
tions were performed as described previously.41 RNA was
extracted using mirVana miRNA extraction kit (Ambion), accord-
ing to manufacturers instructions. Quantification of cell cycle-tar-
geting miRNAs was performed by proprietary technology at
Firefly Bioworks Inc. Cambridge MA. Signals from quantified
miRNAs were normalized to multiple mouse small nuclear RNAs.
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