
Journal of

Imaging

Article

Determining Chess Game State From an Image

Georg Wölflein ∗ and Ognjen Arandjelović

����������
�������

Citation: Wölflein, G.; Arandjelović,

O. Determining Chess Game State

From an Image. J. Imaging 2021, 7, 94.

https://doi.org/10.3390/

jimaging7060094

Academic Editor: M. Donatello Conte

Received: 30 April 2021

Accepted: 26 May 2021

Published: 2 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Computer Science, University of St Andrews, North Haugh, St Andrews KY16 9SX, Scotland, UK;
oa7@st-andrews.ac.uk
* Correspondence: georg@woelflein.eu

Abstract: Identifying the configuration of chess pieces from an image of a chessboard is a problem
in computer vision that has not yet been solved accurately. However, it is important for helping
amateur chess players improve their games by facilitating automatic computer analysis without
the overhead of manually entering the pieces. Current approaches are limited by the lack of large
datasets and are not designed to adapt to unseen chess sets. This paper puts forth a new dataset
synthesised from a 3D model that is an order of magnitude larger than existing ones. Trained on this
dataset, a novel end-to-end chess recognition system is presented that combines traditional computer
vision techniques with deep learning. It localises the chessboard using a RANSAC-based algorithm
that computes a projective transformation of the board onto a regular grid. Using two convolutional
neural networks, it then predicts an occupancy mask for the squares in the warped image and finally
classifies the pieces. The described system achieves an error rate of 0.23% per square on the test set,
28 times better than the current state of the art. Further, a few-shot transfer learning approach is
developed that is able to adapt the inference system to a previously unseen chess set using just two
photos of the starting position, obtaining a per-square accuracy of 99.83% on images of that new
chess set. The code, dataset, and trained models are made available online.

Keywords: computer vision; chess; convolutional neural networks

1. Introduction

The problem of recovering the configuration of chess pieces from an image of a
physical chessboard is often referred to as chess recognition. Applications span chess
robots, move recording software, and digitising chess positions from images. A particularly
compelling application arises in amateur chess, where a casual over-the-board game may
reach an interesting position that the players may afterwards want to analyse on a computer.
They acquire a digital photograph before proceeding with the game, but once the game
concludes, they must enter the position piece by piece on the computer—a process that
is both cumbersome and error-prone. A system that is able to map a photo of a chess
position to a structured format compatible with chess engines, such as the widely-used
Forsyth–Edwards Notation (FEN), could automate this laborious task.

To this end, we put forth a new synthesised dataset [1] comprising of rendered
chessboard images with different chess positions, camera angles, and lighting setups.
Furthermore, we present a chess recognition system consisting of three main steps: (i) board
localisation, (ii) occupancy classification, and (iii) piece classification. For the latter two
steps, we employ two convolutional neural networks (CNNs), but make use of traditional
computer vision techniques for board localisation.

However, chess sets vary in appearance. By exploiting the geometric nature of the
chessboard, the board localisation algorithm is robust enough to reliably recognise the cor-
ner points of different chess sets without modification. Using this algorithm in conjunction
with careful data augmentation, we can extract sufficient samples from just two unlabelled
photos of a previously unseen chess set (in the starting position) for fine-tuning the CNNs

J. Imaging 2021, 7, 94. https://doi.org/10.3390/jimaging7060094 https://www.mdpi.com/journal/jimaging

https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-0407-7617
https://orcid.org/0000-0002-9314-194X
https://doi.org/10.3390/jimaging7060094
https://doi.org/10.3390/jimaging7060094
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jimaging7060094
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging7060094?type=check_update&version=2

J. Imaging 2021, 7, 94 2 of 16

to adapt the system for inference on that new chess set. The code and trained models are
available at https://github.com/georgw777/chesscog, accessed on 30 May 2021.

2. Previous Work

Initial research into chess recognition emerged from the development of chess robots
using a camera to detect the human opponent’s moves. Such robots typically implement a
three-way classification scheme that determines each square’s occupancy and (if occupied)
the piece’s colour [2–7]. Moreover, several techniques for recording chess moves from
video footage employ the same strategy [8–10]. However, any such three-way classification
approach requires knowledge of the previous board state to deduce the current chess
position (based on the last move inferred from its predictions of each square’s occupancy
and piece colour). While this information is readily available to a chess robot or move
recording software, it is not for a chess recognition system that receives just a single still
image as input. Furthermore, these approaches are unable to recover once a single move
was predicted incorrectly and fail to identify promoted pieces (piece promotion occurs
when a pawn reaches the last rank, in which case the player must choose to promote to a
queen, rook, bishop or knight; vision systems that can only detect the piece’s colour are
unable to detect what it was promoted to).

A number of techniques have been developed to address the issue of chess recognition
from a single image by classifying each piece type (pawn, knight, bishop, rook, queen, and
king) and colour, mainly in the last five years. Since chess pieces are nearly indistinguish-
able from a bird’s-eye view, the input image is usually taken at an acute angle to the board.
While Ding [11] relies on scale-invariant feature transform (SIFT) and histogram of oriented
gradients (HOG) feature descriptors for piece classification, Danner et al. [12] as well as
Xie et al. [13] claim that these are inadequate due to the similarity in texture between chess
pieces, and instead apply template matching to the pieces’ outlines. However, Danner et
al. modify the board colours to red and green instead of black and white to simplify the
problem (similar modifications have also been proposed as part of other systems [3,9]), but
any such modification imposes unreasonable constraints on normal chess games.

Several other techniques have been developed that employ CNNs at various stages
in the recognition pipeline. Xie et al. compare their template matching approach to the
use of CNNs as part of the same work, finding only minor increases in accuracy (though
they trained on only 40 images per class). Czyzewski et al. [14] achieve an accuracy of
95% on chessboard localisation from non-vertical camera angles by designing an iterative
algorithm that generates heatmaps representing the likelihood of each pixel being part of
the chessboard. They then employ a CNN to refine the corner points that were found using
the heatmap, outperforming the results obtained by Gonçalves et al. [7]. Furthermore, they
compare a CNN-based piece classification algorithm to the SVM-based solution proposed
by Ding [11] and find no notable amelioration, but manage to obtain improvements by
reasoning about likely and legal chess positions. Recently, Mehta et al. [15] implemented
an augmented reality app using the popular AlexNet CNN architecture [16], achieving
promising results. Their CNN was trained to distinguish between 13 classes (six types
of pieces in either colour, and the empty square) using a dataset of 200 samples per class.
Despite using an overhead camera perspective, they achieve a per-square accuracy of
93.45% on the end-to-end pipeline (corresponding to a per-square error rate of 6.55%),
which – to the best of our knowledge – constitutes the current state of the art.

A prerequisite to any chess recognition system is the ability to detect the location of the
chessboard and each of the 64 squares. Once the four corner points have been established,
finding the squares is trivial for pictures captured in bird’s-eye view, and only a matter of a
simple perspective transformation in the case of other camera positions. Some of the afore-
mentioned systems circumvent this problem entirely by prompting the user to interactively
select the four corner points [5,7,8,12], but ideally a chess recognition system should be
able to parse the position on the board without human intervention. Most approaches for
automatic chess grid detection utilise either the Harris corner detector [3,10] or a form of

https://github.com/georgw777/chesscog

J. Imaging 2021, 7, 94 3 of 16

line detector based on the Hough transform [4,6,12,17–20], although other techniques such
as template matching [21] and flood fill [9] have been explored. In general, corner-based
algorithms are unable to accurately detect grid corners when they are occluded by pieces,
thus line-based detection algorithms appear to be the favoured solution. Such algorithms
often take advantage of the geometric nature of the chessboard which allows to compute a
perspective transformation of the grid lines that best matches the detected lines [10,13,17].

Adequate datasets for chess recognition—especially at the scale required for deep
learning—are not available as of now, an issue that has been recognised by many [11,14,15].
To this end, synthesising training data from 3D models seems to be a promising avenue
to efficiently generate sizable datasets while eliminating the need for manual annotation.
Wei et al. [22] synthesise point cloud data for their volumetric CNN directly from 3D chess
models and Hou [23] uses renderings of 3D models as input. Yet, the approach of Wei
et al. works only if the chessboard was captured with a depth camera and Hou presents
a chessboard recognition system using a basic neural network that is not convolutional,
achieving an accuracy of only 72%.

3. Dataset

Studies in human cognition show that highly skilled chess players generally exhibit a
more developed pattern recognition ability for chess positions than novices, but this ability
is specific to positions that conform to the rules of chess and are likely to occur in actual
games [24]. To ensure that the chess positions in our synthesised dataset are both legal and
sensible, we randomly sample 2% of all positions (i.e., configurations of chess pieces) from
a public dataset of 2851 games played by current World Chess Champion Magnus Carlsen.
After eliminating duplicates, a total of 4888 chess positions are obtained in this manner,
saved in FEN format, and split into the training (90%), validation (3%), and test (7%) sets.

In order to obtain realistic images of these chess positions, we employ a 3D model of a
chess set on a wooden table. Chess pieces are placed on the board’s squares according to
each FEN description, but are randomly rotated around their vertical axis and positioned
off-centre according to a normal distribution to emulate real conditions. Different camera
angles (between 45° and 60° to the board) and lighting setups (either randomly oriented
spotlights or a simulated camera flash) are chosen in a random process to further maximise
diversity in the dataset, as depicted in Figure 1. The 4888 positions are rendered in an
automated process. With each image, we export as labels the FEN description of the
position as well as the pixel coordinates of the four corner points.

(a) Camera flash (b) Spotlights
Figure 1. Two samples from the synthesised dataset showing both lighting modes.

The dataset contains 104,893 samples of squares occupied by a piece and 207,939
empty squares. In the occupied squares, the most frequent class are black pawns with
27,076 occurrences and the least frequent are black queens with 3133 samples. We make the
full dataset publicly available [1] and include additional labels to benefit further research,
such as the pieces’ bounding boxes.

J. Imaging 2021, 7, 94 4 of 16

4. Proposed Method

This section details the pipeline’s three main stages: (i) board localisation, (ii) occupancy
classification, (iii) piece classification, and then presents a transfer learning approach for
adapting the system to unseen chess sets. The main idea is as follows: we locate the pixel
coordinates of the four chessboard corners and warp the image so that the chessboard forms
a regular square grid to eliminate perspective distortion in the sizes of the chess squares
before cropping them. Then, we train a binary CNN classifier to determine individual
squares’ occupancies and finally input the occupied squares (cropped using taller bounding
boxes) to another CNN that is responsible for determining the piece types. To adapt to
a previously unseen chess set, the board localisation algorithm can be reused without
modification, but the CNNs must be fine-tuned on two images of the new chess set.

4.1. Board Localisation

To determine the location of the chessboard’s corners, we rely on its regular geometric
nature. Each square on the physical chessboard has the same width and height, even
though their observed dimensions in the input image vary due to 3D perspective distortion.
A chessboard consists of 64 squares arranged in an 8× 8 grid, so there are nine horizontal
and nine vertical lines.

4.1.1. Finding the Intersection Points

The first step of the algorithm detects the majority of horizontal and vertical lines
and finds their intersection points. We convert the image to greyscale and apply the
Canny edge detector [25], the result of which is shown in Figure 2b. Next, we perform the
Hough transform [26] in order to detect lines that are formed by the edges which typically
yields around 200 lines, most of which are very similar. Therefore, we split them into
horizontal and vertical lines and then eliminate similar ones. Experiments show that simply
setting thresholds for the lines’ directions is insufficient for robustly classifying them as
horizontal or vertical because the camera may be tilted quite severely. Instead, we employ
an agglomerative clustering algorithm (a bottom-up hierarchical algorithm where each line
starts off in its own cluster and pairs of clusters are continually merged in a manner that
minimises the variance within the clusters), using the smallest angle between two given
lines as the distance metric. Finally, the mean angle of both top-level clusters determines
which cluster represents the vertical and which the horizontal lines (see Figure 2c).

To eliminate similar horizontal lines, we first determine the mean vertical line in the
vertical cluster. Then, we find the intersection points of all the horizontal lines with the
mean vertical line and perform a DBSCAN clustering [27] to group similar lines based on
these intersection points, retaining only the mean horizontal line from each group as the
final set of discovered horizontal lines. We apply the same procedure vice-versa for the
vertical lines, and compute all intersection points.

(a) Original image (b) Detect edges
Figure 2. Cont.

J. Imaging 2021, 7, 94 5 of 16

(c) Detect lines and cluster as horizontal/vertical
(blue/green) lines

(d) Eliminate similar lines and compute intersec-
tion points (red)

Figure 2. The process of determining the intersection points on the chessboard.

4.1.2. Computing the Homography

It is often the case that we detect fewer than nine horizontal and vertical lines (like in
Figure 2d), thus we must determine whether additional lines are more likely to be above or
below the known horizontal lines (and likewise to the left or right of the known vertical
lines). Instead of computing where the candidate lines would be in the original image, it is
easier to warp the input image so that the intersection points form a regular grid of squares
(which must be done for cropping the samples for the occupancy and piece classifiers later
anyway) and then to reason about that warped image because the missing lines will lie
on that grid. This projective transformation is characterised by a homography matrix H
that we find using a RANSAC-based algorithm that is robust even when lines are missing
(or additional lines are detected from straight edges elsewhere in the image) and shall be
described below:

1. Randomly sample four intersection points that lie on two distinct horizontal and
vertical lines (these points describe a rectangle on the chessboard).

2. Compute the homography matrix H mapping these four points onto a rectangle of
width sx = 1 and height sy = 1. Here, sx and sy are the horizontal and vertical scale
factors, as illustrated in Figure 3.

3. Project all other intersection points using H and count the number of inliers; these
are points explained by the homography up to a small tolerance γ (i.e., the Euclidean
distance from a given warped point (x, y) to the point (round(x), round(y)) is less
than γ).

4. If the size of the inlier set is greater than that of the previous iteration, retain this inlier
set and homography matrix H instead.

5. Repeat from step 1 for sx = 2, 3, . . . , 8 and sy = 2, 3,, 8 to determine how many
chess squares the selected rectangle encompasses.

6. Repeat from step 1 until at least half of the intersection points are inliers.
7. Recompute the least squared error solution to the homography matrix H using all

identified inliers.

Next, we warp the input image and inlier intersection points according to the com-
puted homography matrix H, obtaining a result like in Figure 4a. The intersection points
are quantised so that their x and y coordinates are whole numbers because each chess
square is now of unit length. Let xmin and xmax denote the minimum and maximum of the
warped coordinates’ x-components, and similarly ymin and ymax denote the same concept
in the vertical direction.

J. Imaging 2021, 7, 94 6 of 16

x

y

(a) Region from the original image

sx

sy

x

y

(b) Warped image

Figure 3. Four intersection points are projected onto the warped grid. The optimal values for the
scale factors sx and sy are chosen based on how many other points would be explained by that choice,
in order to determine the actual number of horizontal and vertical chess squares in the rectangular
region from the original image. In this example, the algorithm finds sx = 3 and sy = 2.

(a) Intersection points from Fig-
ure 2d warped onto a regular
grid

(b) Horizontal gradient intensi-
ties as computed by the Sobel
operator

(c) Result of Canny edge detec-
tion on the horizontal gradient
image

Figure 4. Horizontal gradient intensities calculated on the warped image in order to detect vertical
lines. The red dots overlaid on each image correspond to the intersection points found previously.
Here, xmax − xmin = 7 because there are eight columns of points instead of nine (similarly, the
topmost horizontal line will be corrected by looking at the vertical gradient intensities).

If xmax − xmin = 8, we detected all lines of the chessboard and no further processing
is needed. When xmax − xmin < 8, as is the case in Figure 4a, we compute the horizontal
gradient intensities for each pixel in the warped image in order to determine whether
an additional vertical line is more likely to occur one unit to the left or one unit to the
right of the currently identified grid of points. To do so, we first convolve the greyscale
input image with the horizontal Sobel filter in order to obtain an approximation for the
gradient intensity in the horizontal direction (Figure 4b). Then, we apply Canny edge
detection in order to eliminate noise and obtain clear edges (Figure 4c). Large horizontal
gradient intensities give rise to vertical lines in the warped image, so we sum the pixel
intensities in Figure 4c along the vertical lines at x = xmin − 1 and x = xmax + 1 (with
a small tolerance to the left and to the right). Then, if the sum of pixel intensities was
greater at x = xmin − 1 than at x = xmax + 1, we update xmin ← xmin − 1, or otherwise
xmax ← xmax + 1. We repeat this processs until xmax − xmin = 8. An analogous procedure
is carried out for the horizontal lines with ymin and ymax. Finally, these four values describe
the two outer horizontal and vertical lines of the chessboard in the warped image. The
optimal parameters for the Hough transform and Canny edge detectors described in this
section are found using a grid search over sensible parameters on a small subset of the
training set.

J. Imaging 2021, 7, 94 7 of 16

4.2. Occupancy Classification

We find that performing piece classification directly after detecting the four corner
points with no intermediate step yields a large number of false positives, i.e., empty squares
being classified as containing a chess piece (see Figure 5). To solve this problem, we first
train a binary classifier on cropped squares to decide whether they are empty or not.
Cropping the squares from the warped image is trivial because the squares are of equal
size (see Figure 6).

Figure 5. An example illustrating why an immediate piece classification approach is prone to report-
ing false positives. Consider the square marked in green. Its bounding box for piece classification
(marked in white) must be quite tall to accomodate tall pieces like a queen or king (the box must be
at least as tall as the queen in the adjacent square on the left). The resulting sample contains almost
the entire rook of the square behind, leading to a false positive.

(a) All 40 empty samples (b) All 24 occupied samples

Figure 6. Samples for occupancy classification generated from the running example chessboard
image. The squares are cropped with a 50% increase in width and height to include contextual
information.

We devise six vanilla CNN architectures for the occupancy classification task, of which
two accept 100× 100 pixel input images and the remaining four require the images to be
of size 50× 50 pixels. They differ in the number of convolutional layers, pooling layers,
and fully connected layers. When referring to these models, we use a 4-tuple consisting
of the input side length and the three aforementioned criteria. The final fully connected
layer in each model contains two output units that represent the two classes (occupied and
empty). Figure 7 depicts the architecture of CNN (100, 3, 3, 3) which achieves the greatest
validation accuracy of these six models. Training proceeds using the Adam optimiser [28]
with a learning rate of 0.001 for three whole passes over the training set using a batch size
of 128 and cross-entropy loss.

J. Imaging 2021, 7, 94 8 of 16

16 96

conv1

32 44

conv2

64 20

conv3

10
00

fc1

25
6

fc2

2

fc3

Figure 7. Architecture of the CNN (100, 3, 3, 3) network for occupancy classification. The input is a
three-channel RGB image with 100× 100 pixels. The first two convolutional layers (yellow) have a
kernel size of 5× 5 and stride 1 and the final convolutional layer has a kernel size of 3× 3. Starting
with 16 filters in the first convolutional layer, the number of channels is doubled in each subsequent
layer. Each convolutional layer uses the ReLU activation function and is followed by a max pooling
layer with a 2× 2 kernel and stride of 2. Finally, the output of the last pooling layer is reshaped to a
640,000-dimensional vector that passes through two fully connected ReLU-activated layers before
reaching the final fully connected layer with softmax activation.

Apart from the vanilla architectures, we fine-tune deeper models (VGG [29], ResNet [30],
and AlexNet [16]) that were pre-trained on the ImageNet [31] dataset. The final layer of
each pre-trained model’s classification head is replaced with a fully-connected layer that
has two output units to classify ‘empty’ and ‘occupied’ squares. Due to the abundance of
data in the training set, we train the classification head for one epoch with a learning rate
α = 10−3 (while the other layers are frozen), followed by the whole network for two epochs
with α = 10−4.

4.3. Piece Classification

The piece classifier takes as input a cropped image of an occupied square and outputs
the chess piece on that square. There are six types of chess pieces (pawn, knight, bishop,
rook, queen, king), and each piece can either be white or black in colour, thus there are a
dozen classes.

Some special attention is directed to how the pieces are cropped. Simply following
the approach described in the previous section provides insufficient information to classify
pieces. Consider for example the white king in Figure 5: cropping only the square it is
located on would not include its crown which is an important feature needed to distinguish
between kings and queens. Instead, we employ a simple heuristic that extends the height
of bounding boxes for pieces further back on the board, and also the width depending on
its horizontal location. As a further preprocessing step, we horizontally flip the bounding
boxes of pieces on the left side of the board to ensure that the square in question is always
in the bottom left of the image. This helps the classifier understand what piece is being
referred to in samples where the larger bounding box includes adjacent pieces in the image.
Figure 8 shows a random selection of samples generated in this way.

We train a total of six CNNs with 12 output units in the final layer for the piece
classification task. For the pre-trained models, we follow the same two-stage training
regime, but double the number of epochs at each stage compared to the previous section.
Furthermore, we evaluate one more architecture, InceptionV3 [32], which shows a greater
potential in light of this much more challenging task. The remaining two models are the
two best-performing CNNs from the previous section. We pick the model with the highest
accuracy score on the validation set to be used in the chess recognition pipeline.

J. Imaging 2021, 7, 94 9 of 16

Figure 8. A random selection of six samples of white queens in the training set. Notice that the
square each queen is located on is always in the bottom left of the image and of uniform dimensions
across all samples.

4.4. Fine-Tuning to Unseen Chess Sets

Chess sets vary in appearance. CNNs trained on one chess set are likely to perform
poorly on images from another chess set because the testing data is not drawn from the
same distribution. Due to the inherent similarities in the data distributions (the fact that
both are chess sets and that the source and target tasks are the same), we are able to employ
a form of few-shot transfer learning; that is, using only a small amount of data in order to
adapt the CNNs to the new distribution.

An advantage of our approach to board localisation is that it requires no fine-tuning
to different chess sets because it employs conventional computer vision techniques such as
edge and line detection. Therefore, we can fine-tune the CNNs without a labelled dataset:
just two pictures of the starting position on the chessboard suffice (one from each player’s
perspective) because the configuration of pieces is known (the starting position is always
the same), as shown in Figure 9. We can localise the board and crop the squares using the
method described in Section 4.1 to generate the training samples for fine-tuning the CNNs.

(a) White player’s perspective (b) Black player’s perspective

Figure 9. The two images of the unseen chess set used for fine-tuning the chess recognition system.
The images require no labels because they show the starting position from each player’s perspective,
thus the chess position is known. Note that unlike the large dataset used for initial training, this
dataset contains photos of a real chessboard, as opposed to rendered images.

Since there are only two input images, the occupancy classifier must be fine-tuned
using only 128 samples (each board has 64 squares). Moreover, the piece classifier has
only 64 training samples because there are 32 pieces on the board for the starting position.
While the CNN for occupancy detection is a binary classifier, the piece classifier must
undertake the more challenging task of distinguishing between a dozen different piece
types. Furthermore, the data is not balanced between the classes: for example, there are
16 training samples for black pawns, but only two for the black king, and some pieces are

J. Imaging 2021, 7, 94 10 of 16

more difficult to detect than others (pawns usually look similar from all directions whereas
knights do not). For the reasons listed above, we employ heavy data augmentations for
the piece classifier at training time. We shear the piece images in such a way that the
square in question remains in the bottom left of the input image. Of all augmentations, this
transformation exhibits the most significant performance gains, likely due to its similarity to
actual perspective distortion. We also employ random colour jittering (varying brightness,
contrast, hue, and saturation), scaling, and translation. Figure 10 depicts a random sample
of four outputs obtained by applying the augmentations to a cropped input image of the
pawn on d2 in Figure 9a.

Figure 10. The augmentation pipeline applied to an input image (left). Each output looks different
due to the random parameter selection.

To fine-tune the networks, we follow a two-stage approach similar to the previous
sections (where the models were pre-trained on ImageNet). First, we train only the classifi-
cation head with a learning rate of 0.001, and then decrease the learning rate by a factor of
ten and train all layers. In the case of the occupancy classifier, we perform 100 iterations over
the entire training set at both stages, essentially following the same regime as Section 4.2.
For the piece classifier, we execute an additional 50 iterations in the second stage to ensure
reliable convergence. The loss curve is not as smooth as in the previous sections due to the
small dataset, but training is still able to converge to a low loss value.

5. Results and Discussion
5.1. Board Localisation

To evaluate the performance of the board localisation algorithm, we counted a predic-
tion as accurate if the distance of each of the four predicted corner points to the ground
truth was less than 1% of the width of the input image. The algorithm produced inaccurate
predictions in 13 cases out of 4400 samples in the training set, so its accuracy was 99.71%.
The validation set of size 146 saw no mistakes and thus achieved an accuracy of 100.00%.
As such, we concluded that the chessboard corner detection algorithm did not overfit as a
result of the grid search.

5.2. Occupancy and Piece Classification

Each occupancy classifier was trained separately on the dataset of squares that were
cropped to include contextual information (by increasing the bounding box by 50% in
each direction, as explained in Figure 6), and again on the same samples except that the
squares were cropped tightly. Key performance metrics for each model are summarised
in Table 1. In each case, the model trained on the samples that contained contextual
information outperformed its counterpart trained on tightly cropped samples, indicating
that the information around the square itself was useful. The ResNet model achieved the
highest validation accuracy (99.96%) of all evaluated architectures.

J. Imaging 2021, 7, 94 11 of 16

Table 1. Performance of the trained occupancy classifiers. Models prefixed with “CNN” are vanilla
CNNs where the 4-tuple denotes the side length of the square input size in pixels, the number of
convolution layers, the number of pooling layers, and the number of fully connected layers. The
check mark in the left column indicates whether the input samples contained contextual information
(cropped to include part of the adjacent squares). We report the total number of misclassifications on
the validation set (consisting of 9346 samples) in the last column. The differences between training
and validation accuracies indicate no overfitting.

Model # Trainable
Parameters

Train
Accuracy

Val
Accuracy

Val
Errors

3 ResNet [30] 1.12× 107 99.93% 99.96% 4
3 VGG [29] 1.29× 108 99.96% 99.95% 5
7 VGG [29] 1.29× 108 99.93% 99.94% 6
7 ResNet [30] 1.12× 107 99.94% 99.90% 9
3 AlexNet [16] 5.7× 107 99.74% 99.80% 19
7 AlexNet [16] 5.7× 107 99.76% 99.76% 22
3 CNN (100, 3, 3, 3) 6.69× 106 99.70% 99.71% 27
3 CNN (100, 3, 3, 2) 6.44× 106 99.70% 99.70% 28
7 CNN (100, 3, 3, 2) 6.44× 106 99.61% 99.64% 34
3 CNN (50, 2, 2, 3) 4.13× 106 99.62% 99.59% 38
3 CNN (50, 3, 1, 2) 1.86× 107 99.67% 99.56% 41
3 CNN (50, 3, 1, 3) 1.88× 107 99.66% 99.56% 41
3 CNN (50, 2, 2, 2) 3.88× 106 99.64% 99.54% 43
7 CNN (50, 2, 2, 3) 4.13× 106 99.57% 99.52% 45
7 CNN (100, 3, 3, 3) 6.69× 106 99.55% 99.50% 47
7 CNN (50, 3, 1, 2) 1.86× 107 99.44% 99.50% 47
7 CNN (50, 2, 2, 2) 3.88× 106 99.54% 99.44% 52
7 CNN (50, 3, 1, 3) 1.88× 107 99.41% 99.39% 57

The fine-tuned deeper models performed better than the vanilla CNNs, although
the differences in accuracy were small and every model achieved accuracies above 99%.
This is likely due to the increased number of trainable parameters (up to two orders of
magnitude higher than the simple CNNs), the use of transfer learning, and the more
complex architectural designs. Nonetheless, it is evident in Table 1 by comparing the
training and validation accuracies that none of the models suffered from overfitting which
is not suprising given the size of the dataset. We selected the ResNet model for use in the
chess recognition pipeline because it attained the highest validation accuracy score.

For piece classification, the results in Table 2 indicate a more significant difference
between the hand-crafted CNNs and the deeper models (around three percentage points)
than is the case for the occupancy classifier. The InceptionV3 model achieved the best
performance with a validation accuracy of 100%, i.e., there were no misclassifications in
the validation set, so we adopted that model in the chess recognition pipeline.

Table 2. Performance of the trained piece classifiers.

Model # Trainable
Parameters

Train
Accuracy

Val
Accuracy

Val
Errors

InceptionV3 [32] 2.44× 107 99.98% 100.00% 0
VGG [29] 1.29× 108 99.84% 99.94% 2

ResNet [30] 1.12× 107 99.93% 99.91% 3
AlexNet [16] 5.71× 107 99.51% 99.02% 31

CNN (100, 3, 3, 2) 1.41× 107 99.62% 96.94% 97
CNN (100, 3, 3, 3) 1.44× 107 99.49% 96.90% 98

J. Imaging 2021, 7, 94 12 of 16

5.3. End-to-End Pipeline

The left side of Table 3 lists key evaluation metrics of the end-to-end pipeline on the
train, validation, and test sets of the rendered dataset. There was no indication of overfitting
because there were only slight differences in the results of the train and test sets. The two
CNNs performed on par or even better on the held-out test set than the training set, and
likewise did the corner detection algorithm. However, these differences—albeit slightly
suprising—were negligible due to their insignificant magnitudes; in fact, the performance
on the validation set was even higher than on the test set.

Table 3. Performance of the chess recognition pipeline on the train, validation, and test datasets, as
well as the fine-tuned pipeline on the unseen chess set.

Rendered Dataset Unseen Chess Set

Metric Train Val Test Train Test

mean number of incorrect squares per board 0.27 0.03 0.15 0.00 0.11
percentage of boards predicted with no mistakes 94.77% 97.95% 93.86% 100.00% 88.89%
percentage of boards predicted with ≤1 mistake 99.14% 99.32% 99.71% 100.00% 100.00%
per-square error rate 0.42% 0.05% 0.23% 0.00% 0.17%
per-board corner detection accuracy 99.59% 100.00% 99.71% 100.00% 100.00%
per-square occupancy classification accuracy 99.81% 99.97% 99.92% 100.00% 99.88%
per-square piece classification accuracy 99.99% 99.99% 99.99% 100.00% 99.94%

The end-to-end per-board accuracy on the test set was 93.86%, and when allowing
just one mistake on the board, that accuracy increased to 99.71%. Comparing that first
accuracy figure to the training set, there was a decrease of almost one percentage point
which might seem peculiar because the three main stages each performed better or on par
with the scores of the training set. However, this is explained by the fact that the system
had more incidences with two or more misclassified squares in the training set than the
test set.

The average number of misclassified squares per board lay at 0.15 on the test set as
compared to 0.27 on the training set. The confusion matrix in Figure 11 facilitates a more
detailed analysis of the mistakes. The last row and column, representing the class ‘empty
square’, contain the greatest number of incorrect samples which is a result of the worse
performance of the occupancy classifier compared to the piece classifier. However, one
must also take into account that the occupancy classifier had a more difficult task in this
regard, since it had to determine whether a square was empty even when it was occluded
by a piece in front of it. The piece classifier (which had an accuracy of 99.99%) yielded only
three errors: in two cases it confused a knight with a bishop, and in one case a pawn with a
rook. These results on the test set clearly demonstrate that the chess recognition system
was highly accurate.

For a chess recognition system to be practically effective, it must also be able to perform
an inference in a reasonable amount of time. To test this, we recorded the execution time
for each of the test set samples on a Linux machine with a quad-core 3.20 GHz Intel Core
i5-6500 CPU and a 6 GB NVIDIA GeForce GTX 1060 GPU. We conducted this experiment
twice: once with GPU acceleration and once without. Figure 12 shows that the pipeline
was around six times faster when utilising the GPU. This is to be expected because the
forward pass through the neural network was optimised for parallel computation on a
GPU. Therefore, execution time of the occupancy and piece classifiers was significantly
lower on the GPU, whereas the board localisation (which ran on the CPU regardless) took
a similar amount of time across both trials. Overall, the mean inference time was less
than half a second on the GPU and just over 2 seconds on the CPU, although the latter
measurement exhibited a significantly greater variance. The speed was sufficient for most
practical purposes, and the GPU-accelerated pipeline may even be suited for real-time
inference at two frames per second on just one GPU. Lastly, it should be noted that the
occupancy classifier needed just a fraction of the time required by the piece classifier. This

J. Imaging 2021, 7, 94 13 of 16

can be explained by the more complex architecture of the InceptionV3 [32] network as
opposed to the ResNet [30] model and the greater input size which resulted in the number
of parameters being twice as high in the piece classifier.

predicted

P N B R Q K p n b r q k
ac

tu
al

P 1894 0 0 1 0 0 0 0 0 0 0 0 1

N 0 334 2 0 0 0 0 0 0 0 0 0 0

B 0 0 392 0 0 0 0 0 0 0 0 0 0

R 0 0 0 520 0 0 0 0 0 0 0 0 0

Q 0 0 0 0 229 0 0 0 0 0 0 0 1

K 0 0 0 0 0 341 0 0 0 0 0 0 0

p 0 0 0 0 0 0 1878 0 0 0 0 0 2

n 0 0 0 0 0 0 0 355 0 0 0 0 0

b 0 0 0 0 0 0 0 0 378 0 0 0 0

r 0 0 0 0 0 0 0 0 0 511 0 0 0

q 0 0 0 0 0 0 0 0 0 0 229 0 0

k 0 0 0 0 0 0 0 0 0 0 0 341 0

3 0 0 0 0 0 9 1 0 0 0 0 14402

Figure 11. Confusion matrix of the per-square predictions on the test set. Non-zero entries are
highlighted in grey. The final row/column represents empty squares. Chessboard samples whose
corners were not detected correctly are ignored here.

J. Imaging 2021, 7, 94 14 of 16

0 0.5 1 1.5 2 2.5 3 3.5

GPU

CPU 2.11± 0.64

0.35± 0.06

mean inference time per sample (seconds)
ha

rd
w

ar
e

board localisation occupancy classification piece classification

Figure 12. Inference time benchmarks of the chess recognition pipeline on the test set, averaged per
sample. The error bars indicate the standard deviation. All benchmarks were carried out on the same
machine, although the data for the trial labelled CPU was gathered without GPU acceleration.

5.4. Unseen Chess Set

In order to evaluate the effectiveness of the approach outlined in Section 4.4, we created
a dataset of images captured from a physical chess set. As explained earlier, the training set
consisted only of the two pictures of the starting position that are depicted in Figure 9. The
test dataset consisted of 27 images obtained by playing a game of chess (using the same chess
set as in Figure 9) and taking a photo of the board after each move from the perspective of
the current player. These samples were manually labelled with FEN strings describing the
position.

While the fine-tuned occupancy classifier achieved a good validation accuracy out
of the box, the piece classifier performed quite poorly without data augmentations at
training time. The use of data augmentation resulted in a net increase in the accuracy of
the position inference by 45 percentage points (from 44% without data augmentation to
89% with augmentation). Furthermore, the mean number errors per position decreased
from 2.3 squares to 0.11 squares.

Key indicators for evaluating the performance of the chess recognition pipeline using
the newly fine-tuned models on the transfer learning dataset are summarised in the two
right columns of Table 3. The baseline approach (the chess recognition pipeline without
fine-tuning to this new dataset) misclassified an average of 9.33 squares per board, whereas
the fine-tuned system misclassified only 0.11 on the test set. Furthermore, the baseline
identified no positions without mistakes whereas the fine-tuned system correctly identified
89% of the 27 positions. The remaining 11% of positions were identified with just one
mistake. In other words, there were only three errors in all 27 samples in the test set. The
results show how the use of transfer learning with careful data augmentation enabled the
chess recognition pipeline to be adapted to a real-world chess set.

As a sanity check, we displayed a warning to the user if the predicted FEN string was
illegal according to the rules of chess, prompting the user to retake the picture. All three of
the incorrectly predicted positions were illegal positions, so these errors would be caught
in practice. However, in the test set of the synthesised dataset, 21 of the 342 positions were
identified incorrectly, and only one of these 21 predictions was illegal, so the other 20 errors
would only be caught by manual inspection.

6. Summary and Conclusions

Motivated by the cumbersome process of transferring a chess position from the board
to the computer in order to facilitate computer analysis, this paper presents an end-to-end
chess recognition system that outperforms all existing approaches. It correctly predicts
93.86% of the chess positions without any mistakes, and when permitting a maximum
of one mistake per board, its accuracy lies at 99.71%. The system achieves a per-square
accuracy of 99.77% on the test set, thus reducing the per-square error rate of the current
state of the art [15] by a factor of 28 from 6.55% to 0.23%. However, due to the lack of any
published datasets for chess recognition (an issue recognised by several others [11,14,15]),
we were unable to evaluate our system on their datasets, and could thus only compare the

J. Imaging 2021, 7, 94 15 of 16

reported accuracy scores. To benefit future research and facilitate fair benchmarks, we put
forth a new and much larger synthesised dataset with rich labels (containing over 3000
samples for each piece type as compared to 200 in Mehta et al.’s dataset [15]) and make it
available to the public [1].

Furthermore, we develop the first few-shot transfer learning approach for chess
recognition by demonstrating that with only two photos of a new chess set, the pipeline can
be fine-tuned to a previously unseen chess set using carefully chosen data augmentations.
On a per-square basis, that fine-tuned algorithm reaches an error rate of 0.17%, even
surpassing the accuracy of the current state of the art system mentioned above which was
trained on a lot more than two images. All code used to run experiments is available so
that the results can be reproduced independently.

Author Contributions: G.W. and O.A. conceived and designed the technical method and the ex-
periments; G.W. implemented the algorithm in code and performed the experiments; G.W. and
O.A. analysed the results; G.W. and O.A. wrote the article. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The synthesised dataset presented in this article is openly available in
the Open Science Framework at 10.17605/OSF.IO/XF3KA [1].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wölflein, G.; Arandjelović, O. Dataset of Rendered Chess Game State Images; OSF, 2021; [CrossRef]
2. Urting, D.; Berbers, Y. MarineBlue: A Low-Cost Chess Robot. In International Conference Robotics and Applications; IASTED/ACTA

Press: Salzburg, Austria, 2003.
3. Banerjee, N.; Saha, D.; Singh, A.; Sanyal, G. A Simple Autonomous Chess Playing Robot for Playing Chess against Any Opponent

in Real Time. In International Conference on Computational Vision and Robotics; Institute for Project Management: Bhubaneshwar,
India, 2012.

4. Chen, A.T.Y.; Wang, K.I.K. Computer Vision Based Chess Playing Capabilities for the Baxter Humanoid Robot. In Proceedings of
the International Conference on Control, Automation and Robotics, Hong Kong, China, 28–30 April 2016.

5. Khan, R.A.M.; Kesavan, R. Design and Development of Autonomous Chess Playing Robot. Int. J. Innov. Sci. Eng. Technol. 2014,
1, 1–4.

6. Chen, A.T.Y.; Wang, K.I.K. Robust Computer Vision Chess Analysis and Interaction with a Humanoid Robot. Computers 2019, 8, 14.
[CrossRef]

7. Gonçalves, J.; Lima, J.; Leitão, P. Chess Robot System : A Multi-Disciplinary Experience in Automation. In Spanish Portuguese
Congress on Electrical Engineering; AEDIE: Marbella, Spain, 2005.

8. Sokic, E.; Ahic-Djokic, M. Simple Computer Vision System for Chess Playing Robot Manipulator as a Project-Based Learning
Example. In Proceedings of the IEEE International Symposium on Signal Processing and Information Technology, Sarajevo,
Bosnia and Herzegovina, 16–19 December 2008.

9. Wang, V.; Green, R. Chess Move Tracking Using Overhead RGB Webcam. In Proceedings of the International Conference on
Image and Vision Computing New Zealand, Wellington, New Zealand, 27–29 November 2013.

10. Hack, J.; Ramakrishnan, P. CVChess: Computer Vision Chess Analytics. 2014. Available online: https://cvgl.stanford.edu/
teaching/cs231a_winter1415/prev/projects/chess.pdf (accessed on 30 May 2021).

11. Ding, J. ChessVision: Chess Board and Piece Recognition. 2016. Available online: https://web.stanford.edu/class/cs231a/prev_
projects_2016/CS_231A_Final_Report.pdf (accessed on 30 May 2021).

12. Danner, C.; Kafafy, M. Visual Chess Recognition; 2015. Available online: https://web.stanford.edu/class/ee368/Project_Spring_
1415/Reports/Danner_Kafafy.pdf (accessed on 30 May 2021).

13. Xie, Y.; Tang, G.; Hoff, W. Chess Piece Recognition Using Oriented Chamfer Matching with a Comparison to CNN. In Proceedings
of the IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, NV, USA, 12–15 March 2018.

14. Czyzewski, M.A.; Laskowski, A.; Wasik, S. Chessboard and Chess Piece Recognition with the Support of Neural Networks.
Found. Comput. Decis. Sci.. 2020, 45, 257–280. [CrossRef]

15. Mehta, A.; Mehta, H. Augmented Reality Chess Analyzer (ARChessAnalyzer). J. Emerg. Investig. 2020, 2.

http://doi.org/10.17605/OSF.IO/XF3KA
http://dx.doi.org/10.3390/computers8010014
https://cvgl.stanford.edu/teaching/cs231a_winter1415/prev/projects/chess.pdf
https://cvgl.stanford.edu/teaching/cs231a_winter1415/prev/projects/chess.pdf
https://web.stanford.edu/class/cs231a/prev_projects_2016/CS_231A_Final_Report.pdf
https://web.stanford.edu/class/cs231a/prev_projects_2016/CS_231A_Final_Report.pdf
https://web.stanford.edu/class/ee368/Project_Spring_1415/Reports/Danner_Kafafy.pdf
https://web.stanford.edu/class/ee368/Project_Spring_1415/Reports/Danner_Kafafy.pdf
http://dx.doi.org/10.2478/fcds-2020-0014

J. Imaging 2021, 7, 94 16 of 16

16. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM
2017, 60, 84–90. [CrossRef]

17. Tam, K.; Lay, J.; Levy, D. Automatic Grid Segmentation of Populated Chessboard Taken at a Lower Angle View. In Proceedings
of the Digital Image Computing: Techniques and Applications, Canberra, Australia, 1–3 December 2008.

18. Neufeld, J.E.; Hall, T.S. Probabilistic Location of a Populated Chessboard Using Computer Vision. In Proceedings of the IEEE
International Midwest Symposium on Circuits and Systems, Seattle, WA, USA, 1–4 August 2010.

19. Kanchibail, R.; Suryaprakash, S.; Jagadish, S. Chess Board Recognition, 2016. Available online: http://vision.soic.indiana.edu/b6
57/sp2016/projects/rkanchib/paper.pdf (accessed on 30 May 2021).

20. Xie, Y.; Tang, G.; Hoff, W. Geometry-Based Populated Chessboard Recognition. In International Conference on Machine Vision; SPIE:
Munich, Germany, 2018.

21. Matuszek, C.; Mayton, B.; Aimi, R.; Deisenroth, M.P.; Bo, L.; Chu, R.; Kung, M.; LeGrand, L.; Smith, J.R.; Fox, D. Gambit: An
Autonomous Chess-Playing Robotic System. In Proceedings of the IEEE International Conference on Robotics and Automation,
Shanghai, China, 9–13 May 2011.

22. Wei, Y.A.; Huang, T.W.; Chen, H.T.; Liu, J. Chess Recognition from a Single Depth Image. In Proceedings of the IEEE International
Conference on Multimedia and Expo, Hong Kong, China, 10–14 July 2017.

23. Hou, J. Chessman Position Recognition Using Artificial Neural Networks. Available online: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.89.4390&rep=rep1&type=pdf (accessed on 30 May 2021).

24. Bilalić, M.; Langner, R.; Erb, M.; Grodd, W. Mechanisms and Neural Basis of Object and Pattern Recognition. J. Exp. Psychol. 2010,
139, 728. [CrossRef] [PubMed]

25. Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 679–698. [CrossRef]
26. Duda, R.O.; Hart, P.E. Use of the Hough Transformation to Detect Lines and Curves in Pictures. Commun. ACM 1972, 15, 11–15.

[CrossRef]
27. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with

Noise. In International Conference on Knowledge Discovery and Data Mining; AAAI Press: Portland, OR, USA, 1996.
28. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning

Representations, San Diego, CA, USA, 7–9 May 2015.
29. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the

International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.
30. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, LasVegas, NV, USA, 27–30 June 2016.
31. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009.
32. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

http://dx.doi.org/10.1145/3065386
http://vision.soic.indiana.edu/b657/sp2016/projects/rkanchib/paper.pdf
http://vision.soic.indiana.edu/b657/sp2016/projects/rkanchib/paper.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.4390&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.4390&rep=rep1&type=pdf
http://dx.doi.org/10.1037/a0020756
http://www.ncbi.nlm.nih.gov/pubmed/21038986
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1145/361237.361242

	Introduction
	Previous Work
	Dataset
	Proposed Method
	Board Localisation
	Finding the Intersection Points
	Computing the Homography

	Occupancy Classification
	Piece Classification
	Fine-Tuning to Unseen Chess Sets

	Results and Discussion
	Board Localisation
	Occupancy and Piece Classification
	End-to-End Pipeline
	Unseen Chess Set

	Summary and Conclusions
	References

