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Abstract: This paper is an extension of the work originally presented in the 16th International
Conference on Wearable, Micro and Nano Technologies for Personalized Health. Despite using
electronic medical records, free narrative text is still widely used for medical records. To make data
from texts available for decision support systems, supervised machine learning algorithms might
be successfully applied. In this work, we developed and compared a prototype of a medical data
extraction system based on different artificial neural network architectures to process free medical
texts in the Russian language. Three classifiers were applied to extract entities from snippets of text.
Multi-layer perceptron (MLP) and convolutional neural network (CNN) classifiers showed similar
results to all three embedding models. MLP exceeded convolutional network on pipelines that used
the embedding model trained on medical records with preliminary lemmatization. Nevertheless,
the highest F-score was achieved by CNN. CNN slightly exceeded MLP when the biggest word2vec
model was applied (F-score 0.9763).
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1. Introduction

This paper is an extension of the work originally presented in the 16th International Conference on
Wearable, Micro and Nano Technologies for Personalized Health [1]. According to Dhamdhere et al.,
80% of all healthcare data is unstructured [2]. Besides MRI, CT-scan, and imaging, a large amount of
medical data collected within medical records is written in natural language. Moreover, despite using
EMR, free text is still widely used because of some of its advantages such as more precise and flexible
descriptions. However, free narrative text does not satisfy the criteria of semantic interoperability,
cannot be analyzed by statistical tools, cannot be processed by a decision support system, and is
not available for improving case-based systems. At the same time, the demand for medical free-text
processing systems is increasing nowadays.

There are two approaches to natural language text processing: a traditional one, based on language
rules and domain ontologies, and methods that utilize machine learning. Machine learning algorithms
show very good results in natural language processing (NLP) tasks [3–6], including data extractions [7]
and named entity recognition [8–10].

A multi-layer perceptron (MLP) is an artificial neural network composed of an input layer to
receive data, an output layer that makes a decision or prediction about the input, and hidden layers.
The specific feature of this type of network is that each neuron from one layer is connected to every
neuron from the next one. These layers are also called fully-connected or dense. As for any supervised
learning technique, training involves adjusting the parameters, particularly the weights and biases, of
the model in order to minimize error.
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One of the successful approaches is to engage convolutional neural networks (CNN) for text
classification [11]. CNNs have shown superior results in image recognition [12], and this neural
network architecture can be applied to vector-represented text.

Convolutional neural networks (CNNs) [12,13] differ from fully-connected networks and have a
more complex structure. CNNs have achieved state-of-the-art performance in image classification,
speech recognition, and sentence classification. Convolution layers of CNNs, in contrast to
fully-connected layers, are only connected to a small region of the previous layer and have a much
smaller number of parameters. Technically, this allows us to use deeper models requiring the same
memory but having better performance.

There are three main types of layers required to construct a CNN: the convolutional layer, pooling
layer, and fully-connected layer. Convolutional layer parameters are a set of learnable filters. Each filter
slides across the input data represented in the form of a matrix and computes a convolutional function.
As a result, we obtain an activation map that gives the responses of a filter at every spatial position.
In the process of training, the filters change to activate when they receive an input, which can be a
feature of desirable output. Pooling layers are put in between convolutional layers to reduce the spatial
size of the representation, reduce computation, and prevent overfitting. Pooling combines the outputs
of neuron clusters into a single neuron as the maximum value of a cluster. Dense layers applied in
CNN are the same layers as described in the MLP section. It makes the final prediction and returns the
predicted class.

Long short-term memory networks (LSTMs) [14] are a type of recurrent neural network (RNN)
that were developed to enable networks to take into account the information that has previously been
fed into the network and can be useful for current predictions. RNNs are applied for sequential data
such as time series, text, or any other sequence. In contrast to CNNs and conventional feed-forward
networks, RNNs are able to model sequential data because they have a state variable to keep patterns in
data. The state variables are updated over time. RNNs are able to predict the next value of the sequence.

Advanced RNN LSTMs are widely used in language modelling and machine translation.
LSTMs have better performance, providing more data and allowing for the stororage of memory for
much longer than ordinary RNNs, and can also learn long-term dependencies. LSTM unit comprises a
memory block—a cell and three regulators called gates: an input gate, an output gate, and a forget
gate. The cells are responsible for remembering, and the gates manipulate this memory. The gates are
continuous functions between 0 and 1 and the value controls how much information flows through
the gate.

All the neural networks mentioned above require text represented in some digital form.
Word representation is an important and non-trivial task in NLP [15]. Good representation should
preserve semantics and word context in a language. Word2vec [16] is a technique used to learn
word embedding or feature representation of words. Word2vec is a distributed representation—the
semantics of words is captured by the activation pattern of the resulting vector in contrast to a more
simple one-hot representation. Word2vec can analyze a given text corpus and obtain numerical
representations—vectors—such that words occurring in similar contexts have similar numerical
representation. For vectors, this means that two vectors will be located closer to each other in a
multidimensional vector space for words from similar contexts. Here, semantic meanings of words are
learned from the context and words from similar contexts having similar semantics; as a result, their
vector representations are located close to each other.

Another issue is that the algorithm requires large labelled datasets for learning like any supervised
learning algorithm does. Collecting such datasets is a hard and complicated task, taking a lot of human
time and effort.

Existing works report about successful results in different NLP applications in medicine.
Danilov et al. [17] obtained 2.8 days mean absolute error (MAE) in hospital stay prediction.
Zhou et al. [18] achieved 93% accuracy for medical event detection in Chinese clinical notes. However,
every reported system aims and is trained to solve its exact task. Additionally, despite the progress in
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NLP field, the question about better embedding is still open [19,20]. In this work, we implemented
three different embedding models and compared their performance in application to neural network
classifier. We developed a prototype of a medical data extraction system for extraction diagnosis from
free medical records in Russian.

2. Materials and Methods

2.1. Data

We randomly selected 220 de-identified records from a public hospital in Saint Petersburg, Russia.
All records were created between 2015 and 2017 and contain information about the patient, diagnosis,
complaints, laboratory and instrumental test results, and treatments.

2.1.1. Labelled Dataset Gathering

Diagnosis and complaint sections of the records were analyzed in order to identify the most
frequent complaints and diagnoses. Twenty four entities were comprised into a list for further
extraction. To simplify the collection of samples for the dataset, we implemented a system that worked
in two modes: semi-automatic mode and manual mode. In the semi-automatic mode, the entities were
searched as keywords and the user was asked to accept or reject the identified example. To avoid
skipping some complicated entities, we implemented a mode for manual labelling. Here, the user
can select the desired piece of text and mark it as a corresponding entity. In both modes, the marked
snippet of text with a fixed size was put into the dataset. The dataset was a .csv file with text
snippet-entity couples.

2.1.2. Embedding Models

We used three different word embedding models. Two models were trained on our text corpora
and one on a pre-trained model. This model was trained on the Russian National Corpus (RNC) [21]
and texts from Wikipedia. This was the biggest model used in our research. In contrast, the other
models were trained on much smaller corpora but related to the domain field. For this purpose, we
gathered all medical records mentioned above and cleaned them by removing punctuation and filtering
out non-alphabetic tokens. All tokens were converted to lowercase. Using this corpus, we trained the
model shown in Figure 1 as word2vec model 1. For the other model, we normalized tokens—words in
the corpus before training. For the normalization, we utilized pymorphy2, a morphological analyzer
for Russian [22,23].

2.2. Preprocessing Pipelines

The general algorithm for extracting entities from narrative text in our work was as follows.
We gathered snippets of text with labels and embedded each word from the snippet with the particular
embedding model. Providing that we had three models, there were some different possibilities for
word representation. Those possibilities were defined by the combination of snippet handling and
applied embedding model.

We implemented three data preprocessing pipelines. There were two types of sample preprocessing
and three word2vec models. A combination of these two types of data was called a pipeline for
the purposes of this study. In that context, a pipeline defined how samples from the dataset were
represented to be fed to the classifier (Figure 1). Each pipeline had samples and embedding model as
input. Dotted arrows were used for embedding data and solid arrows for samples. The grey rectangle
on the figure highlights blocks responsible for samples preprocessing in contrast to blocks referring to
word embedding.

Pipeline 1 took samples from the dataset and represented each word according to embedding
model 1. This embedding model was trained on the corpus of medical records without normalization.
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In the context of this work, normalization means retrieving a lemma of a word that is its dictionary or
canonical form. This operation is also known as lemmatization.

Pipeline 2, in contrast to the previous one, included normalization for embedding model and for
samples in the dataset. Pipeline 3 took the same normalized samples as pipeline 2 but represented
them as vectors using the pre-trained word2vec embedding model 3.

Selection of these pipelines allowed us to answer the following questions: whether the pre-trained
word2vec model gives better word representations for our task, and whether using word lemmatization
gives better results. At the same time, these three pipelines covered all possible combinations of word
embeddings and normalized/not normalized samples.
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Data from every pipeline was fed to predictive models on the basis of three different types of
neural networks: multi-layer perceptron, convolutional neural network, and long short-term memory
networks. For model implementation, we used Python and Keras library (https://keras.io/), a high-level
neural network API written in Python. Code can be found at https://github.com/AlekseiDudchenko/

word2vec-models.

2.3. Algorithm Evaluation

To evaluate the prediction models, we applied the weighted average of precision and recall called
F-score or F-measure (Equation (1)). The score was calculated globally by counting the total true
positives, false negatives, and false positives. We implemented 10-fold cross-validation. The whole
dataset was randomly split into 10 folds to train and evaluate the model 10 times on different sets of
folds. The final score was calculated as the average F-scores of 10 obtained scores.

Fscore = 2
precision ∗ recall
precision + recall

= 2

tp
tp+ f p ∗

tp
tp+ f n

tp
tp+ f p +

tp
tp+ f n

. (1)

3. Results

The list of entities for extraction comprised 24 items and the total of 983 samples. Those 24 entities
were the more common diagnoses and complains in the processed records. Each sample in the obtained
dataset was a pair of the snippet of text and the name of the entity. SNOMED codes of entities and
their distribution in the dataset are shown in Table 1.

https://keras.io/
https://github.com/AlekseiDudchenko/word2vec-models
https://github.com/AlekseiDudchenko/word2vec-models
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Table 1. SNOMED cods and samples distribution.

SNOMED Code SNOMED Names Count

443502000 Atherosclerosis of coronary artery (disorder) 235

57546000 Asthma with status asthmaticus (disorder) 11

72866009 Varicose veins of lower extremity (disorder) 22

4556007 Gastritis (disorder) 28

70153002 Hemorrhoids (disorder) 15

25064002 Headache (finding) 52

386705008 Lightheadedness (finding) 34

1201005 Benign essential hypertension (disorder) 125

84229001 Fatigue (finding) 71

235856003 Disorder of liver (disorder) 11

84089009 Hiatal hernia (disorder) 10

76581006 Cholecystitis (disorder) 18

45816000 Pyelonephritis (disorder) 29

44054006 Diabetes mellitus type 2 (disorder) 32

413838009 Chronic ischemic heart disease (disorder) 101

162864005 Body mass index 30+—obesity (finding) 25

266556005 Calculus of kidney and ureter (disorder) 20

298494008 Scoliosis of thoracic spine (disorder) 18

235494005 Chronic pancreatitis (disorder) 18

51868009 Duodenal ulcer disease (disorder) 24

191268006 Chronic anemia (disorder) 11

102572006 Edema of lower extremity (finding) 13

709044004 Chronic kidney disease (disorder) 34

(other) Snippets without any disorder or finding 25

For word embedding, we applied three word2vec models. Table 2 provides the characteristics of
the models. The “Corpus” column indicates what corpus was used to train the model, “Total words”
indicates the total amount of words or tokens in the corpus, normalization is “yes” if tokens were
normalized, “Words in the model” is the number of words included in the model and having vector
representation, and “Vector size” is the dimensionality of the vectors in the model.

Table 2. Word2vec model parameters.

Embedding
Model Corpus Total

Words Normalization Words in the
Model

Vector
Size

Word2vec model 1 220 medical records 1,418,728 no 7505 50

Word2vec model 2 220 medical records 1,418,728 yes 3879 300

Word2vec model 3 Russian National Corpus
(RNC) and Wikipedia 788,000,000 yes 248,000 300

For model 1 and model 2, we used the same corpus of 220 medical records that was composed
of 1,418,728 words in total. Model 3 was adopted without any changes. It was originally trained on
a corpus of 788 million words. Words in the model were normalized. The final amount of vectors
representing words in the model was 248,000.
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According to the pipeline described in Section 2.2 of this work, model 1 corresponded to pipeline 1
and did not have normalization. Because of this, all words in the model remained in the form they had
originally been in within the text. This led to a bigger amount of words in the resulting model. Model 1
had vectors for 7505 words, whereas model 2 was trained on the corpus of the same medical records
but only had 3879 word representations. The corpus was normalized for model 2 before training,
which decreased the amount of unique words.

Table 3 provides F-scores for three prediction models based on MLP, CNN, and LSTM, and the
samples’ representation corresponded to three pipelines. The highest score (0.9763) was achieved with
CNN and samples embedded with the biggest word2vec trained on RNC and Wikipedia (pipeline 3).

Table 3. F-score.

Prediction Model Pipeline 1 Pipeline 2 Pipeline 3

Multi-layer perceptron (MLP) 0.9374 0.9590 0.9741

Convolutional neural networks (CNN) 0.9353 0.9525 0.9763

Long short-term memory networks (LSTMs) 0.9351 0.9355 0.9375

Scores grouped by pipelines and grouped by predictive models are shown in Figure 2. In this
figure, it can be seen how better word representation influences the efficiency of each model (Figure 2a)
and which model fits better for each pipeline (Figure 2b).
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4. Discussion and Further Work

Lemmatization is often used in NLP, including preprocessing for the operation of word
embedding. However, a lot of information goes missing while retrieving lemmas. We showed
that lemmatization before obtaining a word2vec representation led to better performance for all three
classifiers. When lemmatization was complete, the obtained model had much less elements but more
contexts for more precise representation of each one.

One of the key points in our research was comparing different word2vec models in order to
evaluate their efficiency in the task of entity extraction. The three pipelines used mostly differed in
their word embedding models. Thus, we can make a conclusion regarding the models considering
the results presented in Figure 2. The pre-trained model from the Russian National Corpus was the
biggest model in our research and was applied within pipeline 3. The amount of words in the corpora
dramatically exceeded the other two models. As a result, the score for the third pipeline achieved the
highest values among all classifiers. Our word embedding models turned to be too small and the
corpora that was collected for training word2vec models did not reach a sufficient scale. Due to this
fact, we cannot make a conclusion about the better performance of embedding models trained on
texts from the relevant field as compared with models trained on non-specific texts. To make such a
conclusion, much bigger corpora of medical texts have to be used.
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Three classifiers were applied to extract entities from snippets of text. MLP and CNN classifiers
showed similar results to all three embedding models. MLP exceeded convolutional network on
pipeline 2 that used the embedding model trained on medical records with preliminary lemmatization.
Nevertheless, the highest F-score was achieved by CNN. CNN slightly exceeded MLP when the biggest
word2vec model was applied.

LSTMs have a great potential in dealing with free text. However, the format of training data did
not enable the advantages of these kinds of neural networks. Usage of LSTMs requires text data as
sequences of tokens, not as snippets with fixed length.

The presented work is not yet a real-life task, but a simplification. This can be seen from the
number of entities for extraction and the size of training dataset. The amount of entities was limited by
24, and all samples in the dataset were collected manually. We expect that results from real data would
not be so high. To further improve this, the training dataset should be extended with more entities and
more samples.

The next step in this direction is collecting a bigger comprehensive corpus of medical texts that
includes not only records but also articles and guidelines. Having such a corpus, we will be able to
train a word2vec model tailored for the medical field. The next step is the development of a complete
system for data extraction with an increased size of the training dataset and user interface development.
Dataset extension should be done in both directions by adding new entities and gathering more samples
for each entity. Because only an entity having enough samples in the dataset can be successfully
extracted, gathering a properly labeled dataset is the most challenging task. Nonetheless, such a system
can be easily adopted and deployed within one particular department for structuring and second
usage of medical data from unstructured narrative medical records.
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